用户名: 密码: 验证码:
青藏高原碰撞造山过程中的现代热水活动
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
被称为“世界屋脊”的青藏高原具有大面积特高的特点,但它的强烈隆起只是近几百万年来的事,隆升过程和机制之谜一直吸引地质学家们孜孜不倦的探索。高原之上,尤其在藏南,热水活动极其发育,皑皑雪峰之上星星点点的热泉密布,堪称自然界的一大奇观。热水活动无疑与高原的碰撞隆升有密切的关系,通过对热水活动的研究来探讨高原的构造运动不失为一个全新的尝试。本文的主要研究内容集中在以下几个方面:(1)热水活动的期次及年代,建立了藏南热水事件的时空演化格架;(2)讨论了热水系统的驱动“热机”问题,认为是地壳中存在的局部熔融层,并探讨该熔融层的性质、分布范围、形成时代等;(3)硅华中成矿元素Cs在碰撞造山过程的富集过程;(4)建立了藏南热水活动的概念模式;(5)根据热水活动的特征再造挽近时期以来青藏高原的构造隆升过程。
     研究表明,藏南热水活动的最早时代大概是70万年前。此后的热水活动并非一直持续,而是阶段性的脉动式活动,70万年以来可以分为四个期次,对应的时段分别为70~47万年,40~35万年、27~20万年和15万年至今。各期热水活动的强度不同,基本可以划分两个旋回,70~20万年为一个旋回,15万年至今为另一旋回,其中,第一期热水活动(70~47万年)最为强烈,第二期(40~35万年)相对减弱,到了第三期(27~20万年)热水活动的规模较小且分布局限,直至15万年,热水活动又复增强,现在仍然活动,未见减弱的势头。第一期和第四期的热水活动的时间与青藏高原挽近时期以来两次大的构造运动(即昆黄运动和共和运动)对应,说明热水活动是由构造运动引起的。在此基础上,本文建立了热水事件的时空格架,讨论了构造活动的特征,推测早期的昆黄运动与深部软流圈的上涌热侵蚀有关,并诱发了第一期强烈的热水活动。15万年高原的再次强烈隆起可能是上地壳大规模的部分熔融层的热动力作用,并驱动了第四期的大规模的热水活动。
     热水活动驱动“热机”的分析表明该“热机”是高原地壳中普遍存在的低速高导层(局部熔融层)。该熔融层可能是硅酸盐熔体,而不是以水为主的流体;局部熔融层不仅为浅部的热水活动提供热源,而且提供了流体和成矿物质。研究结果暗示了上地壳局部熔融层驱动藏南广大范围的热水活动,而下地壳的熔融体沿裂隙上升侵位到近地表,促使了地表高温地热田的形成。这样,通过地表热水系统的分布,应该可以圈定深部熔融层的范围。
     对于高原广泛发育一种新类型的铯矿床——硅华铯矿,目前只在青藏高原发现,它的形成原因也是一个引人注目的研究焦点。本文详细的讨论了青藏高原碰撞造山过程中的各种地质作用对铯的强烈富集作用,认为铯的富集来自以下几个过程:地壳的局部熔融使Cs预富集;岩浆结晶分异作用和岩浆水的分离作用使大量的Cs集中到残余熔浆和岩浆水中;流体上升过程中广泛的水岩反应萃取了围岩中的Cs,使其再次富集。
Being reputed as "the ridge of the world", the Tibetan plateau is the highest and the mostampliate plateau in the world. But its intensive uplifting only occurred during recent severalMillion years, and the enigma of the process and mechanism of lifting attracts many geologists topersevere in their's researches. Hydrothermal activities were very developed in the plateau,especially in the south Tibet. Out of question, the violent hydrothermal activities are induced bycollisional orogenics of the Tibetan plateau. This paper mainly deal the questions as follow: (1)the times and evolvements of hydrothermal events during the recent geological history. And then aframework of space-time's evolvement established. (2) the "heat bump" of hydrothermal systems.The research shows it is the "fractional melting layers" in the crust driving the hydrotherrnalactivities. Then this paper discussed the property, range and time of the molten layers. (3)enrichment processes of the metallogenetie element Cs during the uplifting of the plateau. (4) theformation fo an conceptional model for hydrothermal systems. (5) the uplifting process of theTibet plateau bulit based on the characteristic of the hydrothermal events.
