用户名: 密码: 验证码:
西藏当雄—羊八井盆地及邻区第四纪地质演化与活动断裂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原新生代期间的强烈隆升对东亚季风的起源和演化,以及全球气候的变化,都产生了重大的影响。因此,关于青藏高原大陆变形特征及其动力学机制、高原隆升及其对周缘环境的影响等问题一直是该区的研究热点。位于西藏中部作为藏南与藏北的重要地质、地理与气候分界线的西念青唐古拉山地区是研究高原内部第四纪冰川作用、湖泊演化、古环境与古气候变迁、断裂活动和构造-地貌演化等一系列密切相关的地质作用过程的理想地区。晚新生代期间伴随青藏高原内部的东西向伸展运动,沿西念青唐古拉山东南麓发生了强烈的正断层和左旋走滑断裂活动,并引发了强烈的山脉隆升和冰川作用。鉴于该区的第四纪湖泊演化和冰川作用过程及其时代与山脉隆升、断裂活动密切相关,本论文在第四纪地层-地貌和断层地貌的研究基础上,将第四纪冰川作用与活动断裂研究相结合,合理利用裂变径迹、U系、电子自旋共振、光释光和碳14等多种年轻地质体的测年手段和技术,初步确定了该区晚第四纪湖泊演化和第四纪冰川作用所形成的相关地质-地貌体的时代以及晚新生代以来不同阶段的断裂活动速率与山脉隆升过程,并初步探讨了与其相关的高原隆升及其机制问题。
     1、区域地质概况:西藏当雄及邻区位于平均海拔约5000m的青藏高原造山带中部的拉萨地块中部,在漫长的地质构造演化过程中,该区经历了多期岩浆侵入与火山喷发事件和复杂的地壳变形和演化过程,发育了元古代的念青唐古拉变质杂岩,古生界特别是石炭-二叠系灰岩浅变质沉积-火山岩,中生界的灰岩、砂岩、火山岩和花岗岩体,老第三纪的砂岩、砾岩、火山岩和花岗岩体,中新世的花岗岩体,上新世河湖相地层和第四纪的湖泊、冰川和河流沉积物以及泉华、重力堆积物等等不同时期、不同类型的岩石地层记录,形成了颇具特色的区域构造格局和高原地貌景观。该区主要包含了纳木错低山湖盆区、念青唐古拉极高山区、当雄-羊八井盆地区和旁多高山峡谷区等4个特征不同的地貌单元。地球物理特征显示,该区地壳厚度可达70~80km,地壳热流值普遍较高,其中地壳15~25km深处存在部分熔融层。位于地壳之下的是显示出地震波各向异性特征的相对冷和硬的印度岩石圈地幔。
     2、第四纪地层与时代:研究区典型的第四纪沉积物主要包括:分布于西藏海拔最高的大湖——纳木错(4718m)周缘的湖泊沉积和洞穴堆积,念青唐古拉山及两侧的冰碛和冰水沉积物,主要发育在旁多山地中的河流阶地堆积,当雄-羊八井谷地中的冲、洪积物与泉华堆积。另外,该区还发育了风成沙堆积、沼泽堆积、残坡积物、重力堆积和土壤层等沉积物。其中最老的沉积物可能形成于上新世-早更新世期间,仅分布于吉达果盆地东侧的特穷曲和南侧的夏息果一带、羊八井盆地西南的羊井学一带和宁中盆地的甲果果、沙康果一带,主要为一套河湖相的砂、粘土层和冲、洪积相的砾石层。
     环纳木错进行的1:25万地质填图和对19条湖相地层和湖岸堤剖面进行的水准测量结果表明,在纳木错沿岸,发育了拔湖1.5~8.3、8.3~15.6、14.0~19.9、18.7~25.8、26.0~37.3和38.3~47.6m等6级湖岸阶地和拔湖48m以上,最高至139.2m的高位湖相沉积;在拔湖27m以下,发育了多达8~30条的湖岸堤;而一条明显的湖蚀凹槽,则集中出现在拔湖17.5~19.8m的高度上,与纳木错与仁错的分水垭口的高度相当。纳木错沿岸7个剖面的12个和邻近湖泊的3个富含碳酸盐的湖相或湖滨相沉积的铀系全溶样品的等时线年龄测定结果表明,高位湖相沉积形成于90.7±9.9~71.8±8.5ka B.P.的晚更新世早期,第六、五、四、三和二级阶地分别形成于53.7±4.2、41.2±4.7~39.5±3.0、35.2±3.0、32.3±4.4和28.2±2.8ka B.P.的晚更新世中晚期,而与湖蚀凹槽相当的湖滨相沉积和湖岸堤则稍早于29.3±2.7ka B.P.。
     在念青唐古拉山东南麓进行的古冰川作用调查发现,该区在中-晚更新世期间发育了三套分布于切割山脉的沟谷中和山麓地带的冰川与冰水沉积物,全新世期间则形成多道分布于现今冰川末端附近的终碛垅,并且可能存在早更新世的冰川沉积物。冰碛物和冰水沉积物的电子自旋共振(ESR)、U系和光释光(OSL)测年结果表明,可能属于早更新世冰川作用产物的欠布砾石层形成于约800~900 kaB.P.。中更新世-晚更新世的三套冰碛物的形成时代分别为593~678kaB.P.,315~112kaB.P.和72~25kaB.P.。其中后两个冰川作用期还可以进一步划分出2~3个阶段,并分别与深海氧同位素阶段MIS2、4、6.2、6.4和8等相对应。上述测年结果表明,在念青唐古拉山东南麓所发生的中-晚更新世的3次冰川作用,分别相当于青藏高原南部的聂聂雄拉冰期、古乡冰期和白玉冰期。
     在羊八井盆地西侧和旁多山地中的峡谷地段,发育拔河高度分别为3~5m、10~25m、30~45m、55~70m、80~90m和100~110m的6级河流阶地,其中与T_1和T_2阶地时代相当的冲、洪积台地在念青唐古拉山东南麓和当雄-羊八井盆地中有广泛分布。在大部分阶地缺少测年资料的情况下,经过区域对比认为其中的T_1形成于约4.2ka B.P.,T_3和T_2分别形成于相当于末次冰期早冰段和晚冰段,而T_6、T_5、T_4则分别于中更新世的中、晚期。
     泉华沉积的调查发现,在拉多岗、羊八井、宁中、当雄和谷露盆地中都发育有多期次的古泉华沉积。年代测定结果表明,该区的古泉华的年龄主要集中在500~10kaB.P.期间,并相对集中在500~350kaB.P.、250~150kaB.P.、100~40kaB.P.和约2kaB.P.以来等四个时期,这与古泉华都分布于中更新统冰碛或冰水台地上和野外产状所显示的多期演化特征是吻合的。其中约400~350kaB.P.期间和100kaB.P.以来是区域内热泉活动的两个高峰期。
     3、第四纪环境与古气候:纳木错高位湖相沉积的发现表明,位于冈底斯-念青唐古拉山和唐古拉山之间的羌塘高原在约120~40ka B.P.间的某个时期,可能曾经发育面积可达100000km~2左右的古羌塘大湖。根据不同阶段湖泊沉积物的测年结果可以将纳木错的发育初步划分为120~40ka B.P.间之羌塘古大湖期,40~30ka B.P.间的外流湖期和30ka B.P.以来的纳木错期等3大阶段。在古大湖阶段,包括纳木错、色林错等羌塘高原东南部的一大批现代大中型湖泊,是互相连通的一个大湖,其范围可能超过了现代的内、外流水系的分水岭,可称为“羌塘东湖”。它或许还与羌塘高原中南部和西南部的其它古大湖相连,成为统一的“羌塘湖”。在外流湖期,古羌塘湖逐渐解体成为多个次一级的大湖,各个大湖泊之间可能通过河流相通,也有一些湖泊与大湖完全脱离而独立出来。在纳木错期,纳木错成为独立的湖泊,其它大户也逐步脱离而形成与现今类似的藏北湖群地貌。
     古冰川作用过程、湖泊沉积物的孢粉分析结果、古湖岸堤剖面和古冰缘现象等古气候和古环境变迁的地质标志表明,研究区在第四纪期间特别是早更新世晚期以来经历了多期周期性的冷、暖交替的气候变化过程。其中冰川作用表明,该区在更新世期间经历过4次大的冰期和其中的多次冰进阶段。其中可能为最老的欠布冰期大致对应于MIS26~22阶段,其后分别发生了大致与MIS18~16、MIS8~6和MIS4~2等阶段相对应的宁中冰期(700~600ka B.P.)、爬然冰期(300~120ka B.P.)和拉曲冰期(75~15ka B.P.)。全新世期间则经历了新冰期(4~2.5ka B.P.)和小冰期(1450~1880A.D.)。在爬然和拉曲冰期中还至少各自包含了2个冰进阶段。
     孢粉记录、湖岸阶地和古湖岸堤演化表明,纳木错地区在MIS5以来经历了频繁的湖面波动、气候的冷暖和干湿变化以及森林-草原与草原植被的交替演化。其总体特征是:约115.9ka B.P.时,纳木错湖面最高。在116~78ka B.P.期间,对应于MIS5阶段,区域气候温和凉爽或温和偏湿,区域附近的植被以疏林草原与森林草原或森林的交替出现为特征,湖面经历了较大幅度的波动,但基本保持在拔湖140~88m之间。在78~53ka B.P.期间,对应于MIS4阶段,该区气候干冷,区域植被以疏林草原为主,湖面大幅度下降,并在拔湖约36~48m之间波动。约53~32ka B.P.期间,区域气候温暖偏湿或温暖湿润,湖面波动于拔湖约15~28m之间,波动较为频繁。与阶地的发育相对应,该期间的气候变化可细分为三个暖期和其间的两个冷期(即相当于MIS3a、3b、3c、3d和3e)。其中暖期时的区域植被主要以由松、蒿、桦为主含一定量的冷杉的森林为主,其中36ka B.P.左右气候最温暖湿润,区域附近可能出现针叶林或针阔混交林。约32~12ka B.P.期间,区域气候干冷,古植被以草原和疏林草原为主,湖面再次发生较大幅度的下降,最低可至拔湖约8m处,但通常维持在拔湖约12~17m之间。约11.8~4.2ka B.P.期间,区域整体较为暖湿,其中在约8.4~4.2ka B.P.期间区域气候最温暖湿润,区域内可能为针叶林或针阔混交林,湖面波动于拔湖2~9m之间,整体波动幅度较小,但波动最为频繁。区域气候对比发现,纳木错地区的冷、暖气候变化过程与整个青藏高原乃至北半球的气候变化都是一致的,特别是阶地下切所反映的湖面退缩过程与北大西洋的Henrich冷事件之间具有很好的对应关系。
     综合分析包括孢粉、冰川进退和冰缘沉积等全新世期间内的多种与气候和环境变化密切相关的地质记录发现,该区全新世期间的气候变化可进一步划分为三个阶段:(1)约11.8~8.4kaB.P.期间,本区处于微温期和升温期,气候相对温和稍湿。(2)约8.4~4.0 kaB.P.期间,为全新世气候最适宜时期或大暖期。该期间的平均气温可能会比现今高约5℃,降水量可能比今多100~200mm。(3)约4.0kaB.P.以来,本区气候整体较为干冷。纳木错湖面发生持续下降,其最大下降幅度可达11.4m。冰川进退和湖面波动表明,该期间内本区的气候波动过程包含了新冰期和小冰期两个寒冷期,其中又各包含3次明显的冷期。其中新冰期期间的最低年平均气温可达-6℃左右。约1970年以来,区域气候向暖湿方向转化,造成念青唐古拉山西布冰川后退约120~200m,纳木错湖面上涨了约2m左右。
     4、念青唐古拉山东南麓断裂带的几何学、运动学和地震活动特征:念青唐古拉山东南麓断裂带是研究区主要的活动断裂。其构成了高出高原面千米左右、发育现代山岳冰川的西念青唐古拉山与平均海拔4300m左右、宽约5-15km的谷露-当雄-羊八井-安岗地堑之间的构造边界,并且还是西藏中部一条重要的地震活动带和地热活动带,著名的羊八井地热田就分布在该断裂带之上。沿该断裂进行的地质填图和路线调查发现,念青唐古拉山东南麓断裂带整体呈北北东和北东走向,其主要由呈右阶雁列分布的近南北向的吉达果-安岗盆缘断裂带、北东向的当雄-羊八井北缘断裂带和北北东向的谷露西缘断裂带等三段构成,全长约240公里,倾向南东。其中吉达果-安岗盆缘断裂带和谷露西缘断裂带都属于典型的正断层,而当雄-羊八井北缘断裂带是由多条北北东-北东走向、呈右阶雁列或平行分布的次级正断层带和其间北东东走向的左旋走滑断裂带所构成的复合型断裂带。其中的次级断裂带又构成呈右阶斜接的羊八井、拉多岗、宁中和当雄等次级菱形盆地的边界断裂,而左旋走滑断裂带分布于次级盆地之间起着协调断裂两侧地堑拉张的作用。因此整体上看,当雄-羊八井断裂带可以看作兼具有左旋走滑和正倾滑性质的斜滑断层,但其走滑活动是通过正断层的右阶分布和局部的走滑断裂来实现的,并且伴随着断裂带走向向东的偏转,其走滑分量是逐渐变大的。
     沿山麓地带的路线调查发现,断裂带错动不同时期的晚第四纪冰碛、冰水沉积物和河流阶地所形成的断层崖高度随着地层时代的变新而系统地减小。根据利用水准仪和皮尺测量的185个不同时代的断层活动量数据和29个地形图判读数据以及相关的错动地层的ESR、U系、~(14)C、光释光与热释光年龄分析结果发现,该断裂带不同时期的垂直活动速率是有所变化的。其中约340~200ka B.P.以来的断裂垂直活动速率介于0.8~1.3mm/a之间,约170~160ka B.P.、125~75ka B.P.、58~32ka B.P.、15~12ka B.P.以来和全新世期间的断裂垂直活动速率分别介于0.7~1.3mm/a、0.4~1.3mm/a、0.2~1.8mm/a、0.4~2.8mm/a和0.6~5.3mm/a之间。整体上显示出距今越近断裂带在不同地点的垂直活动速率变化越大的特点。将不同时期以来的断裂垂直活动量换算为不同时段内的垂直断距后可以估算出断裂不同时段内的垂直活动速率。结果表明,断裂带约340~240 ka B.P.、240~170 ka B.P.、170~125 ka B.P.、125~58 ka B.P.、58~15 ka B.P.、15~4 ka B.P.和4~0 ka B.P.期间的断裂平均垂直活动速率分别为约0.86mm/a、1.14mm/a、1.33~2.44mm/a、0.34~0.72mm/a、0.11~1.04mm/a、0.21~2.53mm/a和0.6~5.3mm/a。其中125~15ka B.P.期间是断裂带活动强度比较低的时期,而全新世是断裂活动速率随地点变化最大和最大垂直活动速率最大的时期。另外根据不同地点的断层崖高度可以发现,在断裂带近南北走向或北北东走向时断裂的垂直活动强度往往比较大,而当断裂带走向转为北东东向时,其垂直活动速率则变小,此时也是走滑断裂出现的地段。整体上看,断裂带在10万年尺度内的断裂活动速率是比较稳定的,而在1~5万年时间尺度内的断裂活动速度随地点变化较大。在晚更新世晚期以来,谷露西缘的巴仁多~甲赤岗、当雄盆地北缘的拉尔根~哈公淌和羊八井盆地北部的古仁曲~那夙果一带是断裂带垂直活动相对较强烈的地段。对分布于当雄盆地东、西两端、宁中盆地东北端和羊八井盆地北部的走滑断裂的调查结果表明,断裂的走滑活动速率基本上介于1~4mm/a之间,并且也显示断裂晚更新世晚期以来的活动速率要普遍高于中更新世晚期以来活动速率的特点。其中中更新世晚期以来的平均活动速率为1.7±0.9mm/a,晚更新世晚期以来的平均活动速率为2.5±1.5mm/a。另外,根据断裂带所错动地层的时代和断层泥的ESR年龄结果判断,断裂带在第四纪期间具有不断向盆地内部迁移和多期活动的特点,其中在中更新世以来700~500ka B.P.、350~220ka B.P.、140ka B.P.左右、70~50kaB.P.和全新世等几个阶段是断裂带的活动相对比较强烈的时期。
     念青唐古拉山断裂带对该区的地震活动具有明显的控制作用,1411年和1952年沿该断裂带的北段和中南段分别发生过Ms.8和Ms.7.5级地震。统计仪器记录的1900~2000年期间大于4级的地震活动发现,该区在1900年以来,地震的活动具有明显的准周期性特点,Ms=5.7~6.9级的地震大致以15±5a的周期重复出现。但在近15年的时间内该区已没有≥5.5级的地震发生,并且早期的地震活动主要集中在该断裂带的两端——夹多乡-吉达果-安岗和当雄-谷露-桑雄一带,而在断裂带中段的羊八井-拉多岗-宁中一带,明显属于近期地震活动的“空区”,可能暗示该区属于近期发生中强地震活动的危险区或正在孕育更大强度的地震。
     对谷露1952年7.5级地震和羊八井1411年8级的地表破裂带的调查结果表明,前者的地表破裂带的最大垂直位移为4~5m,宏观震中出现在谷露西南的巴仁多-纳布扎一带,地表破裂的形成具有单点破裂-扩展特点。后者的最大垂直位移可达8~10m,出现在古仁曲沟口至那夙果一带。沿谷露-羊八井多处发现晚更新世以来的古地震活动遗迹,根据断层崩积楔、断层崖坡折和断层上升盘的多级阶地等古地震标志认为,该区在约18~15ka B.P.以来至少发生过6~7次7~8级的古地震。古地震活动的相关地质-地貌体和断层崩积楔的测年结果表明,该区在约7.4±0.7 ka B.P.、4.5±0.3 ka B.P.和2.3±0.2 ka B.P.分别发生过3次7~8级古地震。结合历史地震初步认为,约8.1ka B.P.以来该区发生7~8级地震的地震重复周期为2300±700a。约5ka B.P.以来的地震重复周期为1700±200a。
     5、晚新生代地壳伸展变形特征及其机制:当雄-羊八井地区的盆-山构造地貌和念青唐古拉山东南麓断裂带的断裂活动是该区地壳伸展变形的主要表现形式。盆-山地貌特征分析表明,位于当雄-羊八井地堑西翼、高出高原面千余米的念青唐古拉山是该区隆升最强烈的地区,且山脉隆升具有明显的掀斜特征。半地堑为主的地堑形态、裂谷翼部20~30km的地势变化波长、较窄的10~15km的裂谷宽度和通常小于1000m的地堑充填物厚度等暗示盆-山地貌的发育符合伸展构造背景下上地壳发生弹性弯曲并由低粘度的下地壳进行均衡补偿的模式。地表的断裂性质及其组合形式显示,该区的断裂活动符合N105±10°E方向的伸展构造变形方式,地表的高角度正断层受控于深部10~15km处的低角度伸展型韧性剪切带。综合该区有关深部探测、岩浆活动、热年代学方面的研究成果可以认为,上地壳的伸展变形、上-中地壳的局部熔融和中-下地壳的韧塑性流动等不同构造层次的构造活动都应该是在统一的近东西向伸展变形的动力学背景下发展起来的,该区的近东西向伸展变形开始于约18~11Ma以来,并经历了多阶段的发展过程。各方面的证据表明,目前发生在高原内部的构造变形特征符合在近南北向挤压的动力学背景下,由于双倍地壳的巨大重力势能和低粘度、热而弱的下地壳的存在而导致的在下地壳热塑性流动驱动下引发上地壳脆性伸展变形的动力学机制。而高原南、北部地表伸展变形样式的不同可能是大地构造环境和深部地质背景的差异引起的。
