用户名: 密码: 验证码:
阿尔金断裂带中段新生代走滑历史研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Cenozoic Strike-slip History of the Central Altyn Tagh Fault
  • 副题名:盆地沉积和山脉隆升证据
  • 英文副题名:New Evidences from the Sedimentary Process and Uplift of Mountains
  • 作者:陈正乐
  • 论文级别:博士
  • 学科专业名称:构造地质学
  • 学位年度:2002
  • 导师:王小凤
  • 学科代码:070904
  • 学位授予单位:中国地质科学院
  • 论文提交日期:2002-04-20
摘要
位于青藏高原北缘边界的阿尔金断裂,是一条巨型的陆内走滑断裂带,是高原北缘的一条主控边界断裂。它左型走滑的启动时间、走滑量等是判断青藏高原是以地壳加厚还是以左旋挤出来吸收印亚大陆碰撞后印度大陆的向北挤入作用的有效标准之一;因而,在过去几十年中,中外地质学家沿青藏高原北缘、阿尔金地区已经开展一些地质调查和科研工作,但研究工作主要集中于阿尔金断裂带的新构造特征、运动学、走滑位移量等,对阿尔金山脉的隆升过程,及其阿尔金断裂带新生代的走滑过程,知之甚少。
     本文选择阿尔金断裂带中段新生代的沉积盆地为研究重点,结合阿尔金山脉新生代隆升历史的研究,从盆地沉积过程和山脉隆升历史角度来反演阿尔金断裂新生代的走滑历史,并探讨新生代阿尔金走滑断裂带的变形与青藏高原的隆升、变形之间的动力学联系。
     通过三年多的努力,取得一些新的认识和进展,主要包括以下几个方面:
     1、通过小范围大比例尺的路线地质填图,系统分析研究阿尔金断裂带中段新生代盆地的沉积演化过程及其构造变形历史,探讨各盆地的成因类型及其与阿尔金断裂带的耦合关系;
     确定索尔库里北盆地内第三系的沉积相和沉积环境,识别出第四纪早期七个泉组的沉积层,发现发育在第四纪早期七个泉组顶部的古夷平面,将盆地的沉积序列划分为两个序列,建立了该盆地第三纪的沉积—构造演化模式,认为该盆地的形成、演化与阿尔金断裂大规模的走滑密切相关;分析了索尔库里南盆地第三纪沉积物质组成特征,发现盆地内部早第四纪七个泉组与上新世狮子沟组之间的不整合接触关系,确定了沉积环相和沉积环境,推断该盆地的原型为古河道,并根据同沉积断层、正断层和擦痕的发育,判断盆地沉积时处于斜张环境;根据地貌形态及其野外的观察,推断索尔库里盆地为山间侵蚀地貌盆地;分析了依屯布拉克盆地、库木塔什盆地的成因,认为两者都为第三纪与阿尔金断裂密切相关的走滑盆地;索尔库里走廊盆地的野外调查和分析表明,盆地是晚更新世以来才形成的一种与阿尔金断裂的走滑及其少量的正断分量密切相关的特殊类型的走滑拉分盆地。
     2、将阿尔金断裂中段新生代的沉积层序划分为三大序列:渐新世—中新世中期、中新世晚期—第四纪早期和晚更新世—现今,并根据沉积序列以及盆地的沉积充填和构造变形过程,恢复了不同时代的沉积—构造地貌,推断阿尔金断裂新生代三大阶段五期走滑作用过程;并根据新第三纪沉积体的展布特征、成因类型和沉积盆地的复原及其索尔库里古河道出口证据,推算出晚新生代阿尔金断裂带中段左旋走滑位移量为80-100Km,平均走滑速率为10-12mm/y。
     3、磷灰石裂变径迹测年结果表明,阿尔金山脉东西向的山脉早于北东东向山脉的开始隆升,北东东向山脉的隆升开始于渐新世早期(36Ma),并一直延续到中中新世(13Ma),早期山脉的隆升速率较慢,中新世以后山脉的隆升速率加快,并推测阿尔金断裂大型左行走滑的起始时间为渐新世。而靠近断裂带岩体内的样品内磷灰石裂变径迹测年集中在8Ma左右,区域资料表明了沿阿尔金主断裂旁侧,普遍存在8Ma±的磷灰石裂变径迹年龄,进而推测阿尔金断裂在8Ma±经历了一期快速的走滑变形事件。
     4、阿尔金山脉北西山前江尕勒萨依地区新生代地层中碳酸盐胶结物中的δ~(18)O和δ~(13)C值测试结果表明,青藏高原北缘山脉最早期的隆升开始于渐新世的早期;中新世早期,出现山脉的快速隆升;根据δ~(18)O的变化值估算,中新世早期山脉的隆升幅度大约为1500米左右,远远小于现今青藏高原北缘的高程差,因而中新世以后高原北缘山脉的隆升更为强烈。相应地,在中新世早期,岩层中砾岩的比例、沉积物的粒度、砂岩碎屑中不稳定组分比例、砂岩中碎屑物质的磨圆度、分选性开始出现突变,并且其突变发生的位置与地层中碳酸盐胶结物的δ~(18)O、δ~(13)C值发生的突变相一致。
     5、根据阿尔金断裂带中段新生代沉积—构造地貌的复原所推测的走滑作用过程,结合磷灰石的裂变径迹测年、阿尔金山脉山前盆地内新生代自身矿物的δ~(18)O和δ~(13)O值所反演的气候变化、山脉隆升过程,及其山前盆地沉积学特征研究,笔者认为阿尔金断裂的左旋走滑开始于渐新世的早期,8Ma左右阿尔金断裂发生了一次重要的走滑构造变形事件,将阿尔金断裂新生代的构造演化划分为三个阶段:渐新世至中新世晚期(36-8Ma)、中新世晚期开始至第三纪末期、晚更新世至今。第一和第二阶段大约以8ma左右出现的阿尔金断裂带大规模的左旋走滑为界;早、中更新世为第二阶段与第三阶段的过渡期。结合左旋走滑位移量的估算,恢复了阿尔金断裂晚新生代的走滑作用过程。
     5、综合青藏高原抬升、变形资料,进一步探讨阿尔金断裂新生代走滑构造的形成与演化与青藏高原的隆升、变形的动力学联系,认为新生代阿尔金断裂的构造变形都是在印度与亚洲大陆的碰撞及其随后的印度与亚洲大陆之间大于规模的汇聚作用,而导致的青藏高原在新生代的抬升、变形这个大的地球动力学背景上发生的。
The ENE-striking Altyn Tagh Fault (ATF) extends along the northern edge of the growingQinghai-Tibetan plateau. As one of major active tectonic features produced during the India-Asiacollision, the initial age of its left-lateral strike-slip and the total offset accumulated along thisfault are key parameters in assessment of the eastward extrusion vs distributed shortening modelsof the Qinghai-Tibetan plateau during the large-scale convergence between the India and Asiaafter their collision. Its active features, left-lateral offset and its markers in surface, the slip rateand its distribution along the fault have been well documented since early 80's, while, little wasknown on the uplifting history of the Altyn Tagh mountains and the strike-slip process of the faultin Cenozoic.
