用户名: 密码: 验证码:
青岛太平湾砂质潮间带小型底栖生物群落结构与多样性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2004年10月到2005年10月对青岛太平湾进行了连续13个月的小型底栖生物的调查采样,对小型底栖生物栖息的沉积环境、小型底栖生物的丰度和生物量、自由生活海洋线虫群落结构、多样性和分类学进行了研究。同时,建立了不同季节的青岛砂质潮间带的底栖群落粒径谱,对砂质潮间带粒径谱季节变化规律进行了研究,并采用连续积分模型利用粒径谱数据计算了调查区域的底栖群落生产力和耗氧量。
     结果表明,研究区域的沉积物的主要成分为中砂和细砂,粉砂和粘土含量极少,属于砂质潮间带。沉积物各特征参数之间具有显著的相关关系。在沉积物中,叶绿素a(Chl-a)的平均含量分别为0.396 mg·kg-1沉积物,冬季较低,而在夏季和秋季较高。脱镁叶绿酸(Pha-a)全年都维持较低水平,平均含量分别为0.045 mg·kg-1沉积物。有机碳含量年平均值为0.304%,在春季含量较高,在4月份达到最高值0.460%,秋季和冬季则含量低,在11月和12月分别达到全年最低值0.133%和次低值0.190%。Pearson相关分析结果表明,叶绿素a与温度显著正相关(p<0.05),证明初级生产力受到温度和太阳辐射强度的制约。重金属Cr、Cu、Zn、As、Cd和Pb的年平均含量分别为2.568μg/g、1.240μg/g、13.158μg/g、3.748μg/g、0.045μg/g和3.156μg/g。各种重金属含量季节变化有所不同,含量均未超标,表明青岛太平湾潮间带区域未受重金属污染。
     共鉴定出自由生活海洋线虫、底栖桡足类、多毛类、双壳类、介形类、端足类、涟虫类、腹毛类、寡毛类、海螨类、涡虫类和其它类等12个小型底栖动物类群,小型底栖动物的平均丰度为(1025.40±168.84)ind.10cm-2,其中海洋线虫占绝对优势,其平均丰度为(914.24±208.65)ind.10cm-2,占小型动物总丰度的89.16%;其次是多毛类,占3.91%。小型底栖动物的平均生物量和生产量分别是(1195.87±476.53)μg dwt 10cm-2和(10762.80±4288.77)μg dwt 10cm-2 a-1。小型底栖动物的垂直分布上,小型底栖动物分布于沉积物0-4、4-8cm和8-12cm的数量比例分别为51.5%、25.9%和10.0%。多数小型底栖生物分布在0-4cm表层。小型底栖生物的垂直分布存在季节变化,夏季表层数量较少,也可能与人为扰动有关;秋季多集中在表层,在冬季随温度降低向下迁移。
     太平湾共鉴定出自由生活海洋线虫77属,23科,4目。优势属是Microlaimus,Bathylaimus,Neochromadora,Enoplolaimus,Metadesmolaimus,Theristus,Metoncholaimus,Axonolaimus,Ascolaimus,Paracanthonchus,Chromadorita,Promonhystera,Rhynchonema,Nannolaimus,Oncholaimus,Spiliphera, Paracyatholaimus,Tricoma,Camacolaimus,Paramonhystera,Chromadorita,Elzalia,Oxyonchus,Acantholaimus,Doliolaimus,Daptonema,Prochromadorella,Halalaimus等。研究区域13个月份的平均丰富度指数、均匀度指数、多样性指数和优势度指数分别为3.92、0.63、1.91和0.72。线虫群落的营养结构,按属数目统计,刮食者(2A)最占优势,有29属,占总属数的37%;选择性沉积食性者(1A)最少,只有8属,占11%;捕食食性者(2B)和非选择性沉积食性者(1B)分别有12属和28属,分别占16%和36%。按所有个体数量统计,刮食者占37.2%,非选择性沉积食性者占37.1%,选择性沉积食性者占11.3%,捕食者占13.4%。从统计结果看,刮食者(2A)在个体数量和属数上最占优势,由此推断藻类和有机碎屑是食物的主要来源。在线虫群落中幼龄个体占到线虫总数的21.51%,雌雄比例平均为1:1.128,与类似生境研究结果相一致。根据CLUSTER等级聚类树枝图和MDS标序图,可以将调查区域划分为2组类型的线虫群落(或者说是站位组群),分别是A:春夏季群落B:秋冬季群落。One-Way ANOSIM检验证实了各组群之间线虫群落结构差异显著,线虫群落的营养结构与多样性分析也表明了以上群落划分是合理的。线虫群落结构与环境因子的BIOENV分析表明,在A组群,控制线虫群落结构的主要环境因子是:盐度、pH、中值粒径(Mdφ)以及重金属Cd、Pb。而在B组群解释线虫群落结构特征的最佳环境因子组合是:pH、有机碳含量和重金属Cr、Cu、Pb。
     底栖生物群落粒径谱结构有明显的季节变化。在1月和4月粒径谱为具有2个生物量谷的三峰模式,但7月和10月份的粒径谱却仅具有1个强度较大的生物量谷,粒径谱分布模式为双峰模式。粒径谱生物量谷的强弱与溶氧条件有着密切联系,表明与其他粒级处的生物相比,生物量谷处的生物对溶氧条件更为敏感。青岛砂质潮间带4个季节的正态化粒径谱适合直线回归模型,平均回归系数分别为0.873,平均截距分别为14.48,平均斜率分别为-0.854。正态化粒径谱直线回归参数表现出与沉积物间隙水溶氧含量有直接或间接的联系。通过正态化粒径谱直线回归标准化残差分析,发现底栖动物粒径谱存在两个不同性质的生物量谷,谷底对应的粒级分别为0~1和5~6。提出底栖动物粒径谱生物量谷可能是群落对低氧条件的适应现象。大型和小型底栖动物通过不同的选择对低氧环境有着不同的适应方式,而粒级在两者之间的生物对低氧的适应能力最差。粒径谱生物量谷可以用生物对低氧条件的适应对策分化来解释,为粒径谱不连续性提供了新的理论依据。
     利用青岛砂质潮间带底栖动物粒径谱数据,运用连续模型计算出青岛砂质潮间带底栖动物群落的季节平均次级生产力为2.541 g dwt·m~(-2)·a~(-1),耗氧量为0.120 mmol·m~(-2)·h~(-1),小型和大型底栖动物次级生产力占总次级生产力的百分比分别为38.6%和61.4%,小型和大型底栖动物耗氧量占总耗氧量的百分比分别为36.3%和63.7%;研究结果表明,群落次级生产力和耗氧量之间具有相同的变化趋势,且都与正态化生物量粒径谱截距呈显著正相关,而与斜率无显著关系。利用正态化生物量粒径谱和连续模型可以得到可信的底栖动物群落次级生产力和耗氧量结果。
The meiofauna was quantitatively investigated in the sandy beach of Taiping Bay, Qingdao based on monthly sampling from Oct.2004 to Oct.2005. The sedimentary environment, abundance and biomass of meiofauna, community structure and biodiversity and systematics of free-living marine nematodes, were quantitatively studied at the middle intertidal zone during the periods of investigation. In spite of detailed variety across temporal and spatial scale, conservative bimodal metazoan benthic biomass size spectra were observed in different environmental condition. Sheldon-type and normalized biomass size spectra of metazoan benthos were constructed in the sandy intertidal zone. Seasonal variation of biomass size spectrum was analyzed using the data of the sandy intertidal zone. Secondary productions and oxygen consumptions of metazoan benthic assemblages were estimated by the method of continuous integral model. The main results are as follows:
     The dominant sediment types of the sampling stations are MS and FS, silt and clay contents were very low. The studied site is a typical sandy beach. Sediment characteristic parameters had significant correlations with each other. The average content of chlorophyll a (Chl-a) in the sediment was 0.396 mg·kg-1 sediment with low value in winter and high in summer and autumn. The average content of phaeophorbide a (Pha-a) in the sediment was low in the whole year, on average 0.045 mg·kg-1 sediment. The average content of organic matter was 0.304%. The highest value was 0.460% in spring and the lowest one was 0.133% in winter. Correlation analysis showed that sediment Chl-a content correlated with temperature positively, which suggests that the primary production is controlled by temperature and solar radiation. The average contents of the heavy metals Cr, Cu, Zn, As, Cd and Pb were 0.568μg /g, 1.240μg/g, 13.158μg/g, 3.748μg/g, 0.045μg/g and 3.156μg/g, respectively. The whole year contents of heavy metals at the studied site differed a lot. All the contents of heavy metals at the studied site were lower than the national standard, which means the Taiping Bay is still clean and not polluted by heavy metals.