The ongoing collision between India and Eurasia has caused widespread Cenozoicdeformation resulting in uplift of the Himalayas, the Tibetan Plateau and other mountain ranges incentral Asia and abrupt environmental change in Asia. The research on uplift of the TibetanPlateau and its dynamic mechanism have been the focus in the past many years. Recent studies onthe Damxung-Yangbajian graben have very important role to resolve the extensional tectonic, theextensional mechanism and the uplift of the Tibetan Plateau. But the ongoing debate about thecauses and magnitude of late Cenozoic east-west extension in Tibet reflect a lack of informationon the timing of initiation of east-west extension and the distribution and age of sediments ingrabens. Because of the lack on the distribution and age of sediments in grabens, the slip rate offaults are often inferred based on offset geomorphic features which were assumed to have formedafter the Last Glacial Maximum. In this paper, based on the detailed study the distribution and ageof the deposits in grabens and field mapping of active faults in Damxung-Yangbajain, we furtherexplore the distribution and age of the deposits in grabens, the normal faulting and left-lateralstrike slip along the Nyainqentanglha south-eastern piedmont fault zone (NSPF).
     1. Geologic setting and site description
     The studied area is located in the middle of Lhase terrane. The stratigraphic system f theterrane includes Proterozoic-Paleozoic matemorphic rock, Paleozoic mate-sedimentary rock,Mesozoic marine sedimentary, volcanic and igneous rock, Tertiary volcanic and igneous rock andQuaternary deposits. Pre-Neogene structures are mainly NWW and EW-trending thrust-fold zonein the region. Quaternary structures cut all preexisting structures, and are mainly NNE -trendingand south-north-trending normal faulting, NW-trending right-lateral strike-slip fault andNE-trending left-lateral strike-slip fault. The geophysical evidence including seismic reflectionand refraction, gravity and Magnetotelluric data suggest the Moho is 70~80km depth over most ofTibet, there is a partially molten in middle Tibetan crust, the lower crust is low viscosity, hot andweak, the India lithospheric mantle is underthrusting beneath the southern Tibet, the Asialithospheric mantle is underthrusting beneath the northern Qinghai-Tibetan plateau and the shearwave anisotropy polarization is NEE in central Tibet.
     2. Distribution and ages of basin-fill stratigraphy
     The oldest observed deposits interpreted as graben fill are undated fluvial coarseconglomerates and lacustrine mudstone and sandstone, and mainly is exposed locally in easternJidaguo valley, south-western Yangbajain valley and the south-west and north-east of Nyinzongvalley. Based on morphostratigraphy, relative weathering and few sporopollen data, we suggestthese deposits were formed during Pliocene-early Pleistocene.
     Based on morphostratigraphy and relative weathering, we were able to divide the glacialsediments into four sets of Pleistocene glacial deposits Along both the south and north feet and inthe valleys of West Nyaiqentanglha Mountains. The first set of moraines is locally distributed atQianbuquan located in the north-east of Nyinzong valley, constituting the high piedmont moraineplatforms of 100-150m above the valley bottoms. The ESR age results of the moraines suggest theglacial stage occurred during 900~800ka B.P.. The second set of moraines is distributed at the feetof Nyaiqentanglha, constituting the high piedmont moraine platforms of 160-250m above the valley bottoms. On their front margins, there are always simultaneous high fluvioglacial platforms.Along the east and west sides of the outlets of Nia valley north of Damxung County, thefluvioglacial platform was displaced by the NE direction piedmont normal fault. On the slope ofthe fault and the top of fluvioglacial platform, two dating samples were collected. Their ESR datesare 593±260kaBP and 678±307kaBP, respectively. The third set of moraines is mainlydistributed in the glacial troughs cutting the mountains and their outlets, constructing the highlateral and terminal moraines of 40-80m higher than the valley bottom. The ESR and U-seriesdating of moraine indicates the moraines were formed during 300~112ka B.P.. At the northeast ofLargen valley, the simultaneous fluvioglacial platform cut the first set of moraine, formingplatform of 40-60m higher than the valley bottom. The ESR date of calcareous cement collectedfrom the central part of the platform is 205±54kaBP. The U-series date of calcareous cementcollected from the high lateral moraine of Laqu River of Ningzhong basin is 143.4±16.3 kaB.P.The fouth set of moraines is also distributed in the glacial troughs, constituting the low lateral andterminal moraines of 15-35m higher than the valley bottom. The U-series and OSL dating ofcalcareous cement and sand on the top of fluvio-glacial or proluvial platform in Yangbajain andNingzhong is 72.1±6.1kaB.P. and 25.4±8.7kaBP, respectively. These results of dating show thatthe ages of the three sets of glacial deposits along the southeastern foot of Nyaiqentanglha inDamxung County should be correspond to the Nieniexiongla Glaciation, Guxiang Glaciation andBaiyu Glaciation in the south Tibetan Plateau. The latter two glacial periods maybe able to dividedinto two-three stages.
     Nam Co is the biggest and highest great lake (4718m a.s.l.) in central Tibet plateau. Levellingof 19 profiles along the coasts of Nam Co shows that there are 6 lake terraces of 1.5-8.3m,8.3-15.6m, 14.0-19.9m, 18.7-25.8m, 26.0-37.3m and 38.3-47.6m and high lacustrine sedimentsfrom 48m to 139.2m above the lake level. Below 27m a.l.l.,8 to 30 coastal levees and an erosionaltrough at the height of 17.5-19.8m which is as high as the waterdivide between the Nam Co basinand the Ren Co-Jiuru Co basin are discovered. 12 carbonate-bearing sediments samples oflacustrine and beach facies from 7 profiles along the coasts of Nam Co and 3 samples from theadjacent lakes have been dated by an isochron technique of total-sample-dissolution. Result ofU-series dating indicates that the highstand lacustrine sediments, lake terraces of Nos.6, 5, 4, 3, 2and 1 were formed in ca. 115.9-71.8 ka B.P., 53.7 ka B.P., 41.2-39.5 ka B.P., 36.1-35.2 ka B.P.,32.3 ka B.P., 28.2-11.2 ka B.P. and 11.2-4.2 ka B.P., respectively, and the beach conglomerate ashigh as the lake eroded trough, a little older than 29.3±2.7kaBP.
     There are a great many alluvial and proluvial sediments formed during late Pleistocene inDamxung-Yangbajain basin and valleys located in Pangduo moutains. In theDamxung-Yangbajain basin, the late Pleistocene sediments constitute alluvial and proluvial fansor platforms 10~25m higher than valley floor and are formed about 25kaB.P. simultaneous withthe latter deposits of the third set of moraines and glaciofluvial deposits. The Holocene depositscontitute fluvial flat, river terrace and proluvial fans distributed in valley cutting Nyaiqentanglhamountains and the center of basin. At eastern Wumatang, the date of silt collected from top ofriver terrace,~6m above valley floor, is 3.9±0.3kaB.P.. At north-west of Yangbajain, the dates ofpeat and sand collected from upper of river terrace,~4m above valley floor, are 4.26±0.17kaB.P.and 3.7±0.7kaB.P. respectively. The dates of terraces, 4~6m higher than valley floor, indicate thatthe incision of the terraces is correspond to Neoglaciation. In the Pangduo mountains, there are 6river terraces of 3-5m, 15-25m, 30-45m, 55-70m, 80-90m and 100-110m above the valley bottem formed since middle Pleistocene. there are some travertine platforms located in the Gulu,Damxung, Nyinzong, Laduogan, Yangbajain ang Jidaguo valley. ESR and U-series datingindicates travertine were formed since 500kaB.P..
     3. Paleo-climate and Paleo-environment during Quaternary
     Glacial successions and dating of moraines in the Nyainqentanglha mountains indicated thatthere were multi-stage glaciations including Qianbu Nyainzong glacial period, Paran glacialperiod and Laqu glacial period occurred during approximately 900~800ka B.P., 700~600ka B.P.,300~120ka B.P., 75~15ka B.P. in the Pleistocene respectively, broadly associated with marineisotope stage (MIS)-26~22, MIS-18~16, MIS-8~6 and MIS-4~2, and Neoglaciation and Little IceAge occurred during Holocene. In south-eastern piedmont of Nyainqentanglha, There were 2~3glacial advances occurred during MIS8~6 and MIS 4~2.