     This paper mainly presents new evidence from the sedimentary process of the Cenozoicbasins along the central Altyn Tagh fault and the uplifting history of the Altyn Tagh mountains toreconstruct the strike-slip history of the fault during Cenozoic, and to discuss the dynamicrelation between the Cenozoic strike-slip faulting of the ATF and the uplift and deformation ofthe Qinghai-Tibetan plateau.
     The main advancements achieved are as following after more than three-year hardwork:
     1) Studies on the sedimentary process and tectonic deformation of Cenozoic basinsdeveloped along the central Altyn Tagh fault, through field investigation and geological mapping,showe that the filling process, formation and deformation of these basins were highly related withthe strike-slipping of the ATF.
     In north Suo'erkuli basin, the Early Pleistocene Qigequan Formation is firstly distinguishedand a planation surface developed on the top of the Qigequan Formation is newly recognized. Thesedimentary sequence is divided into two units. The lower unit is composed of Oligocene LowerGancaigou Formation to Miocene Upper Ganaigou Formation and Lower Youshashan Formation,with the sedimentary facies changing from alluvial fan in the edge and lacustrine in the center ofthe basin in the bottom, up to lacustrine in the middle, and alluvial and pluvial fan in the top. Theupper one, Qigequan unit, is mainly alluvial fan deposits. The reconstruction of the relationshipbetween sedimentation and strike-slipping of the ATF has been attempted, suggesting that thisbasin was a strike-slip-related basin.
     In South Suo'erkuli basin, detailed field measurement of the characteristics of sedimentsshows most deposits in this basin belong to fluvial deposits with northwest side as its resourance.An obviously angular unconformity between the Pliocene Shizigou Formation and the EarlyPleistocene Qigequan Formation has been founded in the field. A relative flat erosional planationsurface is well preserved on the top of the Qigequan Formation. Syn-sedimentary faults, normalfaults parallel to the main trace of the ATF, and scrab-linenation in some of the fault surfaceindicate regional extensional setting during the formation of this basin.
     The geomography and field investigation show that the Suo'erkuli basin was one ofintra-mountain depression, originated from a tectonic erosional river valley. Both Yitunbulakebasin and Kumutashi basin share similarities not only in Cenozoic sediments inside, but also thenarrow and elongate extending geometry, and unconformbaly overlay on Pre-Cambrian basemen,suggesting sediments in these two basins were deposited in an initially uniform strike-slip basin.
     Sediments in Suo'erkuli valley, the distribution of active Altyn Tagh fault and its branches,and the long and narrow extending geometry, indicate that this valley was a newly formed,probably since Late Pleistocene, special pull-apart basin, which was also related with somenormal partitions in strike-slipping of the fault.
     2) The Cenozoic sedimentary sequence is established based on the composition of thesediments, sedimentary facies changes, and unconformity relations in those basins, and is dividedinto three units as following: Oligocene to Middle Miocene, Late Miocene to Early Quaternary,and Late Pleistocene to present. The paleo-topographic reconstruction shows the sedimentation inthese basins was tightly related with the fault, indicating that the Altyn Tgah fault has experiencedthree stages and five periods strike-slipping during Cenozoic.