     A total of 12 groups of meiofauna were identified at the studied site: Nematoda, Copepoda, Polychaeta, Bivalvia, Ostracoda, Amphipoda, Cumacea, Gastrotricha, Turbellaria, Oligochaeta, Halacaroidea and others. The average abundance of meiofauna was (1025.40±168.84) ind.10cm-2. Free-living marine nematode was the most dominant group, accounting for 89.16% of total abundance of meiofauna, with Polychaeta being the second, accounting for 3.91%.The mean biomass and production of meiofauna were (1195.87±476.53)μgdwt10cm-2 and (10762.80±4288.77)μg dwt 10cm-2 a-1, respectively. In terms of vertical distribution, 51.5% of total meibenthos was found in the surface sediment 0-4cm, 25.9% in 4-8cm and 10.0% in 8-12cm. The vertical distribution of meiofauna exhibited seasonal variation. In the summer months, meiofauna density decreased in the upper layers. In autumn, meiofauna concentrated in the upper layers and with the decreasing of temperature, they migrated to the deeper layers.
     A total of 77 genera of free-living marine nematodes, belonging to 23 families and 4 orders, were identified. The dominant genera in the sampling area are: Microlaimus, Bathylaimus, Neochromadora, Enoplolaimus, Metadesmolaimus, Theristus, Metoncholaimus, Axonolaimus, Ascolaimus, Paracanthonchus, Chromadorita, Promonhystera, Rhynchonema, Nannolaimus, Oncholaimus, Spiliphera, Paracyatholaimus, Tricoma, Camacolaimus, Paramonhystera, Chromadorita, Elzalia, Oxyonchus, Acantholaimus, Doliolaimus, Daptonema, Prochromadorella, Halalaimus. The average species abundance index, evenness index, diversity index and dominance index were 3.92, 0.63, 1.91 and 0.72, respectively.
     The trophic structure of free-living marine nematodes was studied. It included 29 genera of epigrowth feeders (2A), which accounted for 37% of the total genus number, 8 genera (11%) of selective deposit feeders (1A), 28 genera (36%) of non- selective deposit feeders (1B) and 12 genera (16%) of predators/omnivores (2B). Epigrowth feeders (2A) were dominant by total genus number and relative abundance, which showed the food sources of nematodes are mainly detritus and benthic diatoms in the sampling area. Juveniles accounted for 21.51% of total nematodes and female/male ratio was 1: 1.128. It is similar to other studies. The community structure of nematode was studied. CLUSTER and MDS analyses divided the sampling stations into two groups (or sampling months). They are A: spring and summer group, and B: autumn and winter group. One-Way ANOSIM test showed that the community structures of different season were significantly different. The trophic structure and biodiversity analyses of the nematodes community also proved the division of seasons. BIOENV analysis between the nematodes community and environmental factors showed that salinity, pH, Mdφ, and the content of Cd and Pb were important factors for the spring and summer nematode communities. The best combination of environmental factors, which can explain the autumn and winter nematodes community structure, were pH, organic matter content and the content of Cr, Cu and Pb.
     Structure of biomass size spectrum transformed seasonally. Sheldon-type biomass size spectra appeared tri-modal at January and April, but bimodal with a strong trough at July and October. Closely coupling between trough strength and DO suggested that species located in the size classes of trough might be more sensitive to hypoxia than those in other size classes. All normalized biomass size spectra fitted linear regression reasonably. Two different troughs, however, were revealed by analyzing standardized residuals of normalized biomass size spectra. Bottoms of troughs located respectively in 0 to 1 and 5 to 6 size classes. Therefore a hypothesis is set forth: DO is one of the reasons for conservative trough in benthic biomass size spectra, since meiofauna and macrofauna take different strategies to adapt hypoxia. At least the hypothesis is reasonable at the site examined in this study, because it can explain almost all the abnormal characters at the sandy intertidal zone.
     By the method of continuous integral model, secondary productions and oxygen consumptions of macro- and meiofuana were calculated in the sandy intertidal zone. Average of secondary productions of 4 seasons was 2.541 g dwt·m~(-2)·a~(-1), and average of oxygen consumptions was 0.120 mmol·m~(-2)·h~(-1) at the intertidal zone. Both secondary production and oxygen consumption showed positive correlations with intercept of normalized biomass size spectra. Compared with the method following the formula P = 9B, continuous integral model can provide more reliable evaluation of secondary production of meiofauna.
引文
1 唐启升,苏纪兰. 中国海洋生态系统动力学研究 I.关键科学问题与研究发展战略.科学出版社,北京,2000.
    2 张志南,周红.国际小型底栖动物研究的某些进展.中国海洋大学学报,2004, 34(5):799-806.
    3 Higgins R P and Thiel H. Introduction to the Study of Meiofauna. Smithsonian Press, Washington, DC., 1988, pp488.
    4 Warwick R M and Price R. Ecological and metabolic studies on free-living nematodes from an estuarine mud flat. Estuaries and Coastal Marine Science, 1979, 9: 257-271.