     Based on the mentioned-above data, this paper divides the lake development of Nam Co intothe three stages: (1) Qiangtang palaeo great lake of the early-middle Late Pleistocene before40kaBP, (2)outflow lake between 40 and 30kaBP and (3) Nam Co since 30kaBP. In the stage ofpalaeo great lake, a series of lakes, such as Nam Co, Siling Co and other big and moderate lakes inthe southeast Qiangtang Plateau were joined together into a great lake whose range might overstepthe water divide between the inland lakes and the Nujiang River system, but not a number oflakes joined each other by rivers. We name the palaeo great lake the "East Qiangtang Lake" whichmight be joined together with the other palaeo great lakes in the central-southern and thesouthwestern Qiangtang Plateau, formed a united palaeo great "Qiangtang Lake".
     Based on the data of age results, terraces, lacustrine sediments and sporopollen analysis, thepalaeovegetation, palaeoclimate and lake-level fluctuation of Nam Co since approximate 120 kaB.P. are discussed in this paper. The change of palaeovegetation, palaeoclimate and lake-levelfluctuation of Nam Co since Last Interglacial Stage can be divided into the five stages: (1) In116-78ka B.P., lake-level fluctuated between 140m and 88m above lake level. The climate waswarm and slightly moisture. The vegetation was forest-steppe and steppe with sparse-forest. (2) In78-53ka B.P., lake-level strikingly dropped and fluctuated between 48m and 36m above lake level.The climate was colder and drier than that at previous. The vegetation was steppe with a few trees.(3) In 53-32ka B.P., lake-level fluctuated between 15m and 28m above lake level. The climate waswarmer and wetter than that of present and there were 3 stages of warm corresponded to thelake-terraces of Nos. 5,4,and 3. The vegetation was forest and forest-steppe. Particularly in periodof 36-35ka B.P., the coniferous and deciduous broad-leaf mixed forest occurred. It shows, in theperiod, the climate is the warmest and wettest during the Last Glacial Stage and also is more warmand wet than that of the present. (4) In 32-12 ka B.P., lake-level strikingly dropped and fluctuatedbetween 17m and 12m above lake level. The climate was cold and dry. The vegetation was steppeor steppe with sparse trees. The lowerest lake-level is 8m above lake level in the period. (5) In11.8-4.2ka B.P., lake-level fluctuated between 2m and 9m above lake level. The climate was warmand wet The vegetation was forest and steppe with a few trees. Especially, the coniferous anddeciduous broad-leaf mixed forest occurred during 8.4-4.2ka B.P. which is the warmest andwettest during Holocene. The most lower lake-level is under present lake level in the period.Acomparison of the climate change and lake-level fluctuation of Nam Co with the data of oxygenisotopic curve from the Guliya ice core in West Kunlun Mountains and the ice core of GRIP2shows the cooling and warming change of Climate in Nam Co area is corresponded to the climatechange of Tibet plateau and northern globe. Especially, the striking lake-level dropping revealed by lake terraces formed is broadly associated with Henrich events.
     Based on the data of ~(14)C, TL, OSL and U-series age results, the geological evidences fromlacustrine sediments and sporopollen analysis of lake terraces T_1, glacier fluctuation,paleo-cryoturbation, palaeosol and palaeo-carbonaceous sediments indicate that the chang of thepalaeovegetation, palaeoclimate and palaeoenvironment during Holocene in Nam Co and itsadjacent area can be divided into the three stages:
     (1) In 11.8~8.4ka B.P.. The climate was relative warm with a few wet to the previous period.The lower part of Nam Co lake terrace T_1 was formed. The vegetation was Artemisia steppe with afew Pinus and Betula trees around the Nam Co, and alpine Cypressaceae meadow in themountains of Damxung's adjacent area. The lake level fluctuation and carbonaceous sedimentswere not prominent in the period.
     (2) In 8.4~4.2 ka B.P.. The Holocene Megaathermal occurred in the period. The climate ofthe period was the warmest and wettest in Holocene. The middle-upper part of Nam Co laketerrace T_1 was formed. The vegetation was coniferous and deciduous broad-leaf mixed forest orforest-steppe with Pinus, Betula and Artemisia around the Nam Co, and alpine Cypressaceaemeadow with a few subalpine shrubbery in the mountains of Damxung's adjacent area. thetemperature was~5℃higher than that of the present and the precipitation was~100~200mmhigher than that of the present. The lake level of Nam Co was rise and probably higher 10.2m thanthe present lake level. The extent and deposited rate of carbonaceous sediments increased in theNam Co and its adjacent area. In addition, the black gray carbonaceous fossil soil, the pluvial fanin east-southern Damxung and the river terrace T_1 of~4m above river level in theDamxung-Yangbajain basin were formed in the period.
     (3) Since 4.2 ka B.P. The climate was colder and drier than that during 8.4~4.2 ka B.P.. Thevegetation was alpine Cypressaceae meadow in the mountains of Damxung's adjacent area.Lake-level of Nam Co dropped and terraces T_1 was formed. The Lake-level experienced 12~17fluctuation between 2m and 9m above lake level. At the same time, the glaciers of Xibu haveexperienced 12 fluctuation in Nyainqentanglha. There are 5 fluctuation during Neoglaciation, 6fluctuation during Little ice age and 1 fluctuation since 1970A.D. The cryoturbation oflate-Quaternary sediments the grey-yellow silty loam occurred in the period. Though the climatewas cold in the period, it obvious have been warmer since 1970A.D. Because the glaciers of Xibuhave retreated approximately 120~200m and the Lake-level of Nam Co rise about 2m since1970A.D.
     4. Geometric pattern, characteristics of deformation and seismieity along NSPF
     The~240km long and south-east facing Nyainqentanglha south-east piedmont fault zone iscomprised of the~50km long west boundary fault of Gulu graben striking N10~15°E and dippingeast to the north, the~130km long north boundary fault of Damxung-Yangbajain graben strikingN30~50°E and dipping south-east to the center and the~60km long graben-bounding fault strikingsouth-north to the south. The NEE and south-north trending northern and southern fault segmentsare dominantly normal-slip, whereas the NE-trending central fault segment is comprised of someleft-lateral enéchelon array normal faults striking NNE-NE and three NEE-trending left-lateralstrike-slip faults. The strike-slip faults which connect overstepping segments of parallel or enéchelon normal faults and "transfer" the displacements across the enéchelon array normal faultszone are transfer fault.
     The NSPF offsets river terraces, glacial lateral-moraine, and alluvial fan at the piedmont. The displacements of Quaternary geological units and geomorphic surface with different age isobvious different. Based on 214 data of the offset terraces, glacial lateral-moraines, alluvial fans,gullies and beheaded channels, the displacements range from~500-0.7m. The variations indisplacements presumably reflects the relative ages of the offset geomorphic features with theleast incised and smoothest (i.e., Youngest) and relatively lower alluvial or glacial surfacesdisplaying the smallest offsets. Based on the dates of the deposits determined by ESR, U-seriesand OSL (Table 1) and the relationship between the glacial or glaciofluvial deposits and glacialcycle in Tibet plateau, The age range of the offset Q_2~(2-1gl-fgl), Q_2~(2-2gl-fgl), Q_2~(3-1gl-fgl), Q_2~(3-2gl-fg), Q_3~(2gl-fgl),Q_3~(3fgl-pal), Q_4~(1pal) and Q_4~(2pal) is between 400~340kaB.P., 300~240kaB.P., 200~170kaB.P.,160~125kaB.P., 75~58kaB.P., 32~15kaB.P., 12~SkaB.P. and 8~4kaB.P. respectively. Sodisplacements of offset Q_2~(1gl-fgl), Q_2~(3gl-fgl), Q_3~(2gl-fgl), Q_3~(3fgl-pal) and Q_4~(1pal) represents the cumulativethrows since 400~340kaB.P., 300~240kaB.P., 200~170kaB.P., 160~125kaB.P., 75~58kaB.P.,32~15kaB.P. and~12kaB.P.. The scarp height of different ages indicates the fault verticalslip-rates are approximately 0.8~1.3mm/a, 0.7~1.3mm/a, 0.4~1.3mm/a, 0.2~1.8mm/a,0.4~2.8mm/a and 0.6~5.3mm/a since 400~200kaB.P., 170~160kaB.P., 125~75kaB.P., 58~32kaB.P.,15~12kaB.P. and 8~4ka B.P. respectively. The fault vertical slip-rates are approximately 0.86mm/a,1.14mm/a, 1.33~2.44mm/a, 0.34~0.72mm/a, 0.11~1.04mm/a, 0.21~2.53mm/a and 0.6~5.3mm/aduring 340~240 ka B.P., 240~170 ka B.P., 170~125 ka B.P., 125~58 ka B.P., 58~15 ka B.P., 15~4ka B.P. and 4~0 ka B.P. respectively. The left-lateral strike-slip rate is 1~4mm/a along strike-slipfault in northern Damxung-Yangbajain graben. This corresponds to a extensional rate 2.0±1.2mm/a across Gulu-Yangbajain-Jidaguo rift.