     New geological evidence from the distribution of Cenozoic sedimentary basins and theformation of the Suo'erkuli basin provide constraints on the displacement of the fault, whichindicating 80~100 km left-lateral offset of the fault has been accumulated in Late Cenozoic,with the average strike-slip rate as 10-12mm/y.
     3) 25 samples from gneisses and granites in the Altyn Tagh mountains are dated by fissiontrack of apatite. The result yields ages varying from 61Ma to 7Ma, indicating the heterogeneticuplifting of Altyn Tagh mountains. The fission track age of samples from the NEE-trending partof the Altyn Tagh mountains varies from 36.5Ma to 13.6Ma, suggesting that the uplift of theNEE-trending Altyn Tagh mountains began from Oligocene till to Miocene, with lower uplift rateearlier (from Oligocene to Miocene) and probably a quickly uplifting occurred later. Supposedly,the uplift of the NEE-trending mountain was only related with the strike-slip of the Altyn Taghfault, the author put forward an initiation age of the left-lateral strike-slip of the fault inOligocene. Regional data also show that a large-scale regional uplift of mountains in northernedge of the Qinghai-Tibetan plateau occurred during Oligocene to Miocene.
     While, fission track dating of the apatites from granites near the fault yields agesconcentrated on the 7-9Ma, with about 2Ma difference. Regional data also show that 8Ma±byfission track dating of apatite is widely spread along the fault, suggesting a period of rapidstrike-slipping of the fault took placed during this time.
     4) Stable isotope of pedogenic minerals and calcite cement, as a most powerful andquantitative parameter of the paleo-climate change, is very useful to document the uplift-historyof mountains. Analyses results of calcite cement from the Cenozoic sediments in theJianggalesayi area, north-western edge of the Altyn Tagh mountains, show that rapid changes ofboth the value ofδ~(18)O andδ~(13)C occurred in early Oligocene and early Miocene, suggesting theuplift of mountains initiated from early Oligocene, and a rapid uplift occurred in early Miocene.
     According to the formula from Chamberlain (2000), and the decrease of oxygen in calcitecement in early Miocene, it is calculated that the uplift of mountain at that time was less than1500meters, suggesting the modern sharp difference in topography, more than 3000 meters,between the northern plateau and the Tarim basin predominately formed later than Miocene.
     Correspondingly, the study on sedimentary both in field and under microscope showed thata quickly up-coarsing of the sediments grain size, the ratio of conglomerate layers in stratigraphy,and the unstable composition of pebbles in clast of sandstone, and the degree of rounded andsorted of pebbles in sandstones and conglomerates was recorded in early Miocene, andsedimentary velocity increased rapidly during Pliocene and Early Quaternary.
     5) Sedimentary process and deformation history of Cenozoic basins along the central AltynTagh fault, fission track dating of apatite, and the value ofδ~(18)O andδ~(13)O of calcite cement fromCenozoic sediments in northwestern edge of the Altyn Tagh mountains as the parameter of theclimate change, suggested that the left-lateral strike-slip of the Altyn Tagh fault initiated at EarlyOligocene, about 36Ma, and an important rapid strike-slipping of the Altyn Tagh fault occurred atabout 8Ma.
     The Cenozoic strike-slip history of the Altyn Tagh fault can be divided into three stages. Thefirst stage, corresponding to Oligocene to Middle Miocene (36-8Ma), the Altyn Tagh fault mostlybehaved as a transtensional boundary. Regional deformation occurred at about 8Ma, associatedwith the position change of the main trace of the ATF. The second stage, from Late Miocene tothe end of Pliocene, the ATF displayed transtensional feature in Late Miocene and Early Pliocene,and with some more normal partition in strike-slip faulting during Late Pliocene. A change infault behavior occurred in early Pleistocene. The decreasing of the normal partition in strike-slipfaulting was associated with regional NW-NWW-trending compression deformation, whichprobably lasted until to the end of Pleistocene, and the ATF behaved as a transpressionalboundary. From Late Pleistocene to present, during the third stage, the ATF mainly worked as alarge-scale strike-slipping fault with some normal partitions in its central segment.
     Based on the sedimentary sequence, together with division of the Cenozoic strike-slippingof the Altyn Tagh fault and the total left-lateral offset constrained by the comparison of thestrike-slip basins (the Yitunbulake basin with the Kumutashi basin) and the outlet of theSuoerkuli basin with the paleo-drainage in south Suoerkuli area, the reconstruction of strike-slipfaulting history in the central Altyn Tagh fault during Late Cenozoic has been attempted.
     6) Most regional geological evidence shows that the Cenozoic strike-slip faulting of the ATFwas tightly related with the deformation and uplift of the Qinghai-Tibetan plateau. For example,8Ma probably was also one of most important deformation and uplift stages of the wholeQinghai-Tibetan plateau. The global climate change tightly related with large scale mountainuplift also happened at this time. Thus, the author suggests that all Cenozoic deformation alongthe ATF could be interpreted in the geodynamical setting of uplift and deformation of theQinghai-Tibetan plateau resulted from the collision between India and Asia and the large-scaleconvergence between them after the collision.