    5 Montagna P A. Rates of metazoan meiofaunal microbivory: a review. Vie et Milieu, 1995, 45: 1-9.
    6 Giere O. Meiobenthology. Springer-Verlay Press, Berlin, 1993, pp327.
    7 张志南,党宏月,于子山.青岛湾有机质污染带小型底栖动物群落的研究.青岛海洋大学学报,1993,23(1):83-91
    8 党宏月,黄勃,张志南.青岛湾有机质污染潮间带底栖生物研究 II.小型底栖动物生态特点.海洋科学集刊,1996,37:91-101.
    9 Warwick R M, Joint J R and Radford P J. Secondary production of the benthos in an estuarine environment. In Jefries R L and Davy A J (ed). Ecological processes in coastal environments. London. Blackwell Scientific Publications, 1979, pp429-450.
    10 Blaxter M. Caenorhabditis elegans is a nematode. Science, 1998, 282: 2041-2046
    11 Agulnaldo A.M.A., Turbevilie J.M., Linford L.S., et al.. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 1997, 387: 489-493
    12 Nicholls A G. Copepods from the interstitial Fauna of a Sandy Beach. Journal of the Marine Biological Society of the United Kingdom, 1935, 20: 379-405.
    13 Huling N C and Gray J W. A Manual for the Study of Meiofauna. Smithsonian Contribution to Zoology, 1971.
    14 Fenchel T M, Riedl R J. The Sulfide system: a new biotic community underneath the oxidized layer of marine sand bottom. Marine Biology, 1970, 7: 255-268.
    15 Bodin P. Catalogue of the new marine harpacticoid copepods. Studiedocumenten van het K.B.I.N. Documents De Travail De L’I.R.Sc.N.B. 1997, pp304
    16 Moore C G and Bett B J. The use of meiofauna in marine pollution impact assessment. Zoological Journal of Linnean Society, 1989, 96: 263-280.
    17 Austen M C & Warwick R M. The specificity of meiobenthic community response to different pollutants:results from microcosm experiments[J]. Mar. Pollut. Bull. 1989,28:63–557.
    18 Fenchel T M. The ecology of micro- and meiobenthos. Ann. Rev. Ecol. Syst., 1978, 9:99-121.
    19 Bouwnan L A, Romeijn K and Admiraal W. On the ecology of meiofauna in an organically polluted estuarine mudflat. Estuarine Coastal Shelf Science, 1984, 19: 633-653.
    20 Brenning U. The distribution of littoral nematodes in the wismarbucht. Oikos, Suppl. 1973, 15: 98-140.
    21 Ott J. Studies on the diversity of the nematode fauna in intertidal sediments. European Marine Biology Symposium, 1972, pp275-285.
    22 Van Damme D, Herman R, Sharma J, et al.. Benthic studies of the Southern Bight of the North Sea. ICES. C.M. / L, 1980, 23: 131-170.
    23 Henry B A & Jenkins G P. The impact of predation by the girdled goby Nesogobius sp. 1, on abundances of meiofauna and small macrofauna[J]. J. Exp. Mar. Biol. Ecol. 1995,191:223–38.
    24 Alkemade R, Wielemaker A, Hemminga M A. Correlation between nematode abundance and decomposition rate of Spartina anglica leaves[J]. Mar. Ecol. Prog. Ser.1993,99:293–300.
    25 Tietjen J H. Microbial-meiofaunal interrelationships: a review[J]. Microbiology, 1980:335–8.
    26 Gee J M, Somerfield P J. Do mangrove diversity and leaf litter decay promote meiofaunal diversity[J]? J.Exp. Mar. Biol. Ecol. 1997, 218:13–33.
    27 Tietjen J H, Alongi D M. Population growth and effects of nematodes on nutrient regeneration and bacteria associated with mangrove detritus from northeastern Queensland (Australia) [J]. Mar. Ecol. Prog. Ser. 1990,68: 169–179.
    28 Hong Zhou. Effects of leaf litter addition on meiofaunal colonization of azoic sediments in a subtropical mangrove in Hong Kong[J]. Journal of Experimental Marine Biology and Ecology,2001, 256:99–121.
    29 Alongi D M. The influence of mangrove-derived tannins on intertidal meiobenthos in tropical estuaries[J]. Oecologia (Berlin) , 1987b,71:537–540.
    30 Munro A L S, Wells J B J and McIntyre A D. Energy flow in the flora and meiofauna of sandy beaches. Proceedings of the Royal Society of Edinburgh, 1978, 76: 297-315.
    31 Hiling N C&Gray J W. Physical factors controlling abundance of meiofauna on tidal and atidal beaches[J].Marine Biology,1976,34:77-83.
    32 Pattnaik A,Rao M V L.Composition and distribution of interstitial meiofauna of the sandy beach at Gopalpur,south Orissa coast[J]. Indian journal of marine sciences. New Delhi. 1990,19(3):165-170.
    33 McIntyre A D and Murison D J. The meiofauna of a flatfish nursery ground. Journal of the Marine Biological Association of the United Kingdom, 1973, 53: 93-118.
    34 Dinet A and Vivier M H. A quantitative survey of meiobenthos in the deep Norwegian Sea. Ambio special report, 1979, 6: 75-77.
    35 Soeatert K C, Heip C and Vincx M. Diversity of nematode assemblages along a Mediterranean deep sea transect. Marine Ecology Progress Series, 1991, 75: 275-282.
    36 张志南.小型底栖动物调查,海洋调查规范(国家标准)海洋生物调查第六篇, 国家标准局出版社,1991.
    37 周红,张志南.大型多元统计软件 PRIMER 的方法原理及其在底栖群落生态学中的应用.青岛海洋大学学报,2003,33(1):58-64.
    38 Zhang Z N & Platt H M. New species of marine nematodes from Qingdao, China. Bulletin of the British Museum of Natural History, 1983, 45 (5): 253-261.
    39 Zhang Z N and Platt H M, New species of marine nematodes from Qigndao, China. Bulletin of the British Museum of Natural History (Zoology), 1983, 45(5): 253-261.
    40 Zhang Z N, Huang Y. One new species and two new records of free-living marine nematodes from the Huanghai Sea, China. Acta Oceanologica Sinica, 2005, 24(4): 91-97.
    41 Huang Y and Zhang Z N. Three new species of the genus Belbolla (Nematoda: Enoplida: Enchelidiidae) from the Yellow Sea, China. Journal of Natural History, 2005, 39(20): 1689-1703.
    42 Mu F H and Gee J M. Two new species of Bulbamphiascus (Copepoda : Harpacticoida: Diosaccidae ) and a related new genus, from the Bohai Sea, China. Cahiers de Biologie Marine, 2000, 41: 103-135.
    43 张志南,周红.自由生活海洋线虫的系统分类学.青岛海洋大学学报,2003, 33(6):891-900.
    44 张志南,谷峰,于子山.黄河口水下三角洲海洋线虫空间分布的研究.海洋与湖沼,1990,21(1):11-19.