     Four stages of hydrothermal events had been recognized in field work, and the ESR ages ofsinters showed that hydrothermal activities mainly had happened in four periods, and their ages is700~450ka.,400~350ka., 270~200ka., and 150ka~0 respectively. The earliest age of thehydrothermal activities is about 700ka., and then four hydrothermal events occurred. Based on theintensities of hydrothermal events, the four events can be divided into two cycles: the one includesthe early there hydrothermal stages during 700~450ka., and the other begins with 150ka., theforth hydrothermal stage. Thereinto, the activity of the first stage (which ages is 700~450ka.) ismost violence, and weakened in the second (the age is 400~350ka.) and third stages (the age is270~200ka.) in turn. Until the forth stage (start at 150 ka.), the intensity of hydrothermal activityincreased. The two strong hydrothermal events correspondent to the twice poignant tectogeneticmovements (the Kunhuang Movement and the Gonghe Movement) in time. On the basis of theresearch, this paper built the framework of space-time's evolvement. And more, the discuss aboutuplifting process also a content of the paper. The violent uplifting of the plateau occurring in600ka probably related to the large-scale upwelling of the deep asthenosphere. Upwelling heatcorrosion of the asthenosphere not only resulted in fractional melting of the lithosphere crust,which formed the low-speed and high-conduction layers, but provocated a certain scale ofhydrothermal activities draining to the surface along tensional fault and rift formed in the upliftingprocess. The other violent uplifting in 150ka possibly related to the large-scale fractional melting of the upper crust and thermal abnormity and thermal buoyancy. The crust fractional meltinglayers would heat up and drive the circulation of large-scale hydrothermal liquid.
     The analysis of the "heat bump" show that it is probably the fractional melting layers whichbehave as low-velocity and high-conductivity lying in the geophysical exploration in the crust.The fractional melting layers are likely silicate fused mass, other than liquid with main componentof water. The melting layers are not only providing heat energy for shallow hydrothermal system,but also supplying liquid and metallogenetic elements to them. The result of research suggest thatthe upper fractional melting layer has driven ampliate area's hydrothermal activities in the southTibet, whereas the near surface upwelling emplaced melting masses from the lower crust promotethe presenting of some high temperature geothermal fields. And thus, the distribution of fractionalmelting layers can be lined out according to the range of surface hydrothermal systems.