     The Damxung-Yangbajain and adjacent area is a region of strong seismicity. The twodocummented great earthquakes of magnitude 8 and 7.5 occurred at northern Yangbajain andwestern Gulu in 1411 A.D. and 1952 A.D. respectively. The surface ruptures associated with 1411A.D. Ms.8 of Yangbajain earthquake is distributed along central and southern segments of NSPF.The maximum vertical offsets are 8~10m at northern Yangbajain valley. The surface rupturesassociated with 1952 A.D. Ms.7.5 of Gulu earthquake is distributed along northern segment ofNSPF. The maximum vertical offsets are 4~5m at south-western Gulu valley. The magnitude 4~8earthquakes occurred along NSPF during 1900~2000 A.D. indicate the recurrence interval ofMs.5.7~6.9 earthquakes is 15±5a. But most earthquakes occurred along the southern andnorthern segments of fault zone. The central segment of fault has not produced an≥Ms.6earthquke during 80 years of historical record. The colluvial wedge and the convex break of faultscarp and the multi-terraces close to fault on footwall indicate that there are at least 6 to 7paleo-earthquakes (Ms.7 to 8) since approximately 18~15ka B.P. and 2~3 paleo-earthquakes (Ms.7to 8) since approximately 4~5ka B.P.. Based on dating of buried soil in colluvial wedge and offsetterraces, we suggest that there were 3 paleo-earthquakes (Ms.7 to 8) occurred in approximately 7.4±0.7 ka B.P., 4.5±0.3 ka B.P. and 2.3±0.2 ka B.P., and the recurrence interval of Ms.7 to 8earthquake is 2300±700a and 1700±200a along northern and central segments of NSPF since8ka B.P. and 5ka B.P. respectively.
     5. Characteristics and mechanism of east-west extensional deformation during late Cenozoic
     The basin-range tectonic geomorphic system and the geometric pattern and sense of motiondifferent trending active faults correspond with east-west extensional deformation atDamxung-Yangbajain basin and adjacent area. Analysis of topography acrossDamxung-Yangbajain graben shows that high topography ocurrs along graben margins, the uplift rate of Nyainqentanglha mountains is fastest, the grabens are only 5~15 wide, and the wavelengthof the flank uplift is narrow (20~40km). The features correspond with flexural rift flank uplifts inelastic upper crust under vertical loading, resulting from regional isostatic compensation of lowdensity graben. The existence of a hot and low-viscosity lower crust suggest isostaticcompensation is taking place within this ductile lower crust. The geometric pattern and sense ofmotion of NSPF and extensional ductile shear zone of Nyainqentanglha south-east piedmontshows that the high-angle and parallel or enéchelon army normal faults distributed in brittleshallow crust result from the development of subhorizontal detachment faults in the ductile middlecrust. Thermochronology data on Yangbajain granite, Nyinzong granite, Nyainqentanglha graniteand extensional ductile shear zone of Nyainqentanglha south-east piedmont shows that the age ofonset of east-west extension is constrained to be during 18.3~11Ma, the rapid denudation ofmountains around Damxung-Yangbajain basin since~10Ma results from rift extension. Thecharacteristics of late Cenozoic extension deformation in central Tibet indicate that the distributedand brittle east-west extension deformation of upper crust is driven by rheological and plasticlower crust eastward extruding or flowing without significant increase in height because a hot,low-viscosity and weak lower crust and buoyancy force associated with the exaggerated thicknessof Tibet crust inhibits further crust thickening and WNW-ENE extension stress became theminimum principle stress when the thickness of crust is two times of normal crust in process ofthe convergence between India and Eurasia.
引文
安芷生,王苏民,吴锡浩等,1998,中国黄土高原的风积证据:晚新生代北半球大冰期开始及青藏高原的隆升驱动,中国科学(D辑),28(6),481-490.
    曹忠权1992,古地震现象及其意义,西藏中部活动断层,国家地震局地质研究所.北京:地震出版社,183-192.
    陈文寄,Harrison T.M.,Leloup P.H.等,1994.多重扩散域模式与构造:热年代学研究.见:国家地震局地质研究所编,现今地球动力学研究及其应用.北京:地震出版社,389-397
    陈文寄,李齐,郝杰,周新华,万景林等,1999.冈底斯岩带结晶后的热演化史及其构造含义.中国科学,29(1):9-15
    陈文寄,李齐,周新华等,1996.西藏高原南部两次快速冷却事件的构造含义,地震地质,29(1):9-15.
    陈以健,高钧成,冯锦江等,1994,藏南一些热泉硅华沉积物的ESR测年,见:现今地球动力学研究及其应用,国家地震局地质研究所编,404~411.
    崔之久.高全洲,刘耕年等,1996.青藏高原夷平面与岩溶时代及其起始高度.科学通报,41(15):1402-1406
    崔之久,高全洲,刘耕年等,1996.夷平面、古岩溶与青藏高原隆升.中国科学(D辑),26(4):378-385
    崔之久,伍永秋,刘耕年等.1998,青藏公路昆仑山垭口天然剖面记录.见:青藏高原晚新生代隆升与环境变化,广州:广东科技出版社.
    邓起东,1991.活动断裂研究的进展和方向.见:活动断裂研究,第1集.北京:地震出版社:1-6
    丁国瑜、田勤俭、孔凡臣、谢霄峰、张立人、王立平,1993.活断层分段一原则、方法及应用.北京:地震出版社,70-112
    丁林,钟达赉,1998.青藏高原隆升的阶段.见:潘裕生,孔祥儒主编,青藏高原岩石圈结构演化和动力学.广州:广东科技出版社,379~400
    丁林,钟大赉.潘裕生等,1995.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据.科学通报,40(16):1497-1500
    郭增建,吴瑾冰,郭安宁,2003.由活断层评价地震灾害的讨论.国际地震动态,290:7-9.
    郭正堂,彭淑贞,郝青振等,1999,晚第三纪中国西北干旱化的发展及其与北极冰盖形成演化和青藏高原隆升的关系,第四纪研究,6:557-567.
    韩同林,1983,西藏当雄-崩错一带1951-1952年地震形变带的初步考察,地震地质,5(4).
    韩同林,1984,西藏古湖蚀微地貌的发现及其意义,喜马拉雅地质Ⅱ,地质出版社,北京,267-273.
    韩同林,1984.试论藏南活动构造,喜马拉雅地质(Ⅱ),北京:地质出版社.
    韩同林,1984.西藏1411年9月28日8级地震震中位置的讨论,地震地质.6(4).
    韩同林,1987.青藏高原活动构造.北京:地质出版社,56-61.
    韩同林1979,西藏东北部的新生界及其层序讨论.见:地质矿产部青藏高原地质文集编委会编.青藏高原地质文集(3)地层·占生物.北京:地质出版社,255-266
    侯增谦,李振清,曲晓明等,2001.0.5Ma以来的青藏高原隆开过程——来自冈底斯带热水活动的证据,中国科学(D辑,增刊),27~33.
    胡道功,吴珍汉,叶培盛,江万,2003,西藏念青唐古拉山闪长质片麻岩锆石U-Pb年龄,地质通报,22(11~12),936-940.
    胡道功,夏浩东等,2002,西藏当雄幅1:25万区域地质调查报告——区域变质作用.
    黄赐璇,王燕如,粱玉莲.1983.试从孢粉分析论西藏中南部全新世自然环境的演变[A].中国科学院青藏高原综合科学考察队,西藏第四纪地质[M].北京:科学出版社,179-192.
    江万等,2002,西藏当雄幅1:25万区域地质调查报告——火山岩岩石地层.
    江万,吴珍汉,李有社,2000.青藏高原羌塘地区新生代火山岩中麻粒岩包体的发现.见:中国地质学会编,“九五”全国地质科技重要成果论文集.北京:地质出版社.103-105.
    焦克勤,沈永平,2003,唐古拉山地区第四纪冰川作用与冰川特征,冰川冻土,25(1),34-41.
    焦克勤,姚檀栋,李世杰,2000,西昆仑山32ka来的冰川与环境演变,冰川冻土,22(3),250-256.
    黎兴国,1982,西藏当雄和羊八井盆地泥炭层C~(14)年代测定及其意义,青藏高原地质文集(4),北京:地质出版社.131-135.
    李炳元,2000,青藏高原大湖期,地理学报,55(2),174~182.
    李吉均,方小敏,马海洲等,1996,晚新生代黄河上游演化与青藏高原隆起,中国科学(D辑),26:316-322.
    李吉均,文世宣,张青松等,1979,青藏高原隆升的时代、幅度和形式探讨.中国科学(B辑),9(6):608-616.
    李璞.1957,西藏地区与新构造可能有关的一些现象,中国科学院第一次新构造运动座谈会发言记录,北京:科学出版社.
    李文漪著,中国第四纪植被与环境[M],北京:科学出版社,1998,226~230.
    梁廷立,多吉,潭庆元,杜少平,陈林,张登全.1995.羊八井地热田北区深部地热资源普查报告.西藏自治区地质矿产局地热地质大队编印,24-68
    刘东生,施雅风,王汝建等,2000.以气候变化为标志的中国第四纪地层对比表,第四纪研究,20(2),108-128.
    刘光秀,沈永平,王苏民,全新世大暖期诺尔盖的植被与气候[J],冰川冻土,1995,17(3),247~249.
    刘光秀,施雅风 沈永平等,青藏高原全新世大暖期环境特征之初步研究[J],冰川冻上,1997,19(2),114~123.
    刘嘉麒,刘强,2000,中国第四纪地层,第四纪研究,20(2),129~141.
    刘琦胜等,2002,西藏当雄幅1:25万区域地质调查报告——区域岩浆活动.
    刘琦胜,吴珍汉,胡道公等,2003,念青唐古拉花岗岩锆石离子探针U-Pb同位素测年,科学通报,48(20),2170-2175.
    吕厚远,王苏民,吴乃琴等.2001.青藏高原错鄂湖2.8Ma来的孢粉记录.中国科学(D辑),31(增刊):234-240.
    马志邦,赵希涛,朱大岗等.西藏纳木错湖相沉积的年代学研究.地球学报,2002,23(4):311~316
    马宗晋,1992.活动构造基础与工程地震.北京:地震出版社,180-182
    南京大学地理系地貌学教研室,1974,中国第四纪冰川与冰期问题,科学出版社,北京,45-46.
    潘桂棠,刘培生,1990.青藏高原新生代构造演化.北京:地质出版社,1-130
    潘裕生,1999.青藏高原的形成与隆升.地学前缘,6(3):1~9
    浦庆余,吴锡浩,钱方,1982,青藏公路沿线唐古第四纪冰缘现象及其在古地理上的意义,青藏高原地质文集(4),北京:地质出版社,19-33.
    钱方,浦庆余,吴锡浩,1982,念青唐古拉山东南麓第四纪冰川地质,青藏高原地质文集(4),北京:地质出版社,34-50.
    青海省地质矿产局,1991.青海省地质志.北京:地质出版社
    沈才明,唐领余,王苏民.1996.若尔盖地区25万年以来的植被与气候.微体古生物学报,13(4):373-385.
    施雅风,1998,第四纪中期青藏高原冰冻圈的深化及其与全球变化的联系,冰川冻上,20(3),197-207.
    施雅风,2002,中国第四纪冰期划分改进建议.冰川冻土,24(6).687-692.
    施雅风,李吉均,李炳元.姚传栋,王苏民等,1999.晚新生代青藏高原的隆升与东亚环境变化.地理学报,54(1):10-20
    施雅风,李吉均,李炳元主编,1998.青藏高原晚新生代隆升与环境变化.广州:广东科技出版社,1-16
    施雅风.2002.中国第四纪冰期划分改进建议.冰川冻上,24(6):687-692.
    孙东怀,刘东生,陈明扬等,1997,中国黄土高原红粘土序列的磁性地层与气候变化,中国科学(D辑),27:265-270.
    孙鸿烈,郑度主编,1998.青藏高原形成演化与发展.广州:广东科技出版社,73-128
    孙湘君,杜乃秋,陈因硕等,1993,西藏色林错湖相沉积物的花粉分析,植物学报,35(12),943~950.
    汤懋苍,白重瑗,刘晓东,1998.高原近代气候变化的事实分析,青藏高原近代气候变化及对环境的影响,广州:广东科技出版社,123-143.
    唐领余,沈才明,Kam-biu Liu等,1999,南亚古季风的演变:西藏新的高分辨率古气候记录,科学通报,44(18),2004~2007
    唐荣昌等,1980,当雄7.5级地震地质构造背景及其成因的初步认识,地震研究,3(1).
    万景林,王瑜,李齐等,2001,阿尔金山北段晚新生代山体抬升的裂变径迹证据,矿物岩石地球化学通报,20(4),222-224.
    汪佩芳.夏玉梅,王曼华等,1981,西藏南部全新世泥炭孢粉组合及自然环境演化的探讨,地理科学,1(2),144~152.
    汪一鹏,2001.青藏高原活动构造基本特征.见:马宗晋、汪一鹏、张燕平主编,青藏高原岩石圈现今变动与动力学.北京:地震出版社,251-262.
    王明业、郑绵平,1965,西藏高原第四纪冰川遗迹,地理学报,31(1),63-74.
    吴锡浩,钱方,浦庆余,1982,东昆仑山第四纪冰川地质,青藏高原地质文集,(4),第四纪地质·冰川,地质出版社,北京,1-18.
    吴锡浩,王富葆,安芷生,钱方,卢演俦,张选阳,1992.晚新生代青藏高原隆升的阶段和高度.见:黄土·第四纪地质·全球变化,第3集.北京:科学出版社,1-13