引文
安芷生,J.E.Kutzbach, W.L.Prell, et al.. 2001.亚洲季风演变与晚中新世以来喜马拉雅—青藏高原的阶段性隆升,见:卢演涛,高维明,陈国星等主编,新构造与环境,北京:地震出版社.1-10
    陈发景,赵海玲,等.1996.中国东部中、新生代伸展盆地构造特征及地球动力学背景.地球科学,21(4).
    陈文,葛肖虹,叶慧文,刘新宇,刘永江,张思红.2000.用激光微区~(40)Ar/~(39)Ar定年技术测定阿尔金断裂多期活动的时代.质谱学报,21(3-4):189~190
    陈文寄,等.年轻地质体系的年代测定(续).北京:地震出版社,1999.
    陈正乐,张岳桥,陈宣华,等.2001.阿尔金段裂中段晚新生代走滑历史的沉积记录.中国科学(D),31(增刊):90~96.
    陈正乐,张岳桥,王小凤,等.2002.阿尔金断裂8Ma的快速走滑及其地质意义.地球学报,23(4).(已接受,出版之中)
    陈正乐,张岳桥,王小凤,等.2001.阿尔金山脉新生代隆升的裂变径迹证据.地球学报,22(5):413~418.
    陈正乐,王小凤,冯夏红,等.2001.稳定同位素在山脉隆升历史重建中的应用.矿物岩石地球化学通报,20(4):211~213.
    陈正乐,王小凤,陈宣华,张岳桥.2002.阿尔金断裂新生代构造变形的ESR证据.地质论评,(增)(已接受,出版之中)
    崔军文,唐哲民,邓晋福,等.1999.阿尔金断裂系.北京:地质出版社.1~249.
    崔军文,唐哲民,邓晋福等.1999.阿尔金断裂系.北京:地质出版社:22~27,137215
    崔之久,高全洲,刘耕年,潘保田,陈怀录.1996.夷平面、古岩溶与青藏高原隆升.中国科学(D),26(4):378-386
    丁林,钟大赉,潘裕生等.1995.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据.科学通报,40(16):1497~1500.
    丁林.1997.裂变径迹定年方法的进展及应用.第四纪地质,(3):272~279
    范芳琴.1993.阿尔金地区构造应力场研究.内陆地震,7(4):370-378.
    高锐,黄东定,卢德源等.2000.横过西昆仑造山带与塔里木盆地结合带德深地震反射剖面.科学通报,45(17):1874~1879
    葛肖虹,刘永江,任收麦,等.200I.对阿尔金断裂科学问题的再认识.地质科学,36(3):319-325.
    葛肖虹,刘俊来.2000.被肢解的“西域克拉通”.岩石学报,16(1):59-66.
    葛肖虹,张梅生,刘永江,等.1998.阿尔金断裂研究的科学问题与研究思路.现代地质,12(3):295-301.
    国家地震局“阿尔金活动断裂带”课题组.阿尔金活动断裂带.北京:地震出版社,1992.
    郭召杰,张志诚,王建君.1998a.索尔库里盆地的形成、演化及其与阿尔金断裂带的关系研究.高校地质学报,4(1)59-63.
    郭召杰,张志诚.1998b.阿尔金盆地群构造类型与演化.地质论评,44(4):357-364.
    和政军,田树刚,许志琴,等.1999.阿尔金山中段晚古生代放射虫的发现及意义.地质论评,45(3):246.
    黄汉纯,黄庆华,等.柴达木盆地地质与油气预测.北京:地质出版社,1996.
    黄汉纯,王长利.1987.阿尔金构造带特征及其对塔里木和柴达木盆地的影响.地球学报,第17号,17~31
    李海兵,万渝生,Ireland T R,许志琴,杨经绥,Liou J G,史仁灯,吴才来,Tapponnier P.2001a.阿尔金断裂带印支期走滑活动的地质及年代学证据.科学通报,46(16):1333~1338.
    李海兵,杨经绥,许志琴,等.2001b.阿尔金断裂带的形成时代——来自于同构造生长锆石U-Pb SHRIMP定年数据.地质论评,47(3):315~316.
    李吉均,文世宣,张青松等.1979.青藏高原隆起的时代、幅度和形式探讨.中国科学,(6):608-616
    李四光.地质力学方法.北京:科学出版社,1976.
    李四光.地质力学概论.北京:科学出版社,1973.92.
    李思田.2000.盆地动力学与能源资源——世纪之交的回顾与展望.地学前缘,7(3):1-9
    李思田.1995.沉积盆地的动力学分析——盆地研究领域的主要趋向.地学前缘,2(3):1-8
    刘和甫.1996.中国沉积盆地演化与旋回动力学环境.地球科学,21(4).
    刘和甫,夏义平,等.1999.走滑造山带与盆地耦合机制.地球前缘,6(3):121-132.
    刘和甫,梁慧社,李晓清,等.2000.中国东部中新生代裂陷盆地与伸展山岭耦合机制.地球前缘,7(4):477-132.486
    刘和甫,汪泽成,熊保贤,等.2000.中国东部中新生代裂陷盆地与伸展山岭耦合机制.地球前缘,7(3):55-72.