     The formation of the new type of Cs ore deposit——Cs—bearing geyserite deposit, whichonly be found in the Tibet plateau, is also an interesting hot point attracting many focuses. Thispaper discussed the enrichment of Cs in all kinds of geological actions occurring during thecollisional orogenics of the Tibet plateau in detail. The enrichment of Cs probably come formsome process as follow: The fractional melting of crust mass congregate the Cs of rocks firstly;Fractional crystallization of magma and separation of magmatic water drive a lot of Cs into theremnant magmatic melt and magmatic water; The extensive action of water and rocks during themigration upwards of liquid capture Cs from the wall rocks. All of the three process result in theawful enrichment of Cs in liquid.
引文
1 曹佑功.青藏高原成矿规律及矿产资源潜力见:中国青藏高原研究会第一届学术讨论会论文选.北京:科学出版社.1992.261-264
    2 陈炳蔚,任留东,王彦斌.青藏高原及邻区大地构造及有关的变形特征.见:肖序常,李廷栋主编.青藏高原的构造演化与隆升机制.广州:广东科技出版社,2000.85~122
    3 陈德潜,陈刚编著.实用稀土元素地球化学.北京:冶金工业出版社.1990
    4 陈富斌.横断事件:亚洲东部晚新生代的一次重大构造事件.山地研究,1992,10(4):195-202
    5 陈先沛,陈多福。广西上泯盆统乳房状燧石的热水沉积地球化学特征。地球化学1989,第1期:1-18
    6 陈以健,高钧成,冯锦江等.藏南的水热活动历史初探,水文地质工程地质,1992.19(5):18-21
    7 陈智梁.潘桂棠.青藏高原陆内造山作用——晚新生代地质构造.见:肖序常,李廷栋主编.青藏高原的构造演化与历史机制2000.广州:广东科技出版社:191—236
    8 程振森.郭新峰.岩石圈电性结构.见:地质专报20号——青藏高原岩石圈结构构造和形成演化,1990:105-113
    9 崔之久,高全洲,刘耕年,等夷平面、古岩溶与青藏高原隆升.中国科学,1996.26(4):378~385
    10 崔之久.伍永秋,刘耕年,等青藏公路昆仑山垭口天然剖面记录.见:施雅风,李吉均,李炳元主编.青藏高原晚新生代隆升与环境变化广州:广东科技出版社,1998.81~111
    11 崔军文,李朋武,李莉.青藏高原的隆升:青藏高原的岩石圈结构和构造地貌.地质论评.2001,47(2):157-163
    12 邓万明.青藏高原的陆内俯冲带及其岩浆活动.见:中国青藏高原研究会编.中国青藏高原研究会第一届学术讨论会论文选.北京:科学出版社.1992.256—262
    13 邓万明.青藏北部新生代钾质火山岩微量元素和Sr、Nd同位素地球化学研究.岩石学报,1993,9(4):379-387
    14 邓万明.青藏高原新生代岩浆活动的大地构造位置——关于青藏高原非对称陆内俯冲作用的讨论.见:中国青藏高原研究会编.青藏高原与全球变化研讨会论文集北京:气象出版社.1995.228—234
    15 邓万明.青藏高原北部新生代火山岩.北京:地质出版社,1998
    16 丁林,钟大赉.潘裕生.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据.科学通报1995,40(16):1497~1500
    17 丁林,钟大赉.高原隆升的阶段——以东喜马拉雅构造结为例见:潘裕生,孔祥儒主编.青藏高原岩石圈结构演化和动力学.1998,广州:广东科技出版社
    18 高恩源.徐忠信.王香经等.喜马拉雅山北麓—雅鲁藏布江地区人工爆炸地震测深地壳结构.见:中国地质科学院.西藏地球物理文集,北京:地质出版社.1990.1—15
    19 郭光裕,侯宗林等.热泉型金矿床成矿模式及成矿远景评介.天津:天津科学技术出版社.1993
    20 郭新峰,张元丑.柏淑贞青藏高原亚东—格尔木地学断面岩石圈电性研究中国地质科学院院报,1990,20(1):191—202
    21 韩同林,P.达包尔叶,R.阿米尔饶 试论藏南活动构造与地热的关系.见:喜马拉雅地质Ⅱ.中法合作喜马拉雅地质考察1981年成果之一.北京:地质出版社,1984.45~58
    22 韩宗珊.川西和云南地区地热资源分布规律及其与地质构造的关系地热专辑第二辑——中国地质科学院地质力学研究所主编北京:地质出版社.1989:103-109
    23 侯增谦.莫宣学现代海底热液成矿作用研究现状及发展方向地学前缘,1996,3(4):263—273
    24 侯增谦.文永德.曲晓明等。岩浆流体对冲绳海槽海底成矿热水系统的可能贡献。地质学报1999.73(1):57-68
    25 侯增谦.李振清,曲晓明等0.5Ma以来的青藏高原隆升过程——来自冈底斯带热水活动的证据中国科学(D辑).2001,31(增刊):27-33
    26 侯宗林.郭光裕.云南腾冲——梁河地热系统与现代热泉型金矿化作用.地质论评,1991,37(3):243—247
    27 胡先才.羊八井地热田深部热储及热传递特征浅析见:中国西藏高温地热开发利用国际研讨会论文选北京:地质出版社,1993:60-63
    28 黄尚瑶等.火山温泉地热能北京:地质出版社,1986
    29 黄尚瑶.中国温泉资源——1:600万中国温泉分布图说明书.北京:中国地图出版社.1993
    30 季宏兵.李朝阳.滇西金满铜矿床成矿流体地球化学特征及来源.矿物学报,1998.18(1):28-37
    31 姜枚,吕庆田.史大年等.用天然地震探测青藏高原中部地壳上地幔结构.地球物理学报,1996.39(4):470-482
    32 康文华等.西藏地热异常带的划分及其构造控制.地热专辑第二辑——中国地质科学院地质力学研究所主编北京:地质出版社.1989:9-15
    33 孔祥儒,马晓冰.于晟等.青藏高原电性与结构研究.见:潘裕生,孔祥儒主编.青藏高原岩石圈结构演化和动力学.1998.广州:广东科技出版社:65—
    34 赖绍聪.青藏高原新生代火山岩矿物化学及其岩石学意义——以玉门、可可西里及芒康岩区为例.矿物学报.1999,19(2):236-244
    35 赖绍聪,刘池阳,S.Y.O'Reilly.北羌塘新第三纪高钾钙碱火山岩系的成因及其大陆动力学意义.中国科学(D辑),2001,31(增刊):34-42
    36 李吉均.方小敏,朱俊杰等.临夏盆地新生代地层古地磁年代与模式序列.见:青藏高原形成演化、环境变迁与生态系统研究学术论文年刊(1994) 北京:科学出版社,1995,41-54
    37 李吉均,方小敏,马海洲等.晚新生代黄河上游地貌演化与环境变迁.中国科学(D辑),1996:316-322