    45 张志南,林霞,于子山.大连石槽岩滩附植小型动物的初步研究.青岛海洋大学学报,1994,24(3):373-382.
    46 张志南,钱国珍. 小型底栖生物取样方法的研究. 海洋湖沼通报,1990,4:37-42.
    47 华尔,张志南,张艳.长江口及其邻近海域小型底栖生物丰度和生物量.生态学报,2005,25(9):2234-2242.
    48 邓可,张志南,黄勇等. 南黄海典型站位底栖动物粒径谱及其应用. 中国海洋大学学报,2005,35(6):1005-1010.
    49 Zhang Z N, Zhou H. Clare-Louise Nightingale. Phytal Meiofauna of a Rocky Shore at Cape D’Aguilar Marine Reserve,Hong Kong. Proceedings of the Eight International Marine Biological Workshop, The Marine Flora and Fauna of Hong Kong and Southern China. Hong Kong University Press, 1997, 205~217
    50 Ott J. Studies on the diversity of the nematode fauna in intertidal sediments[J]. European Marine Biology Symposium,1972:275-285.
    51 Short A D. Beach and Shoreface Morphodynamics.[J]. Wiley,Chichester,1999. 392 .
    52 Huston M. A general hypothesis of species diversity[J]. Am.Nat. 1979,113:81– 101.
    53 Armonies W, Reise, K. Faunal diversity across a sandy shore[J]. Mar. Ecol. Prog. Ser. 2000,196:49– 57.
    54 Boucher,Lambshead. Marine nematode ecological biodiversity in samples from temperate,tropicaland deep-sea regions[J]. Conservation Biology. 1995,9(6) : 1-12.
    55 Boucher G. Pattern of nematode species diversity in temperate and tropical subtidal sediments[J]..Mar.Ecol. 1990,11:133-146.
    56 Hentschel B T & Jumars P A. In situ chemical inhibition of benthic diatom growth affects recruitment of competing, permanent and temporary meiofauna[J]. Limnol. Oceanogr. 1994,39: 816–38.
    57 Smith,C J,Delaune,R D,Patrick,W H.Fleer J W.Impact of dispersed and undispersed oil entering a Gulf Coast salt marsh[J]. Environmental Toxicology and Chemistry. 1987,43(4) : 609-616.
    58 Nelson A L & Coull B C. Selection of meiobenthic prey by juvenile spot (Pisces): an experimental study[J]. Mar.Ecol. Prog. Ser. 1989,53:51–57.
    59 Coull B C. Are members of the meiofauna food for higher trophic levels[J]? Trans. Am. Micros. Soc. 1990,109:233–46.
    60 Coull B C, Greenwood J G, Fielder D R & Coull B A. Subtropical Australian juvenile fish eat meiofauna:experiments with winter whiting Sillago maculata and observations on other species[J]. Mar. Ecol. Prog. Ser. 1995,125: 13–9.
    61 Olafsson E & Moore C G. Control of meiobenthic abundance by macroepifauna in a subtidal muddy habitat[J].Mar. Ecol. Prog. Ser. 1990,65: 241–9.
    62 Bell S S. Meiofauna– macrofauna interactions in high salt marsh habitat. Ecol. Monogr. 1980,50: 487–505.
    63 Feller R J & Coull B C. Non-selective ingestion of meiobenthos by juvenile spot (Leiostomus xanthurus) and their daily ration[J]. Vie Milieu .1995,45:49–60.
    64 Ceccherelli V U, Mistri M & Franzoi P. Predation impact on the meiobenthic harpacticoid Canuella perplexa in a lagoon of the Po River Delta[J]. Italy. Estuaries 1994,17: 7–283.
    65 Montagna P A. Rates of metazoan meiofaunal microbivory:a review[J]. Vie Milieu, 1995,45:1–9.
    66 Tom Gheskiere , Magda Vincx , Jan Marcin Weslawski ,et al.Meiofauna as descriptor of tourism-induced changes at sandy beaches[J]. Marine Environmental Research , 2005, 60:245-265.
    67 Wynberg R P, Branch G M. Disturbance associated with bait collection for sand prawns(Callianassa kraussi) and mud prawns (Upogebia africana): long-term effects on the biota of intertidal sandflats[J]. Journal of Marine Research, 1994, 52: 523-528.
    68 Gheskiere T, Van de Velde B, Pison G, Vincx M & Degraer S. Are strandline meiofaunal assemblages affected by mechanical beach cleaning[J]? Mar.Environ.Res.2006,61(3): 64-245.
    69 Brosnan D M, Crumrine L L. Effects of human trampling on marine rocky shore communities[J]. Journal of Experimental Marine Biology & Ecology ,1994,177:79-97.
    70 John Davenport, Julia L Davenport.The impact of tourism and personal leisure transport on coastal environments: A review [J] .Estuarine, Coastal and Shelf Science, 2006,67:280-29.
    71 Zakir Ali Ansari , Baban Ingole. Effect of an oil spill from M V Sea Transporter on intertidal meiofauna at Goa[J].India Marine Pollution Bulletin ,2002 ,44:396–402.
    72 Fleeger J W, Chandler G T. Meiofauna response to an experimental oil spill in a Louisiana salt marsh[J]. Marine Ecology Progress Series 1983,11:257–264.
    73 Hicks G R F, Coull B C. The ecology of marine meiobenthic harpacticoid copepod[J]. Oceanography Marine BiologyAnnual Review ,1983, 21: 67–175
    74 Wormald A P. Effects of Spill of Marine Diesel Oil on the Meiofauna of a Sandy Beach at Picnic Bay,Hong Kong[J]. Environmental Pollution 1976,11:117-130.
    75 Carman K R & Todaro M A. Influence of polycyclicaromatic hydrocarbons on the meiobenthic-copepod community of a Louisiana salt marsh[J]. J. Exp. Mar. Biol. Ecol. 1996,198:37–54.
    76 Carman K R, Fleeger J W, Means J C, Pomarico S M &McMillin D J. Experimental investigation of the effects of polynuclear aromatic hydrocarbons on an estuarine sediment food web[J]. Mar. Environ. Res. 1996,40:289–318.
    77 Robert D,Maquire C. Interactions of lead with sediments and meiofauna.Marine Pollution Bulletin[J]. 1976,7(11):211-214.
    78 Van Damme D, Heip C & Willems K A. Influence of pollution on the harpacticoid copepods of two North Sea estuaries[J]. Hydrobiologia, 1984,112:143–160.
    79 Lee M R, Correa J A & Castilla J C. An assessment of the potential use of the nematode to copepod ratio in the monitoring of metal pollution. The Chanaral case[J]. Marine Pollution Bulletin, 2001, 42: 696–701.
    80 Matthew R Lee , Juan A Correa. Effects of copper mine tailings disposal on littoral meiofaunal assemblages in the Atacama region of northern Chile[J]. Marine Environmental Research ,2005,59:1–18.