    吴章明,1992,西藏高原震中分布与活动断层.地震研究,15(2)
    吴章明,曹忠权,申屠炳明等,1990,念青唐古拉山南东麓断层的初步研究,地震研究,13(1),40-50.
    吴章明,曹忠权,申屠炳明等,1990a,1411年当雄南8级地震地表破裂,地震地质,12(2),98-108.
    吴章明,曹忠权,申屠炳明等,1992,西藏中部活动断层,北京:地震出版社.
    吴章明,汪一鹏,任金卫,1993.青减高原北部金沙江、怒江缝合带晚第四纪的活动性.地震地质,15(1):28-31
    吴章明等,1991,1952年西藏当雄7.5级地震烈度的再评定.地球物理学报,34(1)
    吴珍汉,胡道功,刘琦胜,夏浩东.焉犀利,2002.西藏当雄地区构造地貌及形成演化过程.23(5):423-428
    吴珍汉,江万,周纪荣,李冀湘,2001.青藏高原腹地典型岩体热历史与构造—地貌演化过程的热年代学分析.地质学报,75(4):468-476
    吴珍汉,吴中海,江万,周继荣,2001.中国大陆及邻区新生代构造—地貌演化过程与机理.北京:地质出版社,37-99
    吴珍汉,叶培盛,吴中海,胡道功,周春景,2003.青藏铁路沿线断裂活动的灾害效应.现代地质,17(1):1-6.
    吴珍汉,叶培盛,胡道功等,2003,青藏高原腹地的地壳变形与构造地貌形成演化过程.北京:地质出版社.
    吴中海,赵希涛,江万等.2003,念青唐古拉山东南麓更新世冰川沉积物年龄测定的初步结果.冰川冻土.25(3),272-274.
    吴中海,赵希涛,朱大岗等,2002,念青唐古拉山脉西布冰川区的冰碛层,地球学报,23(4),329-334.
    伍永秋,崔之久,刘耕年,等,1999,昆仑山垭口地区的冰期系列,冰川冻上,21(1),71-76.
    西藏自治区地质矿产局,1991.西藏自治区区域地质志.北京:地质出版社,225-248.
    肖序常,李廷栋,李光岑,常承法,袁学诚,1988.喜马拉雅岩石圈构造演化总论.北京:地质出版社,1-118
    肖序常,李廷栋主编,2000.青藏高原的构造演化与隆升机制.广州:广东科技出版社
    徐近之,1937,西藏之大天湖,地理学报,4:891~904.
    杨欣德,纪占胜等,2002,西藏当雄幅1:25万区域地质调查报告——古生代和中生代沉积岩.
    姚檀栋,1999,末次冰期青藏高原的气候突变——古里雅冰芯与格陵兰GRIP冰芯对比研究,中国科学(D辑),29(2),175~184.
    姚檀栋,Thompson L.G.,施雅风等.1997,古里雅冰芯中末次间冰期以来气候变化记录研究,中国科学,27(5),447-452.
    易明初,1983,活断层的定义.世界地质,第1集,68-79
    尹安.2001.喜马拉雅—青藏高原造山带地质演化.地球学报,22(3):193-230.
    张培震.王敏,甘卫军等,2003,GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约,地学前缘10(特刊),81-92.
    张培震、王琪,2001.中国大陆现今地壳运动与构造变形.见:马宗晋、汪一鹏、张燕平主编,青藏高原岩石圈现今变动与动力学.北京:地震出版社,21-35
    张青松,李炳元,景可等,1981,青藏地区上新世古地理和高原隆起,见:青藏高原隆起的时代、幅度和形式问题,中国科学院青藏高原综合科学考察队编,北京:科学出版社,26-38.
    张卓元主编,1981,工程地质勘探.北京:地质出版社,119-142
    赵文津及INDEPTH项目组著,2001,喜马拉雅山及雅鲁藏布江缝合带深部结构与构造研究.北京:地质出版社,63-355
    赵希涛,郭旭东,高福清,1982,珠穆朗玛峰地区第四纪地层,见:珠穆朗玛峰地区科学考察报告(1966~1968)·第四纪地质,中国科学院青藏高原综合科学考察队编,北京:科学出版社,1-28.
    赵希涛,1975,喜马拉雅山脉近期上升的探讨,地质科学,(3),243-252.
    赵希涛,1981,青藏高原隆起幅度估算方法评述,见:青藏高原隆起的时代、幅度和形式问题,中国科学院青藏高原综合科学 考察队编,北京:科学出版社,167-175.
    赵希涛,曲永新,李铁松,1999,玉龙雪山东麓更新世冰川作用,冰川冻土,21(3),242-248.
    赵希涛,吴中海,朱大岗等,2002a,念青唐古拉山脉西段第四纪冰川作用.第四纪研究,22(5):424-433.
    赵希涛,朱大岗,吴中海等,2002b.西藏纳木错与仁错-久如错连通的地质记录,第四纪研究,2002,22(2).
    赵希涛,朱大岗,吴中海等,2002c,西藏纳木错晚更新世以来的湖泊发育,地球学报,2002,23(4),329~334.
    赵希涛,朱大岗,严富华.吴中海等,2003,西藏纳木错末次间冰期以来的气候变迁与湖面变化.第四纪研究,23(1):41-52
    郊本兴,2000,云南玉龙雪山第四纪冰期与冰川演化模式,冰川冻土.22(1),53-61.
    郑本兴,焦克勤,李世杰等,1990,青藏高原第四纪冰期年代研究的新进展,科学通报,7,533-537.
    郑本兴.施雅风,1982,珠穆朗玛峰地区第四纪冰期探讨.见:珠穆朗玛峰地区科学考察报告1966~1968,第四纪地质,北京:科学出版社,29~62.
    中国地质科学院成都地质矿产研究所,1988.青藏高原及邻区地质图(1:150万).北京:地质出版社
    中国地质科学院岩石圈研究中心.地质矿产部地质研究所著.1996.青藏高原岩石圈结构构造和形成演化.北京:地质出版社
    中国科学院青藏高原综合科学考察队(关志华、陈传友、区裕雄。等),1984.西藏河流与湖泊,科学出版社,北京,115~134.
    中国科学院青藏高原综合科学考察队(李炳元,王富葆,张青松,等),1983b,西藏第四纪地质,北京:科学出版社.
    中中国科学院青藏高原综合科学考察队(李吉均,郑本兴,杨锡金,等),1986.西藏冰川.北京:科学出版社.
    中国科学院青藏高原综合科学考察队(杨逸畴,李炳元,尹泽生,等),1983a,西藏地貌,北京:科学出版社.
    中国科学院青藏高原综合科学考察队,1982.西藏自然地理.科学出版社,北京.
    中国科学院青藏高原综合科学考察队编,1981,青藏高原隆起的时代、幅度和形式问题。北京:科学出版社.
    中华人民共和国建设部,1995.岩土工程勘察规范.北京:中国建筑工业出版社,84-87
    中英青藏高原综合考察队,1990.青藏高原地质演化.北京:科学出版社
    钟大赉,丁林,1996.青藏高原的隆起过程及其机制探讨.中国科学(D辑),26(4):289-295.
    周尚哲,李吉均,张世强等,2001b.祁连山摆浪河谷地的冰川地貌与冰期,冰川冻土,23(2),131-138.
    周尚哲,易朝路,施雅风等.2001a,中国西部MIS12冰期研究.地质力学学报,7(4),321-327.
    Allere C. J., and 34 others, 1984, Structure and evolution of the Himalayas-Tibet orogenic belt, Nature, 307: 17-22.
    Alsdorf D., Nelson D., 1999, Tibetan satellite magnetic low: Evidence for widespread melt in the Tibetan crust. Geology, 27(10), 943~946.
    Alsdorf D., Brown L., Nelson D., Makovsky Y., Klemperer S. and Zhao W., 1998. Crustal deformation of the Lhasa terrane, Tibet Plateau from Project INDEPTH deep seismic reflection profiles. Tectonics, 17(4): 501-519.
    An Zhisheng, John E. K. and Warren L. P. et al., 2001, Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times, Nature, 411: 62-66.
    Armijo R., Tapponnier P. and Hart T., 1989, Late Cenezoic right-lateral strike-slip faulting in southern Tibet. J. Geophys. Res., 94: 2787-2838.
    Armijo, Tapponnier, Mercier L and Tonglin H, 1986, Quaternary extension in southern Tibet: field observation and tectonic Implication, J GR, 91(B14), 13803~13872.
    Avouac J. P., Tapponnier P., 1993, Kinematic model of active deformation in central Asia. Geophys. Res. Letters. 1993(20), 895-898.
    Bender M, Todd S, Mary-lynn D, et. al, 1994, Climatic correlations Between Greenland and Antarctica during the past 100000 years, Nature, 372, 663~666.
    Bess J., Courtillot V., Pozzi J. P., Westphal M. and Zhou Y., 1984. Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture. Nature, 311: 621-626.
    Blisniuk P. M., Bradley R. H. and Johannes G. et al., 2001, Normal faulting in central Tibet since at least 13.5 Myr ago, Nature, 412: 628-632.
    Blisniuk P. M., Sharp W. D., 2003, Rates of late Quaternary normal faulting in central Tibet from U-series dating of pedogenic carbonate in displaced fluvial gravel deposits. Earth and Planetary Science Letters. 215, 169-186.
    Bond, G., Broecker, W., Johnsen, S., et. al, 1993, Correlations Between climate records from North Antarctic sediments and Greenland Ice, Nature, 365, 143~147.
    Braitenberg C., Zadro M., Fang J., et al., 2000, The gravity and isostatic Moho undulations in Qinghai-Tibet plateau. Journal of Geodynamics, 30, 489~505.
    Brown L. D., Zhao W., Nelson K. D., Hauck M., Alsdorf D., Ross A., Cogan M., Clark M., Liu X. and Che J., 1996. Bright spots, structure and magmatism in southern Tibet from INDEPTH seismic reflection profiling. Science, 274: 1688-1690.
    Burbank D. W., Beck R. A. and Mulder T., 1996, The Himalayas foreland basin, In the tectonic of Asia, ed A Yin, TM Harrison, Cambrige University Press, New York, 149-188.
    Burke K. and Lucas L., 1989. Thrusting on the Tibetan Plateau within the last 5 Ma. In: Sengor A.M.C. et. al. Eds., Tectonic evolution of the Tethyan region, NATO ASI. Series C, 259: 507-512.
    Ceding T. E., Wang Y. and Quade J., 1993. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature, 361: 344-345.
    Chen L., Booker J., Jones A. G., Wu N., Unsworth M. J., Wei W. and Tan H., 1996. Electronically conductive crust in southern Tibet from INDE PTH magnetotelluric surverying. Science, 274: 1694-1696.
    Chen Qizhi, Freymueller J. T., Wang Qi, et al., 2004. A deforming block model for the present-day tectonics of Tibet. J. G. R. 109. B01403, 1-16.
    Chen Y., Cogne J.-P., Courtillot V., Tapponnier P. and Zhu X. Y., 1993. Cretaceous paleomagnetic results from western Tibet and tectonic implications. Journal of Geophysical Research, 98 (B 10): 17981-17999.
    Cogan M. J., Nelson K. D., Kid W. S. F., et. al., 1998, Shallow structure of the Yadong-Gulu rift, southern Tibet, from refraction analysis of Project INDEPTH common midpoint data, Tectonics, v 17 (1), 46-61.
    Coleman M. and Hodges K., 1995. Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum estimate for east-west extension. Nature, 374: 49~52.
    Copeland P., Harrison T. M., Pan Y., Kidd W. S. F. and Roden M., 1995. Thermal evolution of the Gangdese batholith, southern Tibet: a history of episodic unroofing. Tectonics, 14(2): 223-236.
    Corrigan J. D., Crowley K. D., 1992, Unroofing of the Himalayas: A view from apatite fission-track analysis of Bengal fan sediments, Geophys Res. Lett. ,19(23), 2345-2348.
    Dansgaard W, Johnsen S J, Clausen H B et al.. 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364:218-220.
    Decelles P.G., Robison D.M., Zandt G., 2002, Implications of shorting in the Himalaya fold-thrust belt for uplift of the Tibetan plateau. Tectonics. 21(6), 12-1-25.
    Dewey J. F., Shackleton R. M., Chang Chengfa and Sun Yiyin, 1988. The tectonic evolution of the Tibetan Plateau. Phil. Trans. R. Soc. Lond, A327, 379-413.
    Edwards M. A. and Harrison T. M., 1997. When did the roof collapse? Late Miocene north-south extension in the High Himalaya revealed by the Th-Pb monazite dating of the Khula Kangri granite. Geology, 25: 543-546.
    Einsele G., Ratschbacher L. and Wetzel A., 1996. The Himalaya Bengal Fan denudationg-accumulation system during the past 20Ma. The Journal of Geology, 104: 163-184.
    England P. C. and Houseman G. A., 1986. Finite strain calculations of continental diformation, 2, comparison with the India-Asia collision. Journal of Geophysical Research, 91: 3664-3676.
    