    38 李吉均,方小敏.潘保田等.新生代晚期青藏高原强烈隆起及其对周边环境的影响.第四纪研究,2001,21(5):381-391
    39 李家振,张有瑜,骆红羿.西藏当雄羊应乡地热田新生代火山岩特征及其成因探讨.现代地质,1992,6(1):96-109
    40 李廷栋.郑英龙.青藏高原地质调查研究历史.见:肖序常,李廷栋主编.青藏高原的构造演化与历史机制.2000,广州:广东科技出版社:297—311
    41 李相博,王新民,袁剑英等.青藏高原东北部旋卷(扭)构造变形及其形成地质条件分析.大地构造与成矿学,2001,25(2):120-127
    42 李朝阳,王京彬.肖荣阁等.滇西地区陆相热水沉积成矿作用.铀矿地质.1993.9(1):14-21
    43 廖志杰.西藏地热活动的背景及热源问题的讨论.北京大学学报.1982(2):70-78
    44 廖志杰.滇藏地热带的高温地热能.见:北京大学地质系.岩石圈地质科学一献给三十届国际地质大会.北京.1996
    45 廖志杰.赵平.滇藏地热带——地热资源和典型地热系统.北京:科学出版社,1999
    46 林元武,高清武,于清桐,长白山天池火山区地下热流体化学特征研究。地质论评,1999。45卷增刊:241-247
    47 刘宝君.陆元法.薛堂荣等.热泉热液系统金的成矿地球化学研究.地球学报.1998.19(3):251-259
    48 刘宏兵,孔祥儒.马晓冰等.青藏高原东南地区地壳物性结构特征.中国科学(D辑),2001.31(增刊):60-65
    49 刘英俊,曹励明.李兆麟等.元素地球化学.北京:科学出版社,1984
    50 刘宇平.陈智梁.喜马拉雅造山带南北向伸展构造变质岩的压力—温度(p—T)轨迹证据.特提斯地质,1994.(18):52-60
    51 刘振声,王洁民.青藏高原南部花岗岩地质地球化学.成都:四川科学技术出版社.1994
    52 刘增乾,徐宪。潘桂棠等.青藏高原大地构造与形成演化.北京:地质出版社,1990
    53 卢德源,黄立言.陈纪平等.青藏高原北部沱沱河—格尔木地区地壳和上地幔的结构模型和速度分布特征.见:西藏地球物理文集,北京:地质出版社,1990.51—62
    54 卢焕章,李院生.成矿流体.见:中科院矿床地球化学开放实验室.矿床地球化学.北京:地质出版社,1997:109-134
    55 孟今顺,高锐.周富祥等.利用重力异常研究亚东—格尔木地壳构造.中国地质科学院院报.1990.21:149—161
    56 潘保田、李吉均、朱俊杰等青藏高原:全球气候变化的驱动与放大器:Ⅱ.青藏高原隆起的基本过程.兰州大学学报(自),1995.3l(4):160-167
    57 潘保田.邬光剑,王义祥等.祁连山东段沙沟河阶地的年代与成因.科学通报.2000,45(24):2669-2676
    58 潘海祥,陆元法.贝丰等.热泉热液金矿化中嗜热微生物有机质的地球化学作用.成矿岩石.1998,18(3):45-50
    59 潘裕生.青藏高原的形成、隆升及其机制.见:潘裕生,孔祥儒主编.青藏高原岩石圈结构演化和动力学.1998a.广州;广东科技出版社
    60 潘裕生,孔祥儒,钟大赉.等.高原岩石圈结构、演化和动力学.见:孙鸿烈、郑度主编青藏高原形成演化与发展.广州:广东科技出版社.1998b.1~65
    61 戚长谋主编.地球化学通论北京:地质出版社,1994
    62 邱家骧主编.岩浆岩岩石学北京:地质出版社,1985
    63 任湘,唐宁华.刘时彬关于羊八井地热田深部热储的剖析.见:中国西藏高温地热开发利用国际研讨会论文选.北京:地质出版社,1993:37-44
    64 上官志冠。腾冲火山区幔源岩浆气体上升过程中的变化及原因。地质论评,1999.45卷增刊:926-933
    65 沈显杰,张文仁,杨淑贞,等青藏热流与地体构造热演化.北京:地质出版社.1990.1~90
    66 沈显杰.西藏喜马拉雅地热带地热资源量级估算的方法探讨.地质科学,1992.增刊:302—311
    67 施雅风,郑本兴,李世杰等.青藏高原中东部最大冰期时代、高度与环境探讨.冰川冻土,1995,17(2):97—112
    68 施雅风,李吉均,李炳元.等.高原隆升与环境变化.见:孙鸿烈、郑度主编.青藏高原形成演化与发展广州:广东科技出版社,1998 73~129
    69 孙鸿烈.青藏高原形成演化、环境变迁与生态系统研究学术论文年刊(1995).北京:科学出版社
    70 孙鸿烈,郑度青藏高原的形成演化上海:上海科学技术出版社,1996
    71 孙晓明,David I.Norman,孙凯等.一种新的成矿流体示踪法一流体包裹Na-Ar-He示踪体系地质评论,2000,46(1):99-104
    72 谭庆元.水热蚀变概念模式研究.见:中国谣藏高温地热开发利用国际研讨会论文选.北京:地质出版社,1993:160-163
    73 谭宋文.潘桂棠、徐强。羌塘腹地新生代火山岩的地球化学特征与青藏高原隆升。岩石矿物学杂志。2000,19(2):121-130
    74 滕吉文,孙克忠,魏斯禹等.中国青藏高原及其边缘地带的地震活动特征见:喜马拉雅地质Ⅱ,中法合作喜马拉雅地质考察1981年成果之一.北京:地质出版社,1984.311-329
    75 滕吉文,尹周勋,熊绍柏西藏高原北部地区色林错-蓬错-那曲-索县地带地壳结构与速度分布.地球物理学报,1985,28(增刊):28~41
    76 佟伟,张铭陶,张之非,等西藏地热.北京:科学出版社,1981
    77 佟伟,章名陶。西藏的地热活动特征及其对高原构造模式的控制意义。北京大学学报。1982a(1):89-98
    78 佟伟,朱梅湘,陈民扬.西藏水热区硫同位素组成和深源热补给的研究。北京大学学报,1982a(2):79-85
    79 佟伟.世界大潮中的西藏地热.见:中国青藏高原研究会编.青藏高原与全球变化研讨会论文集北京:气象出版社.1995.276—285
    80 佟伟,章名陶。腾冲地热.北京:科学出版社,1989
    81 涂光炽.热水沉积矿床四川地质科技情报.1987.5(1):1-5
    82 王富葆.李升峰.申旭辉,等.喜马拉雅中段北坡(以吉隆盆地为主)天然剖面记录.见:施雅风,李吉均.李炳元主编.青藏高原晚新生代隆升与环境变化广州:广东科技出版社,1998.115~138
    83 王国芝,王成善,刘登忠,等.中新世以来滇西高原第四纪以来的隆升和剥蚀海洋地质与第四纪地质,1999a,19(4):67-74
    84 王国芝,王成善,曾允孚滇西高原第四纪以来隆升的沉积学证据.矿物岩石地球化学通报,1999b,18(3):167-170
    85 王江海,腾冲热海钙体中化学振荡的发现及形成机制.科学通报,1995,40(10):917-920
    86 王江海等陆相热水沉积作用——以云南地区为例北京:地质出版社.1998