    81 Austen M C, McEvoy A J & Warwick R M. Comparison of univariate and multivariate aspects of estuarine meiobenthic community structure[J]. Estuar. Cstl. ShelfSci.1994,29:23–43.
    82 Bouwman L A, K Romeija,W Admiraal.On the ecology of meiofauna in an organically polluted estuarine mudflat[J]. Estuarine, Coastal and Shelf Sciences, 1984,19:633-653.
    83 张志南,党宏月,于子山. 青岛湾有机质污染带小型底栖生物群落的研究.青岛海洋大学学报[J]. 1993, 23 (1):83-91.
    84 Shiells G M ,K J Anderson.Pollution monitoring using the Nematode/Copepod ratio:A practical application[J],Marine pollution Bulletin, 1985,12(5):158-163.
    85 Kennedy V S. The Estuary as a Filter[C]. Proceedings 7th Biennial International Estuarine Research Conference. Academic Press, NY. 1984.
    86 Chandler G T, Coull B C & Davis J C. Sediment- and aqueous-phase fenvalerate effects on meiobenthos implications for sediment quality criteria development[J]. Mar. Environ. Res. 1994 37:313–27.
    87 Derycke S,Vincx M,Moens T,et a1.Seasonal fluctuations in the Population Genetic Structure of the Marine Nematode Pellioditis marina [C].Italy:Twelfth International Meiofaunal Conference.2004. 11-16.
    88 Street G T & Montagna P A. Loss of genetic diversity in Harpacticoida near offshore platforms[J]. Mar. Biol. 1996 ,126:271–82.
    89 G T Street, G R Lotufo, P A Montagna and J W Fleeger. Reduced genetic diversity in a meiobenthic copepod exposed to a xenobiotic[J]. J. Exp. Mar. Biol. Ecol. 1998, 222(1-2):93-111
    90 A Carvajal-Rodr?′guez, E Rola′n-Alvarez, A Caballero. Quantitative variation as a tool for detecting human-induced impacts on genetic diversity[J].Biological Conservation ,2005,124:1–13
    91 Make Blaxter.Counting angels with DNA[J].Nature, 2003,42(9): 122-124.
    92 Robert D Ward, Tyler S Zemlak,Bronwyn H.Innes et al.DNA barcoding Australia’s fish species.Phil[J].Trans. R Soc. B, 2005, 1716:1-11.
    93 Alongi D M. Intertidal zonation and seasonality of meiobenthos in tropical mangrove estuaries[J]. Mar. Biol. 1990, 95: 58–447.
    94 Warburton K & Blaber S J M. Patterns of recruitment and resource use in a shallow-water fish assemblage in Moreton Bay[J]. Qld. Mar. Ecol. Prog. Ser. 1992, 90: 26–113.
    95 Hodda M & Nicholas W L. Meiofauna associated with mangroves in the Hunter River estuary and Fullerton Cove, south-eastern Australia[J]. Aust. J. Mar. Freshwat. Res. 1985,36:41–50.
    96 Hodda M. Variation in estuarine littoral nematode populations over three spatial scales[J]. Estuar. Cstl. Shelf Sci. 1990, 30:325–40.
    97 Rysgaard S N, et al.. Oxygen regulation of nitrification and denitrification in sediments. Limnology and Oceanography, 1994, 39: 1643-1652.
    98 Coull B C. Ecology of the marine meiofauna. In: Introduction to the study of meiofauna, Higgins R. P. and Thiel H. Simthsonian Institution Press, Washington, DC, 1988, p18-38.
    99 Somerfield P J, Warwick R M. Meiofauna in marine pollution monitoring programmes: A laboratory manual. MAFF Directorate of Fisheries Research Technical Series, 1996, 71pp.
    100 国家海洋局,海洋调查规范,海洋生物卷,1991.
    101 Clarke K R, and Green R H. Statistical design and analysis for a biological effects study. Marine Ecology Progress Series, 1988, 46: 213-226.
    102 Grant J. Sensitivity of benthic community respiration and primary production to changes in temperature and light[J]. Marine biology Berlin, Heidelberg, 1986, 90(2):299-306.
    103 Gerlach S A. On the importance of marine meifauna for benthos communities. Oecologia (Berl.), 1971, 6: 176-190.
    104 Platt H M and Warwick R M. The significance of free-living nematodes to the littoral ecosystem. In: The shore environment and ecosystem. Academic Press, 1980, p729-759.
    105 Bamber R N. Changes in the infauna of a sandy beach[J]. Journal of Experimental Marine Biology and Ecology, 1993, 172(1-2):93-107.
    106 Degraer S, Mouton I, De Neve L, et al. Community structure and intertidal zonation of the macrobenthos on a macrotidal, ultra-dissipative sandy beach: Summer-winter comparison[J].Estuaries, 1999, 22(3B):742-752.
    107 Haynes D, Quinn G P. Temporal and spatial variability in community structure of a sandy intertidal beach, Cape Paterson, Victoria, Australia[J]. Marine & Freshwater Research, 1995, 46(6):931-942.
    108 Veloso V G, Cardoso R S. Effect of morphodynamics on the spatial and temporal variation of macrofauna on three sandy beaches, Rio de Janeiro State, Brazil[J]. Journal of the Marine Biological Association of the United Kingdom, 2001, 81(3):369-375.
    109 蔡立哲, 邹朝中. 深圳河口福田泥滩海洋线虫的种类组成及季节变化[J]. 生物多样性, 2000, 8(4):385-390.
    110 蔡立哲, 李复雪. 厦门潮间带泥滩和虾池小型底栖动物类群的丰度[J]. 台湾海峡, 1998, 17(1):91-95.
    111 蔡立哲, 马丽. 海洋底栖动物多样性指数污染程度评价标准的分析[J]. 厦门大学学报(自然科学版 ), 2002, 41(5):641-646.
    112 蔡如星, 郑锋, 王彝豪, et al. 舟山潮间带生态学研究 II. 数量及其分布[J]. 东海海洋, 1991, 9(3):58-72.
    113 丛建国. 烟台潮间带底栖无脊椎动物群落和多样性研究[J]. 生态学报, 1998, 18(1):56-62.183
    114 Decho, A W. Water-cover influences on diatom ingestion rates by meiobenthic copepods. Marine Ecology Progress Series, 1986, 33, 139-146.
    115 Eskin, R A & Coull, B C. Seasonal and three-year variability of meiobenthic nematode populations at two estuarine sites. Marine Ecology Progress Series, 1987, 41:295-303.
    116 Olafsson E & Elmgren R. Seasonal dynamics of sublittoral meiobenhos in relation to phytoplankton sedimentation in the Baltic Sea. Estuarine, Coastal and Shelf Science, 1997, 45, 149-164.
    117 Moodley L, Van der Zwaan G J, Herman P M J, et al. Differential response of benthic meiofauna to anoxia with special reference to Foraminifera (Protista: Sarcodina)[J]. Marine Ecology Progress Series, 1997, 158:151-163.