    刘和甫.2000.盆地—山岭耦合体系与地球动力学机制.地球科学,26(6):581-596.
    刘良,车自成,王焰,等.1999.阿尔金高压变质岩带的特征及其构造意义.岩石学报,15(1):57-64.
    刘永江,葛肖虹,叶慧文,等.2001.晚中生代以来阿尔金断裂的走滑模式.地球学报,22(1):23~28.
    刘永江,叶慧文,葛肖虹,陈文,刘俊来,任收麦.2000.阿尔金断裂变形岩激光微区~(40)Ar/~(39)Ar年龄.科学通报,45(19):2101~2104
    吕连清,方小敏,J.A.Mason,等,2001.8.1Ma以来朝那黄土—红黏土剖面粒度揭示的冬季风与北半球高纬度气候的耦合演化,中国科学(D),31(增):149-154
    青海省地质矿产局.青海省区域地质志.北京;地质出版社,1993.
    柏美祥,等.1987.阿尔金断层地震活动特征.中国地震,3(1).
    潘桂棠,等.阿尔金山新生代构造及造山性质.青藏高原地质论文集(15),北京:地质出版社,1984.
    施雅风,唐茂仓,马玉珍.1999.青藏高原的第二期抬升与亚洲季风系的起始时间关系.中国科学,42(3):303~312
    宋春晖,方小敏,李吉均,等,2001.青藏高原北缘酒西盆地13Ma以来沉积演化与构造隆升,中国科学(D),31(增):155-162
    宋友桂,方小敏,李吉均,等.2001.晚新生代六盘山隆升过程初探,中国利学(D),31(增):142-148
    虢顺民,向宏发.1998.阿尔金构造系渐新世-中新世以来断裂左旋位错时空分布规律研究.地震地质,20(1),9-17.
    塔里木石油勘探开发指挥部,滇黔桂石油勘探局石油地质科学研究所.(中国油气区地层古生物丛书)塔里木盆地震旦纪至二叠纪地层古生物(Ⅳ):阿尔金山地区分册.北京:石油工业出版社,1995.
    王富葆,李升峰,申旭辉,等.1996.吉隆盆地的形成演化、环境变迁与喜马拉雅山隆起,中国科学(D辑),26(4):329~335
    王富葆,张青松,李炳元.1981.青藏高原第四纪构造运动的性质与分期问题.见:青藏高原的隆升时代、幅度和形式问题,中科院青藏综合考察组.科学出版社.117-129
    王根厚,李明,冉书明,王小牛.2001.转换断层及其地质意义——以阿尔金转换断层为例.成都理工学 院学报,28(2):183~186.
    王卫东,李少睿.1999.利用地震矩张量反演阿尔金断裂带现今运动学特征.地震地质,21(2):171~175.
    王军.1998.西昆仑卡日巴生岩体和苦子干岩体的隆升.地质论评,44(4):435~442.
    王彦斌,王军,王世成.1998.高喜马拉雅地区聂拉木花岗岩快速抬升的裂变径迹证据.地质论评,44(4):431~434
    万景林,王瑜,李齐等.2001.阿尔金山北段晚新生代山体抬升的裂变径迹证据,矿物岩石地球化学通报,20(4):222-224
    邢成起,吕德徽,董治平,王新林.1998.阿尔金山东段山前砾石钙膜累积速率及其在估算断层活动年代方面的应用.内陆地震,12(2):119-132
    新疆维吾尔自治区地质矿产局.中华人民共和国地质矿产部地质专报,一 区域地质 第32号 新疆维吾尔自治区区域地质志.北京:地质出版社,1993.841.
    徐仁.1981.大陆漂移与喜马拉雅山上升的古植物学证据.见:青藏高原的隆升时代、幅度和性质,中科院青藏综合考察组.科学出版社.17-23
    许志琴,杨经绥,张建新,姜枚,李海兵,崔军文.1999.阿尔金断裂两侧构造单元的对比及岩石圈剪切机制.地质学报,73(3):193~205.
    杨藩,叶素娟,曹春潮,等.1994.新生代阿尔金断层中、东段右行走滑特征.地质科学,29(4):346-353.
    尹安.2001.喜马拉雅.青藏高原造山带地质演化——显生宙亚洲大陆生长.地球学报,22(3):193~230.
    张建新,许志琴,崔军文.1998.一个韧性转换挤压带的变形分解作用——以阿尔金断裂带东段为例.地质论评,44(4):348-356.
    张进江,钟大赉,季建清,等,2001.东喜马拉雅构造结大陆碰撞以来构造年代学格架及其与哀牢山红河断裂带的对比.矿物岩石地球化学通报,20(4):243-244
    张青松,李炳元.1989.喀喇昆仑-西昆仑山地区晚新生代隆起过程及自然环境变化初探.自然资源学报,4(3):234~240
    张青松,李炳元,景可.1981.青藏高原上新世古地理和高原隆起.见:青藏高原的隆升时代、幅度和形式问题,中科院青藏综合考察组.科学出版社.39-50
    张显庭,郑健康,苟金.1984.阿尔金山东段槽型晚奥陶世地层的发现及其构造意义.地质论评,30(2):184-186.