    87 汪品先.十五万年来的南海.上海:同济大学出版社,1995a
    88 汪品先.大洋钻探与青藏高原地球科学进展.1995b,10(3):254-57
    89 王谦身,吴传真,江为为等.青藏高原重力场与地壳构造研究.见:潘裕生,孔祥儒主编.青藏高原岩石圈结构演化和动力学1998,广州:广东科技出版社:38—63
    90 王式,卢德源.黄立言等.西藏高原南北走向的地壳结构模型和速度分布特征.西藏地球物理文集,北京:地质出版社,1990 38—50
    91 王天武、李才、杨德明。谣藏冈底斯地区早第三纪林子宗群火山岩地球化学特征及成因。地质论评,1999,45卷增刊:967-
    92 王苏民.薛滨.中更新世以来若尔盖盆地环境演化与黄土高原比较研究中国科学(D辑).1996.26(4):323-328
    93 王先彬.稀有气体同位素地球化学和宇宙化学科学出版社,北京.1989
    94 王先彬,徐胜,陈战发等.腾冲火山温泉气体细分和氦同位素组成特征。科学通报,1999,38(9):814-817
    95 吴功建,肖序常,李廷栋青藏高原亚东—格尔木地学断面.地质学报,1989,63(4):285~296
    96 吴功建.高锐.余钦范等青藏高原亚东—格尔木断面综合地球物理调查研究.地球物理学报,1991,34:555—562
    97 吴锡浩.安芷生.黄土高原黄土—古土壤序列与青藏高原隆升.中国科学(D辑),1996.26(2):103~110
    98 吴志亮,李峰.热水沉积成岩成矿作用——以阿尔泰泥盆纪火山沉积盆地为例.北京:地质出版社,1996
    99 西藏自治区地质矿产局.西藏自治区区域地质志.中华人民共和国地质矿产部地质专报第31号.北京:地质出版社,1993.
    100 夏报本.张家诚.西藏地热活动规律初探.见:中国西藏高温地热开发利用国际研讨会论文选.北京:地质出版社,1993:1-7
    101 夏学惠.热水沉积铁白云石微斜长石岩的发现及其找矿意义.岩石矿物学杂志,1998,17(1):41-47
    102 肖荣阁,张宗恒,陈卉泉等.地质流体自然类型和成矿流体类型.地学前缘,2001,8(4):245-251
    103 肖序常,李廷栋.李光岑等.喜马拉雅岩石圈构造演化总论.北京:地质出版社,1988.1—236
    104 削序常.李廷栋.王军.青藏高原大陆动力学.见:肖序常,李廷栋主编.青藏高原的构造演化与历史机制.2000.广州:广东科技出版社:239—269
    105 谢鸿森.苏根利.许有生等超临界流体与成矿作用.见:中国科学院地球化学研究所.资源环境与可持续发展.北京:科学出版社.1999:348-353
    106 熊绍柏等.青藏高原岩石圈结构与构造的人工地震测深研究.见:见:潘裕生,孔祥儒主编.青藏高原岩石圈结构演化和动力学.1998,广州:广东科技出版社:1—36
    107 徐仁.大陆漂移与喜马拉雅山上升的古植物证据.见:西藏高原隆起的时代、幅度和形式问题.北京:科学出版社,1981.167~175
    108 徐永昌,沈平.刘永汇等.天然气稀有气体地球化学.科学出版社.北京:1998
    109 曾融生,朱介寿,周兵,等.青藏高原及其东部邻区的三维地震波速度结构与大陆碰撞模型.地震学报,1992,14(增刊):523~53
    110 张德会.张文准,许国建.岩浆热液出溶和演化对斑岩成矿系统金属成矿的制约.地学前缘,2001,8(3):193-202
    111 张理刚.稳定同位索在地质科学中的应用.西安:陕西科学技术出版社.1985
    112 张连生.钟大赉.从红河剪切带走滑运动看东亚大陆新生代构造.地质科学,1996,3l(4):327—341
    113 张哲儒.流体的热力学前缘研究.地学前缘.1996.3(3~4):80-88
    114 张知非,朱梅湘.刘时彬.西藏水热地球化学的初步研究.北京大学学报.1982(3)88-96
    115 章铭陶,过帼颖西藏水热爆炸的基本特征及能量计算.北京大学学报.1982(4),77-
    116 章铭陶.张知非.西藏的间歇喷泉及其动态变化特征.北京大学学报,1982(3):82-8754
    117 赵平,金建,张海政,等西藏羊八井地热田热水的化学组成.地质科学,1998a.33(1):61-72
    118 赵平,多吉,梁廷立,等.西藏羊八井地热田气体地球化学特征.科学通报,1998b,43(7):691~696
    119 赵平.地热系统气体地球化学研究进展.地球科学进展,1994,9(1):8-13
    120 赵平.地热系统气—水—岩石体系化学热力学平衡及其模拟计算.岩石学报,1992,8(4):311-322
    121 赵文津.纳尔逊,车敬凯,等.喜马拉雅地区深反射地震—揭示印度大陆北缘岩石圈的复杂结构.地球学报,1996b.17(2):138~152
    122 赵文津.INDEPTH项目组.喜马拉雅山及雅鲁藏布江缝合带深部结构与构造研究.北京:地质出版社,2001
    123 赵文津,冯昭贤.青藏高原大陆动力学研究地球学报.1996a,17(2):119-128
    124 赵志丹,莫宣学.张双全等.西藏中部乌郁盆地碰撞后岩浆作用——特提斯洋壳俯冲再循环的证据.中国科学(D辑),2001,31(增刊):20-26
    125 赵希涛.等.珠穆朗玛峰地区第四纪地层见:珠穆朗玛峰地区科学考察报告(1966—1968),第四纪地质.北京:科学出版社,1976
    126 赵振华.微量元素地球化学原理北京:科学出版社.1997
    127 郑剑东.青簸高原形成的双向楔入模式.见:中国青藏高原研究会编.中国青藏高原研究会第一届学术讨论会论文选.北京:科学出版社.1992.302—307
    128 郑绵平、王秋霞、多吉等.水热成矿新类型—西藏铯硅华矿床.北京:地质出版社,1995
    129 郑淑惠、张知非、倪葆龄等.西藏地热水的氢氧稳定同位素研究。北京大学学报,1982,第1期:99-106
    130 钟大赉,丁林.青藏高原的隆起过程及其机制探讨.中国科学,1996,26(4):289~295
    131 中国科学院青藏高原综合科学考察队.青藏高原综合科学考察报告——西藏南部的地热资源.1976年,内部资料
    132 中国科学院青藏高原综合科学考察队.西藏盐湖.北京:科学出版社,1988
    133 周兵,朱介寿,秦建业.青藏高原及邻区的S波三维速度结构.地球物理学报,1991,34(4):426—440
    134 朱长生.广东断裂构造对地下热水的控制作用.地热专辑第二辑——中国地质科学院地质力学研究所主编.北京:地质出版社,1989:87-94
    135 朱俊杰,曹继秀.钟巍等.兰州地区黄河最高阶地与最老黄土沉积的发现及其古地磁年代学的研究.见:青藏项目专家委员会编.青藏高原形成演化、环境变迁与生态系统研究.学术论文年刊(1994) 北京:科学出版社,1995,77—90