    118 Santos, Castel J, Souza-Santos L P. Seasonal variability of meiofaunal abundance in the oligo-mesohailin area of the Gironde Estuary, France[J]. Estuarine, Coastal and Shelf Science, 1996, 43:549-563.
    119 Steyaert M, Moodley L, Vanaverbeke J, et al. Laboratory experiments on the infaunal activity of intertidal nematodes[J]. Hydrobiologia, 2005, 540(1-3):217-223.
    120 Dye A H. Composition and seasonal fluctuations of meiofauna in a southern African mangrove estuary[J]. Marine biology Berlin, Heidelberg, 1983, 73(2):165-170.
    121. Cook A A, Lambshead P J D, Hawkins L E, et al. Nematode abundance at the oxygen minimum zone in the Arabian Sea[J]. Deep-Sea Research II, 2000, 47(1-2):75-85.
    122 Hennig H-K, Eagle G A, Fielder L, et al. Ratio and population density of psammolittoral meiofauna as a perturbation indicator of sandy beaches in South Africa[J]. EnvironmentalMonitoring and Assessment, 1983, 3(1):45-60.
    123 Hargrave T b. Epibenthic algal production and community respiration in the sediments of marion lake[J]. Journal Fisheries Research Board Of Canada, 1969, 26(8):2003-2026.
    124 Van Es F B. Community Metabolism of Intertidal Flats in the Ems-Dollard Estuary[J]. Marine biology Berlin, Heidelberg, 1982, 66(1):95-108.
    125. Hopkinson C S, Jr. Shallow-water benthic and pelagic metabolism: Evidence of heterotrophy in the nearshore Georgia Bight[J]. Marine biology Berlin, Heidelberg, 1985, 87(1):19-32.
    126. Iturriaga R. Bacterial activity related to sedimenting particulate matter[J]. Marine Biology, 1979, 55:157-169
    127 Ludden E, Admiraal W, Colijn F. Cycling of carbon and oxygen in layers of marine microphytes; a simulation model and its eco-physiological implications[J]. Oecologia, 1985, 66(1):50-59.
    128 Wishner K, Levin L, Gowing M, et al. Involvement of the oxygen minimum in benthic zonation on a deep seamount[J]. Nature, 1990, 346(6279):57-59.
    129 Peck L S, Chapelle G. Reduced oxygen at high altitude limits maximum size[J]. Proceedings of the Royal Society B: Biological Sciences, 2003, 270(Biology Letters Supplement 2):166-167.
    130 刘录三,李新正.南黄海春秋季大型底栖动物分布现状.海洋与湖沼,2003,34(1):26-32.
    131 Raffaelli D G ,Mason C F. Pollution monitoring with meiofauna, using the ratio of nematodes to copepods. Marine Pollution Bulletin, 1981, 12: 158-163.
    132 Raffaelli D G. The behaviour of the Nematode/Copepod ratio in organic pollution studies. Marine Environmental Research, 1987, 23: 135-152.
    133 Lambshead P J D. The nematode/Copepod ratio some anomalous results from the Firth of Clyde. Marine Pollution Bulletin, 1984, 15: 256-259.
    134 Clarke K R and Warwick R M. Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Plymouth, UK, 1994.
    135 Boucher G. Pattern of nematode species diversity in temperate and tropical subtidal sediment. P.Z.N.I.. Marine Ecology, 1990, 11(2):133-146.
    136 Danovaro R, Gambi C. 2002. Biodiversity and trophic structure of nematode assemblages in seagrass systems: evidence for a coupling with changes in food availability. Marine Biology, 141: 667~677
    137 Alongi DM. 1990. Bacterial growth rates, production and estimates of detrital carbon utilization in deep-sea sediments of the Solomon and Coral Seas. Deep-Sea Res 37: 731~746
    138 Kerr S R, Dickie L M. The biomass spectrum : a predator-prey theory of aqautic production[M]. New York: Columbia University Press, 2001.
    139 Kerr S R. Theory of Size Distribution in Ecological Communities[J]. J. Fish. Res. Board Can, 1974, 31:1859-1862.
    140 Sprules W G, Munawar M. Plankton size spectra in relation to ecosystem productivity, size, and perturbation[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1986, 43(9):1789-1794.
    141 Robson B J, Barmuta L A, Fairweather P G. Methodological and conceptual issues in the search for a relationship between animal body-size distributions and benthic habitat architecture[J]. Marine & Freshwater Research, 2005, 56(1):1-11.
    142 Allen C R, Garmestani A S, Havlicek T D, et al. Patterns in body mass distributions: sifting among alternative hypotheses[J]. Ecology Letters, 2006(in press).
    143 Sheldon R W, Parsons T R. A Continuous Size Spectrum for Particulate Matter in the Sea[J]. J. Fish. Res. Bd. Canada, 1967, 24:909-915.
    144 Boudreau P R, Dickie L M. Biomass spectra of aquatic ecosystems in relation to fisheries yield[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49(8):1528-1538.
    145 Schwinghamer P. Generating ecological hypotheses from biomass spectra using causal analysis: A benthic example[J]. Marine Ecology Progress Series, 1983, 13(2-3):151-166.
    146 Sprules W G, Brandt S B, Stewart D J, et al. Biomass size spectrum of the Lake Michigan pelagic food web[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48(1):105-115.
    147 Sprules W G, Casselman J M, Shuter B J. Size distribution of pelagic particles in lakes[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1983, 40(10):1761-1769.
    148 Gaedke U. The size distribution of plankton biomass in a large lake and its seasonal variability[J]. Limnology and Oceanography, 1992, 37(6):1202-1220.
    149 Rodriguez J, Jimenez-Gomez F, Blanco J M, et al. Physical gradients and spatial variability of the size structure and composition of phytoplankton in the Gerlache Strait (Antarctica)[J]. Deep-Sea Research II, 2002, 49(4-5):693-706
    150 Platt T, Denman K. The Structure of Pelagic Marine Ecosystems[J]. Rapp. P.-V. Reun. Cons. Int. Explor. Mer, 1978, 173:60-65.
    151 Borgmann U. Models on the slope of, and biomass flow up, the biomass size spectrum[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44:136-140.
    152 Vidondo B, Prairie Y T, Blanco J M, et al. Some aspects of the analysis of size spectra in aquatic ecology[J]. Limnology and Oceanography, 1997, 42(1):184-192.
    153 Vanaverbeke J, Steyaert M, Vanreusel A, et al. Nematode biomass spectra as descriptors of functional changes due to human and natural impact[J]. Marine Ecology Progress Series, 2003, 249(157-170 ).
    154 Boix D, Sala J, Quintana X D, et al. Succession of the animal community in a Mediterranean temporary pond[J]. Journal of the North American Benthological Society, 2004, 23(1):29-49.
    155 Quintana X D, Comin F A, Moreno-Amich R. Biomass-size spectra in aquatic communitiesin shallow fluctuating Mediterranean salt marshes (Emporda wetlands, NE Spain)[J]. Journal of Plankton Research, 2002, 24(11):1149-1161.