    England P. C. and Houseman G. A., 1998. The mechanics of the Tibetan Plateau. Philos. Trans. R. Soc. London, Serial A, 326: 301-391.
    England P., Houseman G., 1989, Extension during continental convergence,with application to the Tibetan Plateau, J. Geophys. Res., 94: 17561-17569.
    England P., Molnar P., 1997, The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults. Geophys. J. Int. 130, 551-582.
    
    Gansser A., 1964. Geology of the Himalayas. Wiley-Interscience, New York, 289-290.
    Garzione C. N., Dettman D. L. and Quade J. et al., 2000, High times on the Tibetan plateau: Paleoelevation of the Thakkhola graben, Nepal, Geology, 28(4), 339-342.
    Guo Z. T., William F. R. and Hao Q. Z. et al., 2002, Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China, Nature, 416: 159-163.
    
    Hacker B R, Gnos E and Ratschbacher L et al. 2000. Hot and Dry Xenoliths from the Bottom of Tibet. Science, 287: 2463-2466.
    Hafsten U, A subdivision of late Pleistocene Period on a synchronous basis elitended for gloal and universal usage[J]. Palaeogeography, Palaeoclimatology and Palaeoecology, 1976, 7: 279-296.
    Hao-yang Lee, Sun-lin Chung, Jun-ren Wang, et al., 2003, Miocene Jiali faulting and its implications for Tibetan tectonic evolution. Earth and Planetary Science Letters, 205,185-194.
    