    136 朱炳球,朱立新,史长义等,地热田地球化学勘查.北京:地质出版社.1992
    137 朱梅湘、佟伟、由懋正。西藏水热区的盐华及其地质意义。北京大学学报,1982(1):107-114
    138 朱梅湘、徐勇羊易地热田的水热蚀变及其热田演化.见:中国西藏高温地热开发利用国际研讨会论文选.北京:地质出版社,1993:1.7
    139 朱梅湘.对热流地热系统中水—岩相互作用特征.见:陈衍景等主编,大陆动力学与成矿作用.北京:地震出版社,2001:241-251
    140 朱梅湘.滇藏高原地热田内现代成矿作用.见:地质研究论文集,北京:北京大学出版社,1985:191-199
    141 卓维荣.热泉型金矿床成矿地质环境及其在我国的找矿前景,地质与勘察,1991,27(2):15-19
    142 祖金华,廉雨方,赵国泽。长白山聚龙泉温泉低温梯度和热流的估算。1999,45(sup)增刊:226-230
    143 A. Gansser. The timing and significance of orogenic events in the Himalayas. Geological and ecological studies of Qinghai—XizangPlateau, 1981, 1: 23-30
    144 Aline Dia, Gerard Gruau, Gwenaelle Olivie-Lauquet, et al. The distribution of rare earth elements in groundwaters: Assessing the role of source-rovk composition, redox changes and colloidal particles. Geochemical et Cosmochimica Acta, 2000, 64(24): 4131-4151
    145 Armijo R, Tapponnier P, Mercier J L et al. 1984. Quaternary extension in Southern Tibet: Field observations and tectonic implications. JGR, 91: 13803-72
    146 Arnorsson S. Application of the silica geothernometer in low-temperature hydrothermal areas in Iceland. Am. J. Sci., 1975, 275: 763-784
    147 Arnorsson S, Sigurdsson S, Svavarsson H. The chemistry ofgeothermal water in Iceland I. calculation of aqueous speciation from 0℃ to 370℃ Geochim Cosmochim Acta, 1982, 46: 1513-1532
    148 Augustithis S. S. Atlas of the sphaeroidal textures and structures and their genetic significance. Theophrastus Publicatins S. A. Athens. 1982
    149 BattistelliA,CaloreC.,Rossi R.et al.西藏那曲地热田热储工程研究.见:中国西藏高温地热开发利用国际研讨会论文选.北京:地质出版社,1993:134-145
    150 Beghoul M, Barazangi M, Lsacks B Let al. Lithospheric structure of Tibet and WN America: Mechanism and a comparative study. J Geophys. Res., 1993, 98: 1997-2016
    151 Berger A, outre M F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev., 1991, 10: 297-317
    152 Bird P. Initiation of Intracontinental subduction in the Himalayas. J Geophys. Res., 1978, 83: 4975-4987
    153 Burbank D W. The Late cenzoic chronologic and stratigrphic development of Kashimir intermontane basin, NW Himalayas. Paleoclimatology, Paleoecology, 1983, 43: 205—243
    154 Cathles L M, Erendi A H J and Barrie T. How long can a hydrothermal system be sustained by a single intrusive events? Econ. Geol., 1997, 92(7): 766~771
    155 Coleman M. and Hodges K. Evidence for Tibetan Plateau uplift before 14 My ago from a new minimum age for east-west extension. Nature, 1995, 346: 29~34
    156 D'Amore F, Panichi C. Evaluation of deep temperatures in geothermal systems by a new gas geothermometer. Geochim. Cosmochim Acta, 1980, 44: 549-556
    157 Dewey J F,Shackleton R M,常承法等 青藏高原的地质演化.见:中—英青藏高原综合地质考察队,青藏高原地质演化. 1990,北京:科学出版社.384-415
    158 Dewey J F, Chang Chengfa, R M Shacldeton et al. Tthe tectonic evolution of the Tibet plateau. In: Chang Chengfa, et al eds. The geological evolution of Tibet. Beijing: Science Press, 1990:384-411
    159 Deng X. Q. The age of Kuche and Xiyu Fomations on the edge of Tarim Basin. Beijing: 30th inten. Geol. Congress Abstr., 1996, 85