    156 Garcia C M, Echevarria F, Niell F X. Size structure of plankton in a temporary, saline inland lake[J]. Journal of Plankton Research, 1995, 17(9):1803-1817
    157 Shalapyonok A, Olson R J, Shalapyonok L S. Arabian Sea phytoplankton during Southwest and Northeast Monsoons 1995: composition, size structure and biomass from individual cell properties measured by flow cytometry[J]. Deep-Sea Research (Part II, Topical Studies in Oceanography) [Deep-Sea Res (II Top Stud Oceanogr )] Vol, 2001, 48(6-7):1231-1261.
    158 Cavender-Bares K K, Rinaldo A, Chisholm S W. Microbial size spectra from natural and nutrient enriched ecosystems[J]. Limnology and Oceanography, 2001, 46(4):778-789.
    159 Kamenir Y, Dubinsky Z, Zohary T. Phytoplankton size structure stability in a meso-eutrophic subtropical lake[J]. Hydrobiologia, 2004, 520(1-3):1-16.
    160 Gin K Y H, Chisholm S W, Olson R J. Seasonal and depth variation in microbial size spectra at the Bermuda Atlantic time series station[J]. Deep-Sea Research Part I Oceanographic Research Papers, 1999, 46(7):1221-1245.
    161 Duplisea D E. Benthic organism biomass size-spectra in the Baltic Sea in relation to the sediment environment[J]. Limnology and Oceanography, 2000, 45(3):558-568.
    162 Warwick R M, Joint I R. The size distribution of organisms in the Celtic Sea: From bacteria to Metazoa[J]. Oecologia, 1987, 73(2):185-191
    163 Havlicek T D, Carpenter S R. Pelagic species size distributions in lakes: Are they discontinuous?[J]. Limnology and Oceanography, 2001, 46(5):1021-1033
    164 Stead T K, Schmid-Araya J M, Schmid P E, et al. The distribution of body size in a stream community: one system, many patterns[J]. Journal of Animal Ecology, 2005, 74(3):475-487.
    165 Gascuel D, Bozec Y-M, Chassot E, et al. The trophic spectrum: theory and application as an ecosystem indicator[J]. ICES Journal of Marine Science, 2005, 62(3):443-452.
    166 Sprules W G, Goyke A P. Size-based structure and production in the pelagia of Lakes Ontario and Michigan[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51(11):2603-2611.
    167 Clarke K R, Warwick R M. Quantifying structural redundancy in ecological communities[J]. Oecologia, 1998, 113(2):278-289.
    168 Jennings S, Pinnegar J K, Polunin N V C, et al. Weak cross-species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities[J]. Journal of Animal Ecology, 2001, 70(6):934-944.
    169 Thiebaux M L, Dickie L M. Structure of the body-size spectrum of the biomass in aquatic ecosystems: A consequence of allometry in predator-prey interactions[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1993, 50(6):1308-1317.
    170 Sprules W G, Stockwell J D. Size-based biomass and production models in the St. Lawrence Great Lakes[J]. ICES Journal of Marine Science, 1995, 52(3-4):705-710.
    171 Duplisea D E, Kerr S R. Application of a biomass size spectrum model to demersal fish data from the Scotian Shelf[J]. Journal of Theoretical Biology, 1995, 177(3):263-269.
    172 Strogatz S H. Exploring complex networks[J]. Nature, 2001, 410(6825):268-276.
    173 West G B, Brown J H, Enquist B J. The origin of universal scaling laws in biology[M]. In Scaling in biology (Oxford University Press), 87-112.2000.
    174 Marquet P A, Quinones R A, Abades S, et al. Scaling and power-laws in ecological systems[J]. Journal of Experimental Biology, 2005, 208(9):1749-1769.
    175 West G B, Brown J H. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization[J]. The Journal of experimental biology, 2005, 208:1575-1592.
    176 Peters R H. The ecological implications of body size[M]. Cambridge: Cambridge University Press, 1983.
    177 Gaedke U. Ecosystem analysis based on biomass size distributions: A case study of a plankton community in a large lake[J]. Limnology and Oceanography, 1993, 38(1):112-127.
    178 Cohen J E, Jonsson T, Carpenter S R. Ecological community description using the food web, species abundance, and body size[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(4):1781-1786.
    179 Woodward G, Ebenman B, Emmerson M, et al. Body size in ecological networks[J]. Trends in Ecology and Evolution, 2005, 20(7):402-409.
    180 Duineveld G C A, Dewilde P A W J, Berghuis E M, et al. Benthic respiration and standing stock on two contrasting continental margins in the western Indian Ocean: the Yemen-Somali upwelling region and the margin off Kenya[J]. Deep-Sea Research II, 1997, 44:1293-1317.
    181 West G B, Brown J H, Enquist B J. The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms[J]. Science, 1999, 284(5420):1677-1679.
    182 Dodds P S, Rothman D H, Weitz J S. Re-examination of the "3/4-law" of Metabolism[J]. Journal of Theoretical Biology, 2001, 209(1):9-27.
    183 Savage V M, Gillooly J F, Woodruff W H, et al. The predominance of quarter-power scaling in biology[J]. Functional Ecology, 2004, 18(2):257-282.
    184 Banavar J R, Damuth J, Maritan A, et al. Supply-demand balance and metabolic scaling[J]. Proceedings of the National Academy of Sciences, 2002, 99(16):10506-10509.
    185 Belgrano A, Allen A P, Enquist B J, et al. Allometric scaling of maximum population density: a common rule for marine phytoplankton and terrestrial plants[J]. Ecology Letters, 2002, 5(5):611-613
    186 Gillooly J F, Brown J H, West G B, et al. Effects of size and temperature on metabolic rate[J]. Science, 2001, 293(5538):2248-2251
    187 Brown J H, Gupta V K, Li B L, et al. The fractal nature of nature: power laws, ecological complexity and biodiversity[J]. Philosophical transactions of the Royal Society of London.Series B, 2002, 357(1421):619-626.
    188 Enquist B J, Brown J H, West G B. Allometric scaling of plant energetics and population density[J]. Nature, 1998, 395(6698):163-165.
    189 Carbone C, Gittleman J L. A Common Rule for the Scaling of Carnivore Density[J]. Science, 2002, 295(5563):2273-2276.
    190 Li W K, Dickie P M. Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry[J]. Cytometry, 2001, 44(3):236-46.
    191 Li W K W. Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean[J]. Nature (London), 2002, 419(6903):154-157.
    192 Zhou M, Zhu Y, Putnam S, et al. Mesoscale variability of physical and biological fields in southeastern Lake Superior[J]. Limnology and Oceanography, 2001, 46(3):679-688.
    193 Sprules W G, Jin E H, Herman A W, et al. Calibration of an optical plankton counter for use in fresh water[J]. Limnology and Oceanography, 1998, 43(4):726-733.