    张岳桥,陈正乐,杨农.2001.阿尔金断裂晚新生代左旋走滑位移的地质新证据.现代地质,15(1):8~12
    赵越,徐守礼,杨振宇.1996.沿大型走滑断裂系的隆升.地质科学,31(1):1-11
    郑剑东.1988.阿尔金断裂与火陆走滑断裂.内陆地震,2(2).
    郑健康.1995.阿尔金造山带东段地质构造演化概论.青海地质,4(2):1~10.
    钟端,郝永祥,刘均儒.1995.阿尔金山地区寒武系、奥陶系.见:塔里木盆地震旦纪至二叠纪地层古生物(4)——阿尔金山地区分册.北京:石油出版社,8~70.
    钟大赉,丁林.1996.青藏高原的隆起及其机制探讨.中国科学(D),26(4):289-295
    中国地质科学院成都地质矿产研究所.青藏高原及邻区地质图(1:1500000)(附说明书).北京:地质出版社,1988.
    周勇,潘裕生.1999.阿尔金断裂早期走滑运动方向及其活动时间探讨.地质论评,45(1):1-9.
    周勇,潘裕生.1998.茫崖—肃北段阿尔金断裂右旋走滑运动的确定.地质科学,33(1):9-16.
    朱志澄,宋鸿林主编.1990.构造地质学,武汉:中国地质大学出版社。224
    An Zhisheng, John E. Kutzbach, Warren L., et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature,411:62-66
    Beck R.A., Burbank D.W.,Sercombe W.J., Riley GW, Barndt J.K.,Berry J.R., Afzal J.,Khan A.M.,Metje J., Cheema A., Shafique N.A., Lawerence R.D. 1995. Stratigraphic evidence for an early collision between northwest India and Asia. Nature, 373:55-58
    Burchfiel B C, Zhang P Z, Wang Y P, et al.. 1991, Geology of the Haiyuan fault zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau. Tectonics,10(6):1091~1110
    Burchfiel B C, Deng Q, Molnar P, Royden L H, Wang Y, Zhang P, and Zhang W. 1989. Intracrustal detachment within zones of continental deformation. Geology, 17: 448-452
    Chamberlain C P, Poage M A, 2000, Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals. Geology, 28:115-118
    Chamberlain C P, Poage MA, Craw D., et al., 1999, Topographic development of the Southern Alps recorded by the isotopic composition of authigenic clay minerals, South Island, New Zealand. Chemical Geology, 155:279-294.
    Chen Zhengle, Zhang Y Q, Chen X H, Wang X F, Zack W, Ramon A. 2001. Late Cenozoic sedimentary process and its response to the slip history of the central Altyn Tagh fault, NW China. Science in China (D), 44(Supp.): 103-111.
    Chen Zhengle, Zhang Yueqiao, Chen Xuanhua, Wang Xiaofeng, Washburn Z., Arrowsmith J. Sedimentary process of the Cenozoic basin and its response to the slip-history of the Altyn Tagh Fault, NW China. Earth Science Frontiers (China University of Geosciences, Beijing), 2000, 7 (Suppl.): 245-246
    Cowgill, E S, Yin A, Wang X, Zhang Q. 2000. Is the North Altyn fault part of a strike-slip duplex along the AltynTagh fault system? Geology, 28 (3): 255-258
    Critelli S., Garzanti E.,1994. Provenance of the Lower Tertiary Murree redbeds (Hazara-Kashmir) syntaxis,Pakistan) and initial rising of the Himalayas. Sedimentary Geology, 89:265-284
    Dewey J.F., Shackelton R.M., Chang C., Sun Y. 1988. The tectonic evolution of the Tibetan Plateau. Phil. Trans. R. Soc. Lond.,A327:379-413
    David L D, Kyger C L, 2000, Oxygen isotope evidence for high-altitude snow in the Laramide Rocky Mountains of North America during the Late Cretaceouss and Paleogene. Geology, 28(3):243~246
    Harding T.P., Viebuchen R.C., Christie-Blick N. 1985. Structural style, plate tectonic setting and hydrocarbon traps of divergent wrench faults. In: Biddle K.T., Christer-Blicks N, eds. Strike-slip deformation, basin formation, and sedimentation. Society of Economic Paleotonologist and Mineralogists Special Publication. 37:51-57
    
    Harrison T.M.., Copeland P., Kidd W.S.F., Yin A., 1992. Rising Tibet. Science, 255:1663-1670
    
    Harrison T M, Copeland P, Hall S A, et al, 1993, Isotope preservation of Himalayan/Tibetan uplift, denudation and climate histories of two molasses deposits. Journal of Geology, 101:157-175
    Hurford A J, Green P F. 1982. A users' guide to fission track dating calibration. Earth and Planetary Science Letters, 59:343-354.