    160 E. N. Gramenitskiy. The ore component concentration at the magmatic stage in the granite system.地学前缘, 2001, 8 (3): 45-51
    161 F. Javier Huertas, Saverio Fiore, Francisco Huertas et al. Experimental study of the hydrothermal formation of Kaolinite. Chemical Geology, 1999,156(1999):171-185
    162 Harrison T M, Copeland P and Kidd W S F et al. Raising Tibet. Science, 1992, 255:1663~1670
    163 Him A, Jiang M, Sapin M et al. Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet. Nature, 1995, 375: 571-574
    164 Jianghai Wang, An yin, T. Mark Harrison, et al. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian Collision Zone. Earth and Planetary Science Letters, 2001, 188:123-133
    165 Kazmin V. Two types of rifting: dependence on the condition of exteusion. Tectonophys, 1987, 143:85-92
    166 Kazunori Arita. Accelerating uplift since the Miocene and tectonics of the Nepal Himalayas. In: Spencer D A et al. eds. 10th Himalaya-Karakkoram Tibet Workshop. Switzerland: ETH Zurich, 1995:11—14
    167 Kidd W S F,Molnar P 1990,拉萨至格尔木第四纪和现代活动断层.见:青藏高原地质演化.北京:科学出版社
    168 Kimmelmann E. S.. Use of Helium isotopes in groundwater studies of the Parana Basin,Brasil In:30th international geological congress abstracts, 1996, 3 (3): 238
    169 Leshou Chen, J. R. Book, A.G. Jones et al. Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying. Science, 1996. vol. 274:1694-1695
    170 L.D. Brown, Wenjin Zhao, K. D. Nelson et al. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling. Science, 1996. Vol. 274: 1688-1690
    171 Li Jijun et al. Uplift of Qinghai-Xizang (Tibet) Plateau and global change. Lanzhou: Lanzhou University Press, 1995
    172 Li Jijun. The environmental effects of the uplift of the Qingbai-Xizang Plateau. Quat. Sci. Rev., 1991, 10: 479-83
    173 Molnar P. and England P. Late Cenozoic uplift of mountain ranges and global climate change: chicken of egg? Nature, 1995, 374: 49~52
    174 Molnar P., England P. and Martinnd J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 1993, 31(4):357~396
    175 N.A. Molnar. Neotectonic in new perspectives: The last 3.0Ma.abstract of 30th international congress Beijing, 1996, 3 (1)
    176 Nelson K D, Zhao W J, Brown L D. Partially molten middle crust beneath Soutbem Tibet: synthesis of Project INDEPTH results. Science, 1996, 274:1684~1688
    177 R.N. Sobolev, V I. Starostin. Conditions of separation of ore-bearing phases from acid melt.地学前缘, 2001, 8 (3): 39-44
    178 Rainer Kind, James Ni, Wenjin Zhao, et al. Evidence from earthquake data for a partially molten crustal layer in southern Tibet. Science, 1996, 274:1692~1694
    179 R. Brooks Hanson. Hydrodynamics of regional metamorphism due to continental collision. Economic Geology, 1997,vol.92: 880-891
    180 Reed M. Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases, and an aqueous phase. Geochim. Cosmochim Acta, 1982, 46: 513-528
    181 R L Goguel. The rare alkalies in hydrothermal alteration lat wairakei and Broadlands geothermal fields, New Zealand. Geochim. Cosmochim. Acta., 1983, 47: 429-437