    Harrison N. and Massey J., 1994. Decompression and anatexis of Himalayan metapelites. Tectonics, 13: 1537-1546.
    
    Harrison T. M., Copeland P., Kidd W. S. F. and An Yin, 1992. Raising Tibet. Science, 225: 1663-1670.
    
    Harrison T. M., Copeland P., Kidd W. S. F. and Lovera O. M., 1995. Activation of the Nyainqentanghla shear zone: implications for uplift of the southern Tibetan Plateau. Tectonics, 14(3): 658-676.
    Harrison T. M., Grove M., Lovera O. M., Catlos E. J., 1998. A model for the origin of Himalaya anatexis and inverted metamorphism. J. Geophys. Res. 103:27017-27032.
    Hauck M. L., Nelson K. D., Brown L. D., Zhao W. and Ross A. R., 1998. Crustal structure of the Himalayan orogen at ~90° east longitude from Project INDEPTH deep reflection profiles. Tectonics, 17(4): 481-500.
    Hetzel R., Niedermann S., Tao M., et.al., 2002. Low slip rates and long-term preservation of geomorphic features in central Asia. Nature. 417:428-432.
    Hodges M. S., Parrish R. R. and Searle M. P., 1996. Tectonic evolution of the central Annapuma range, Nepalese Himalayas. Tectonics, 15: 1264-1291
    Houseman G. and England P., 1994. A lithospheric-thickening model for the Indo-Asian collision. In: The Tectonic Evolution of Asia. Cambridge: Cambridge Press, 1-17.
    Jarvis D.I., Pollen evidence of changing Holocene monsoon climate in Sichuan province, China [J]. Quaternary Research, 1993, 39: 325-337.
    Jolivet M., Brunei M., Seward D., et al., 2003. Neogene extension and volcanism in the Kunlun fault zone, northern Tibet: New constraints on the age of Kunlun fault. Tectonics, 22(5), 7-1-20.
    Jouzel J, Lorius C, Petit J R et al.. 1987. Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years). Nature, 327: 403-408.
    