    
    Edmond J M, 1992, Himalayan tectonics, weathering process and the strontium isotope record in marine limestones. Sciences,258:1594-1597 England, P. and Housemann,G, 1986,Finite strain calculations of continental deformation: Comparison with the India-Asia collision zone, JGR, 91,3664-3676
    Fang X M, Li J J, Rob V D V, 1999,Rock magnetic and grain size evidence for intensified Asian atmospheric circulation since 800000 years B.P. related to Tibetan uplift. EPSL, 165:129-144
    Friedmann S J, et al. Geometry,paleodrainage and geologic rates from the Miocene Shadow Valley super detachment basin, eastern Mojave Desert, California. GSA Special paper 303,1996,85-103
    Garizone C., David L.D., Quadel, J., et al., 2000, High times on the Tibetan plateau: Paleoelevation of the Thakhola graben, Nepal. Geology, 28(4):339~342
    Garzione C., Quade J., Decelles P., English N.B., 2000,Predicting paleoelevation of Tibet and the Himalaya from delta (super 18) O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth and Planetary Science Letters, 183(1-2):215-229.
    James R S, James G S. 1988. Provenance and dispersal of tectogenic sediments in thin-skinned, thrust terrains. New Perspectives in Basin Analysis, Springer-Verlag, 353-366.
    Johnson C L, Graham S A, Webb L E, Badarch G, Beck M, Hendrix M S, Lengen R, and Sjostrom D. 1997. Sedimentary response to Late Mesozoic extension, southern Mongolia. Eos, Transactions, AGU.
    Mann P, Hempton M R, Brandley D C, Burke N. 1983. Development of pull-apart basins. J. Geology., 91: 529-554
    Meng Q-R, Hu J-M, and Yang F-Z. 2001. Timing and magnitude of displacement on the Altyn Tagh fault: constraints from stratigraphic correlation of adjoining Tarim and Qaidam basins, NW China. Terra Nova, 13: 86-91.
    Meyer B, Tapponnier P, Gaudemer Y, Peltzer G P, Guo S, and Chen Z. 1996. Rates of left-lateral movement along the easternmost segement of the Altyn tagh fault, east of 96E(China). Geophy. J.Internal, 124,29-44
    
    Metivier F., GaudermerY., Tapponnier P., et al.. 1998. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two sedimentary basins: the Qaidam and Hexi corridor. Tectonics, 17:823-842
    
    Molnar P, England P, Joseph M, 1993, Mantle dynamics, uplift of the Tibetan plateau and the Indian monsoon. Reviews of Geophysics, 31(4):357~396
    Molnar,P., B.C., Burchfiel,Zhao,Z., Lian,K., Wang S., and Huang M., 1987a, Geologic Evolution of Northern Tibet: Results of an Expedition to Ulugh Muztagh,Science, 235,299-305
    Molnar,P., B.C., Burchfiel,Zhao,Z., Lian.K., Wang S., and Huang M., 1987b. Geomorphic evidence for active faulting in the Altyn Tagh and northern Tibet and qualitative estimates of its contribution to the convergence of India and Eurasia. Geology, 15,249-253
    Nilsen T.H., Sylvester A.G., 1999.Strike-slip basins, In: the leading edge, Society of Exploration Geophysicists. 1146-1159,1258-1267
    Pelzer G, Tapponnier P and Armijo R. 1989. Magnitude of late Quaternary left-lateral displacements along thenorthern edge of Tibet. Science, 246: 1285-1289
    Poage M A, Sjostrom D J, Furniss G, et al., 2000, Isotopic evidence for Holocene climate change in the Northern Rockies from a goethite-rich ferricrete chronosequence. Chemical Geology, 166:327~340.
    Quadel, J., Thure E.C., John R.B., 1989, Development of Asia monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature, 342:163~166
    Raymond,V.I., Kathleen and 9others, 1996, The Mud Hills, Mojave Desert, California: Structure, stratigraphy, and sedimentology of a rapidly extended terrance, GSA spercial paper, 303, 61-84
    Ritts B D and Biffi U. 2000. Magnitude of post-Middle Jurassic (Bajocian) displacement on the central Altyn Tagh fault system, northwest China. Geological Society of America Bulletin, 112(1): 61-74
    Rumelhart P E, An Y., Rick B.,, et al., 1997.Oligocene initiation of deformation of northern Tibet, evidence from the Tarim basin, NW China, Abstract for GSA.
    Rumelhart P E, Yin A, Cowgill E, Butler R, Zhang Q, and Wang X. 1999. Cenozoic vertical-axis rotation of the Altyn Tagh fault system. Geology, 27(9): 819-822
    Sobel E R, Trevor AD, 1997, Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision. JGR,102(B3):5043~5063
    Sobcl E R, Arnaud N, Jolivct M, Ritts B D, and Brunei M. 2001. Jurassic to Cenozoic exhumation history of the Altyn Tagh range, NW China constrained by ~(40)Ar/~(39)Ar and apatite fission track thermochronolology. Geol. Soc. Am. Memoir 194, 1-15.
    Sobel E R and Arnaud N. 1999. A possible middle Paleozoic suture in the Altyn Tagh, NW China. Tectonics, 18(1): 64-74
    Soren B.Durr, Provenance of Xigaze fore-arc basin clastic rocks (Cretaceous,south Tibet),GSA Bulltein, 1996,108,669-684
    Stern L A, Chamberlain C P, Robert C R, et al., 1997, Oxygen isotope evidence of climate change from pedogenic clay minerals in the Himalayan molasses. Geochimica et Cosmochimica Acta, 61(4):731-744
    Sylvester A.G. 1988. strike-slip faults. GSA Bulletin,100:1666-1703
    Tapponnier P, Xu Z, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang J. 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294(23): 1671-1677.