    182 Pearce J A, Mei Houjun. Volcanic rocks of the Tibet geotraverse. In: Chang Chengfa, et al eds. The geological evolution of Tibet. Beijing: Science Press, 1990:194-204
    183 Rea D K. Delivery of Himalayan sediments to the Northern Indian Ocean and its relation to global climate, sea level, uplift, and seawater strontium. Geophys. Monogr., 1992, 70:387-402
    184 R. kind, James Ni, Wenjin Zhao, et al. Evidence from earthquake data for a partially molten crustal layer in southern Tibet. Science, 1996. Vol. 274:1692-1694
    185 R. Ondrak, P. Moller. Modeling coupled heat and mass transport applied to the hydrothermal system of the Upper Harz mountains (Germany). Chemical Geology, 1999, 155:171-185
    186 Searle M The rise and fall of Tibet. Nature, 1995, 374(2): 17~18
    187 Shen xianjie. Kinematics and tectonothermal modeling—interpretation of heat flow observed on the Tibetan Plateau Tectonophysics, 1993,225:91-106
    188 Snoeckx H, Rea D K, Jones C E et al. Eolian and silica deposition in the central north Pacific: results from Sites 8851886. Proc. ODP, Sci. Res., 1995, 145:219—230
    189 S. Turner, Hawkesworth C, Liu J, et al. Timing of Tibetan uplift constrained by analysis of volcanic rock. Nature, 1993, 364: 50—54
    190 W F Giggenbach, R L Goguel. Collection and analysis of geothermal and volcanic water and gas discharges. New Zealand: Chemistry division department of scientific and industrial research petone. 1989, Fourth edition
    191 Willett S D et al. Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision. Nature, 1994, 369(23) June: 642-645
    192 W. L. Prell and J. E. Kutzbath. Sensitivity of the India monsoon to forcing parameters and implications for its evolution. Nature, 1992, 360: 647—652
    193 Xiu-ping Yin, Robert Kerrich, M. Jim Hendry. Distribution of the rare earth elements in porewaters from a clay-rich aquitaed sequence, Saskatchewan, Canada. Chemical Geology, 2001, 176:151-172
    194 Y. Makocsky, S. L. Klemperer, L. Ratschbachet et al. INDEPTH Wide-Angle reflection observation of P-Wave-to-S-Wave conversion from crustal bright spots in Tibet. Science, 1996. Vol. 274:1690-1691
    195 Y. Kikawada, T. Ossaka, T. Oi, et al. Experimental studies on the mobility of lanthanides accompanying alteration of andesite by acidic hot spring water. Chemical Geology, 2001, 176:137-149
    196 Zhao W J, Morgan. Uplift of Tibetan plateau. Tectonics, 1985, 4(4): 359-369
    197 Zhao W J, Project INDEAPTH Team. Deep seismic reflection evidences for continental underthrusting beneath S. Tibet. Nature, 1993, 366:557-559
    198 Zeitler P K et al. Fission-track evidence or Quaternary uplift ofthe Nanga Parbat region, Pakistan. Nature, 1982, 298:255—275
    199 Zeitler P K. Cooling history NW Himalaya. Tectonics, 1985, 4: 127—151
    200 Zheng mianping and Duoji. Metallization of thermal fluid and a new types cesium deposit in Tibet. In:30th international geological congress abstracts, 1996, 3 (3): 36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700