    Kazou A., Asahiko T., 1992, Two-phase uplift of high Himalayas since 17Ma, Geology, 20: 391-394.
    Kidd W. S. F. and Molnar P., 1990. Quaternary and present active faults of Lhasa-Golmud of the Tibetan Plateau. Roy. Soc. London. A, 327: 332-352.
    Klootwijk C.T., Conaghan P.J., and Powell C.M., 1985. The Himalayan arc: large-scale continental subduction, oroclinal bending and back-arc spreading. Earth Planet. Sci. Lett. 75, 167-183.
    Kroon D., Steens T. and Troelstra S. R., 1991. Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foramifers. Proc. Ocean Drill. Program Sci. Results, 117: 257-263.
    Lehmkuhl F., Owen L.A., Derbyshire E., et al., 1998. Late Quaternary glacial history of the northeast Tibet. Quaternary Proceedings, 6, 121-142.
    Leshou Chen, John R. Booker, Alan G. Jones, Nong Wu, Martyn J. Unsworth, Wenbo Wei and Handong Tan, 1996. Electrically conductive crust in Southern Tibet from INDEPTH magnetotelluric surveying. Science, 274: 1694-1696
    Li Jijun, 1995, Uplift of Qinghai-Xizang(Tibet) Plateau and global chang. Lanzhou: Lanzou University Press.
    LinAiming, Fu Bihong, Guo Jianming, ZengQingli, Dang Guangming, He Wengui and Zhao Yue. Co-seismic strike-slip and rupture length produced by the 2001 Ms 8.1 Central Kunlun Earthquake. Science, 2002, 296: 2015-2017.
    Luo, S D, Ku, T L. 1991, U-series isochron dating: A generalized method employing total-sample dissolution. Geochimica et Cosmochimica Acta, 55: 555-564
    Makovsky Y., Klemperer S. L., RatschbacheT L., Brown L. D., Li M., Zhao W. and Meng F., 1996. INDEPTH wide-angle reflection observation of P-wave to S-wave conservation from crustal bright spots in Tibet. Science, 274: 1690-1691.
    Martinson D G, Pisias N G, Hays J D et al. 1987, Age dating and the orbital theory of the ice ages: development of a high-resolution 0-300 000 years,Quaternary Research, 27:1-29
    Masek J.G., Isacks B.L., Fielding E.G., Browaeys J., 1994, Rift flank uplift of Tibet: evidence for a viscous lower crust. Tectonics. 13(2), 659-667.
    Matsuda T., Ota Y., Ando M. and Yonekura N., 1978. Fault mechanism and recurrence time of major earthquakes in southern Kanto district, Japan, as deduced from coastal terrace data. Geol. Soc. America Bull. 89: 1610-1618
    Mccaffrey, R. and Nabelek, J. 1998, Role of oblique convergence in the active deformation of the Himalayas and southern Tibet plateau. Geology, 26(8), 691-694.
    Mercier, J.L., Armijo, R., Tapponier, P., et al., 1987. Change from late Tertiary compression to Quaternary extension in southern Tibet during India-Asia collision. Tectonics, 6(3), 275-304.
    Metivier F., Gaudemer Y., Tapponnier P. and Meyer B., 1998. Northeastward growth of the Tibet Plateau deduced from balanced reconstruction of two depositional areas: the Qaidam and Hexi Corridor basins, China. Tectonics, 17(6): 823-842.
    Molnar P. and Tapponnier P., 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science, 189: 418-426.
    Molnar P. and Tapponnier P., 1978. Active tectonics of Tibet. Journal of Geophysical Research, 83: 5361-5375.
    Molnar P., England P. and Martinod J., 1993. Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon. Reviews of Geophysics, 31(4): 357-396.
    Molnar P., Lyou-caen H., 1989, Fault plane solutions of earthquakes and active tectonics of the northern and eastern parts of the Tibetan plateau. Geophysical J. Int., 99, 123-153.
    Molnar P., 1987. Geomorphic evidence for active faulting in the Altyn Tagh and northern Tibet and quantitative estimates of its contribution to theconvergence of India and Eurasia. Geology, 15: 249-253.
    Nelson K. D., Zhao W., Brown L. D., Kuo J., Che J., Liu X. and Klemperer S. L., 1996. Partially molten middle crust beneath southern Tibet: Synthesis of Project INDEPTH results. Science, 174: 1684-1688.
    
    Ni J. and York, J.E., 1978, Late Cenozoic tectonics of the Tibetan plateau. J.G.R., 83(B11), 5377-5384.
    Owen L.A., Derbyshire E., Fort M., 1998. The Quaternary glacial history of the Himalaya. Quaternary Proceedings, 6, 91-120.
    Owen L.A., Finkel R.C., Caffee M.W., et al., 2002, Timing of multiple late Quaternary glaciations in the Hunza valley, Karakoram Mountains, northern Pakistan: Defined by cosmogenic radionuclide dating of moraines. GSA bulletin, 114(5), 593-604.
    Owen L.A., Finkel R.C., Ma Haizhou, et al., 2003, Time and style of late Quaternary glaciation in northeastern Tibet. GSA bulletin, 115(11), 1356-1364.
    Pan Y., Kidd W.S.F, 1992, Nyainqentanglha shear zone:A late Miocene extensional detachment in the southern Tibetan plateau. Geology, 22, 775-778..
    Peltzer G., Tapponnier P., Zhang Z., et al., 1996, Present-day kinematics of Asia derived from geological fault rates. J.G.R., 101(12.), 27943-27956.
    Quade J., Ceding T. E. and Bowman J. R., 1989. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature, 342: 163-166.
    Ratschbacher L, Frisch W and Liu G., 1994. Distributed deformation in southern and western Tibet during and after the Indus-Asia collision. Journal of Geophysical Research, 99: 19917-19946.
    
    Raymo M. E. and Ruddiman W. F., 1992. Tectonic forcing of late Cenozoic climate. Nature, 359: 117-122.
    
    Robert A. S., Nigel W. H. and Mike W. et al., 2003, Constant elevation of southern Tibet over the past 15 million years, Nature, 421:622-624.
    
    Rothery, D.A. and Drury S.A. 1984. The neotectonics of the Tibetan plateau.Tectonics, 3(1), 19-26.
    
    Royden, L.H., Burchfiel, C., King, R.W., et al. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276, 788-790.
    Sarnthein,M. and Tiedemann,R.,1990,Younger Dryasstyle cooling events at glacial terminations I -VI at ODP site 658,associated benthic δ ~(13) C anomalies constrain meltwaterhypothesis,paleoceangraphy 5,1041-1055.
    Schackleton N. J., 1984. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature, 307: 620-623.
    
    Seeber, L. and Pecher, A. 1998. Strain partitioning along the Himalaya arc and the Nanga Parbat antiform. Geology, 26, 791 -794.
    Shen F., Royden L.H., Burchfiel B.C., 2001, Large-scale crustal deformation of the Tibetan plateau. J.G.R., 106, 6793-6816.
    Shi Y F, Yu G, Liu XD et al, 2001, Reconstruction of 30-40kaB P. enhanced Indian monsoon climate based on geological records from the Tibetan Plateau. Palaeogeography, Palaeoclimate, Palaeoecology, 169: 69-83
    Smith A.B., and Juntao X., 1988. Palaeontology of the 1985 Tibet Geotraverse, Lhasa to Golmud. Phil. Trans. Roy. Soc. London. A, 327: 53-105.
    Spicer R. A., Harris N. B. W., Widdowson M., Herman A. B., Guo S., Valdes P. J., Wolfe J. A. and Kelley S., 2003. Constant elevation of southern Tibet over the past 15 Million years. Nature, 421, 622-624.
    
    Tapponnier P. and Molnar P., 1977. Active faulting and tectonics of China. Journal of Geophysical Research, vol.82, 2905-2930.
    Tapponnier P., and P. Molnar, 1976, Slip line field theory and large-scale continental tectonics, Nature, 264, 319-324.
    Tapponnier P., Lacassin R., Leloup P. H. et al., 1990, The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indosina and South China. Nature, 343: 431-437.
    Tapponnier P., Peltzer A. Y., Le Dain, Amijo R. And Cobbold P., 1982. Propogating extrusion tectonics in Asia: New insignts from simple experiments with plasticine. Geology, 10: 611-616.
    Tapponnier P., Peltzer G., Armijo R., 1986, On the mechanics of the collision between India and Asia. In Collision Tectonics, eds M. P. Coward and A. C., Geol. Soc. Lond. Spec. Publ. ,19: Ries, 115-157.
    
    Tapponnier P., Xu Z. Q. and Roger F. et al., 2001, Oblique stepwise rise and growth of the Tibet Plateau, Science, 294, 1671-1677.
    Taylor M., Yin An, Ryerson F. J., et al., 2003. Conjugate strike-slip faulting along Bangong-Nujiang suture zone accommodates coeval east-west extention and north-south shortening in the interior of the Tibetan Plateau. Tectonics, 22(4), 18-1-21.
    Thompson L G. Yao T, Davies M E et al. 1997, Tropical climate instability: The last glacial cycle from the Qinghai-Tibetan Plateau. Science, 276:1 821-1 825
    Vandenberghe, J. Cryoturbation. Permafrost changes in Europe during the Last Glacial. Permafrost and Periglacial processes, 1993,4: 428-433.
    Verma R.K., et al., 1988. Seismisity, focal mechanisms and their correlation with the geological/tectonic history of Tibetan plateau. Tectonophysics, 156(12).
    
    Wallace R. L., 1977, Prolifes and ages of young fault scarps, north-central Nevada, Geol. Soc. Am. Bull. 88, 1267-1281.
    Wang Qi, Zheng Pei-zhen, Freymueller, J., et.al., 2001, Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294, 574-577.
    Williams, H., Turner, S., Kelley, S., et.al., 2001, Age and composition of dikes in southern Tibet: New constraints on the timing of east-west extention and its relationship to postcollisional volcanism. Geology, 29: 339-342.
    Wu C., Nelson K. D., Wortman G., Samson S. C., Li J., Kidd W. S. F. and Edwards M. A., 1998. Yadong cross structure and south Tibetan detachment in the east central Himalaya. Tectonics, 17(1): 28—45.
    Wu Zhonghai, Zhao Xitao, Wu Zhenhan et al., 2004, Quaternary geology and faulting in the Damxung-Yangbajain basin, ACTA GEOLOGY SINICA,78(1), 273-282.
    Xu R. H., Scharer U. and Allegre C. J., 1985. Magmatism and metamorphism in the Lhasa block (Tibet): a geochronological study. Journal of Geology, 93: 41-57.
    Yin A., 2000, Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asia collision. J.G.R., 105(B9), 21745-21759.
    Yin A., Harrison T. M., Reyerson F. J., Chen W., Kidd W. S. F. and Copeland P., 1994. Tertiary structural evolution of the Gangdese thrust system in southern Tibet. Journal of Geophysical Research, 99 (B9) : 18175-18201.
    Yin A., Kapp P.A., Murphy M.A. et.al., 1999, Evidence for significant late Cenozoic east-west extension in north Tibet, Geology, 27: 787-790.
    Yin A., Nie S., Craig P. and Harrison T. M., 1998. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics, 17(1): 1-27.
    Zhao W., Nelson K. D. and Project INDEPTH Team, 1993. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366: 557-559.
    
    Zheng Hongbo, Christopher M.P. and An Zhisheng et al., 2000, Pliocene uplift of the Northern Tibetan Plateau. Geology, 28(8),715-718.
    Zheng Meanping, Meng Yifeng, Wei Lejun. 2000. Evidence of the pan-lake stage in the period of 40-28ka B.P. on the Qinghai-Tibet Plateau. Acta Geologica Sinica, 74(2). Special Issue 1, Papers on Geology of China for the 31~(st) IGC, Reode Janeiro, 266-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700