    Tapponnier P, Meyer B, Avouac J P, Pelzer G, Gaudemer Y, Shunmin G, Hongfa X, Kelun Y, Zhitai C, Shuahua C, and Huagang D. 1990. Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet. Earth Planet. Sci. Lett., 97: 382-403
    Tapponnier P, Peltzer G, Le Dain A Y, Armijo R and Cobbold P. 1982. Propagating extrusion tectonics in Asia: New insight from simple experiments with plasticine, Geology, 10,1339-1384
    Tapponnier P and Peltzer G 1979. Active faulting and Cenozoic tectonics of Tien Shan, Mongolia, and Baikal regions. JGR, 84,3425-3459
    
    Tapponier P and Molnar P. 1977. Active faulting and Cenozoic tectonics of China. J. Geophys. Res., 82: 20
    Turner S., Hawkeswork C., Liu J., et al., 1993. Timing of Tibetan uplift constrained by analysis of volcano rocks. Nature, 364:50-54
    Wang E. 1995. Displacement and timing along the northern strand of the Altyn Tagh fault zone, Northern Tibet. Earth Planet. Sci. Lett., 150: 55-64
    Wang E, Burchfiel B C, 1997, Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis. International Geology Review, 39 (3): 191-219
    Wang J, Wang Y J, Liu Z C, et al., 1999, Cenozoic evrionmental evolution of Qaidam basin and its implications for the uplift of the Tinetan plateau and the drying of central Asia. Paleogeography, paleoclimatology, paleoecology, 152: 37~47
    Washburn Z., Arrowsmith R, Steven L., Eric C., Wang X., Zhang Y., Chen Zhengle, 2001, Late Holocene earthquake history of the central Altyn Tagh fault, China. Geology. 29(11): 1051-1054
    Willems H., Zhou Z., Zhang B., Grafe K-U. 1996. Stratigraphy of the Upper Cretaceous and Lower Tertiary strata in the Tethyan Himalayas of Tibet (Tigri area, China). Geol. Rundsch., 85: 723-754
    William R.D., Provenance and sediment dispersal in relation to Paleotectonics and Paleogeography of sedimentary basins. 1988, New Perspectives in Basin Analysis, Springer-Verlag: 1-25
    Wittinger G, Tapponnier P, Poupinet G, Jiang M, Shi D, Herquel G, Masson F. 1998. Tomographic evidence for localized lithospheric shear along the Altun fault. Science, 282: 74-76
    Yang Zhenyu. 1997. Extrusion of the Altyn Tagh wedge: A kinematic model for the Altyn Tagh fault and palinspastic reconstruction of northern China: comment and reply, Geology, 5: 475-477
    Yin A, Gehrels G, Chert X, Wang X, and Harrison T M. 2000. Normal-Slip Motion on the Northern Altyn Tagh Fault. Eos, 81, 1092, AGU Transactions.
    Yin A, and Harrison T M. 2000. Geologic Evolution of the Himalayan-Tibetan orogen. J. Annu. Rev. Earth Planet. Sci., 28, 211-280.
    Yin A, Gehrels G, Chen X, Wang X. 1999. Evidence for 280 km of Cenozoic left slip motion along the eastern segment of the Altyn Tagh Fault System, western China. Eos Trans. AGU, 80 (17), Fall Meet. Suppl., F1018.
    Yin An, Wang Xiao-feng, et al. Preliminary results from a collaborative geologic investigation of Altyn Tagh fault, North Tibet, 14th HKT workshop, 1999: 185-186
    Yue Y and Liou J G. 1999. Two-stage evolution model for the Altyn Tagh fault, China. Geology, 27(3): 227-230
    Zhang H, Ma Y, Wunnemann B, et al., 2000, A Holocene climate record from arid northern China. Paleogeography, paleoclimatology, paleoecology, 162: 389~401
    Zheng H, Powell C M, An Z, Zhou J and Dong G. 2000. Pliocene uplift of northern Tibetan Plateau. Geology, 28(8): 715~718.
    Zhou Yong, and Pan Yusheng. 1999. Kinematics of the Altun strike-slip fault. Scientia Geological Sinica, 8(1): 77-90
    Zhou D, and Graham S A. 1996. Extrusion of the Altyn Tagh wedge: A kinematic model for the Altyn Tagh fault and palinspastic reconstruction of northern China. Geology, 24(5): 427-430
    新疆地质局.1981.巴什考供幅(J-46-Ⅶ)区域地质调查报告.
    新疆地质局.1981.索尔库里幅(J-46-Ⅷ)区域地质调查报告.
    青海省地质矿产局.1986.俄博梁幅(J-46-Ⅸ)区域地质调查报告.
    陈正乐.1997.辽河盆地沉积演化与构造动力学过程,中国地质科学院硕士学位论文

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700