    194 Herman A W. Design and calibration of a new optical plankton counter capable of sizing small zooplankton[J]. Deep Sea Research Part I, 1992, 39(3-4A):395-415.
    195 吴成业, 焦念志. 海洋浮游生物粒径谱分析技术[J]. 高技术通讯, 2005, 15(4):71-74.
    196 Beaulieu S E, Mullin M M, Tang V T, et al. Using an optical plankton counter to determine the size distributions of preserved zooplankton samples[J]. Journal of Plankton Research, 1999, 21(10):1939-1956.
    197 Napp J M, Ortner P B, Pieper R E, et al. Biovolume-size spectra of epipelagic zooplankton using a multi-frequency Acoustic Profiling System (MAPS)[J]. Deep Sea Research I, 1993, 40(3):445-459.
    198 Martinez C M, David P M. Principal component calibration models in the acoustic evaluation of zooplankton size spectra[J]. Journal of the Acoustical Society of America, 1992, 92(3):1428-1439.
    199 Lopukhin A, Kamenir Y. Size spectra of heat production of microplankton of Sevastopol Bay[J]. Thermochimica Acta, 1995, 251:53-61.
    200 Ramsay P M, Rundle S D, Attrill M J, et al. A rapid method for estimating biomass size spectra of benthic metazoan communities[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54(8):1716-1724.
    201 Bernardini V, Solimini A G, Carchini G. Application of an image analysis system to the determination of biomass (ash free dry weight) of pond macroinvertebrates[J]. Hydrobiologia, 2000, 439(1-3):179-182.
    202 Estep K W, MacIntyre F, Hjoerleifsson E, et al. MacImage: A user-friendly image-analysis system for the accurate mensuration of marine organisms[J]. Marine Ecology Progress Series, 1986, 33(3):243-253.
    203 Vanhove S, Vermeeren H, Vanreusel A. Meiofauna towards the South Sandwich Trench (750-6300 m), focus on nematodes[J]. Deep Sea Research II, 2004, 51(14-16):1665-1687.
    204 Pech D, Condal A R, Bourget E, et al. Abundance estimation of rocky shore invertebrates at small spatial scale by high-resolution digital photography and digital image analysis[J]. Journal of Experimental Marine Biology and Ecology, 2004, 299(2):185-199.
    205 Thiel H. The size structure of the deep-sea benthos[J]. Int Rev Gesamt Hydrobiol, 1975, 60(5):575-606.
    206 Gerlach S A. Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity[J]. Oecologia, 1978, 33(1):55-69.
    207 Schwinghamer P. Influence of pollution along a natural gradient and in a mesocosm experiment on biomass-size spectra of benthic communities[J]. Marine Ecology Progress Series, 1988, 46(1-3):199-206.
    208 Saiz-Salinas J I, Ramos A. Biomass size-spectra of macrobenthic assemblages along water depth in Antarctica[J]. Marine Ecology Progress Series, 1999, 178:221-227.
    209 Strayer D. The size structure of a lacustrine zoobenthic community[J]. Oecologia, 1986, 69(4):513-516
    210 Holling C S. Cross-scale morphology, geometry, and dynamics of ecosystems[J]. Ecological Monographs, 1992, 62(4):447-502.
    211 Tita G, Vincx M, Desrosiers G. Size spectra, body width and morphotypes of intertidal nematodes: an ecological interpretation[J]. Journal of the Marine Biological Association of the United Kingdom, 1999, 79(6):1007-1015.
    212 Raffaelli D, Hall S, Emes C, et al. Constraints on body size distributions: an experimental approach using a small-scale system[J]. Oecologia, 2000, 122(3):389-398.
    213 Cattaneo A. Size spectra of benthic communities in Laurentian streams[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1993, 50(12):2659-2666.
    214 Bourassa N, Morin A. Relationships between size structure of invertebrate assemblages and trophy and substrate composition in streams[J]. Journal of the North American Benthological Society, 1995, 14(3):393-403.
    215 Duplisea D E, Drgas A. Sensitivity of a benthic, metazoan, biomass size spectrum to differences in sediment granulometry[J]. Marine Ecology Progress Series, 1999, 177:73-81
    216 Leaper R, Raffaelli D, Emes C, et al. Constraints on body-size distributions: an experimental test of the habitat architecture hypothesis[J]. Journal of Animal Ecology, 2001, 70(2):248-259.
    217 Soltwedel T, Pfannkuche O, Thiel H. The size structure of deep-sea meiobenthos in the north-eastern Atlantic: Nematode size spectra in relation to environmental variables[J]. Journal of the Marine Biological Association of the United Kingdom Plymouth, 1996, 76(2):327-344.
    218 Soetaert K, Heip C. The size structure of nematode assemblages along a Mediterranean deep-sea transect[J]. Deep-Sea Research, 1989, 36(1A):93-102.
    219 Gin K Y H, Guo J, Cheong H-F. A size-based ecosystem model for pelagic waters[J].Ecological Modelling, 1998, 112(1):53-72.
    220 Sommer S, Pfannkuche O. Metazoan meiofauna of the deep Arabian Sea: standing stocks, size spectra and regional variability in relation to monsoon induced enhanced sedimentation regimes of particulate organic matter[J]. Deep-Sea Research II, 2000, 47(14):2957-2977.
    221 Jensen P. Differences in microhabitat, abundance, biomass and body size between oxybiotic and thiobiotic free-living marine nematodes[J]. Oecologia, 1987, 71(4):564-567.
    222 Baca R M, Threlkeld S T. Using size distributions to detect nutrient and sediment effects within and between habitats[J]. Hydrobiologia, 2000, 435(1-3):197-211.
    223 Pfannkuche O, Soltwedel T. Small benthic size classes along the N.W. European continental margin: spatial and temporal variability in activity and biomass[J]. Progress in Oceanography, 1998, 42(1-4):189-207.
    224 Bowden D A. Quantitative characterization of shallow marine benthic assemblages at Ryder Bay, Adelaide Island, Antarctica[J]. Marine Biology (Berlin), 2005, 146(6):1235-1249.
    225 De Leeuw J J, Nagelkerke L A J, Van Densen W L T, et al. Biomass size distributions as a tool for characterizing lake fish communities[J]. Journal of Fish Biology [J Fish Biol ] Vol 63, 2003, 63(6):1454-1475
    226 Alvarez-Cobelas M, Rojo C. Ecological goal functions and plankton communities in lakes[J]. Journal of Plankton Research, 2000, 22(4):729-748.
    227 Richardson K, Markager S, Buch E, et al. Seasonal distribution of primary production, phytoplankton biomass and size distribution in the Greenland Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(6):979-999.
    228 Duplisea D E, Jennings S, Warr K J, et al. A size-based model of the impacts of bottom trawling on benthic community structure[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59(11):1785-1795
    229 Quiroga E, Quinones R, Palma M, et al. Biomass size-spectra of macrobenthic communities in the oxygen minimum zone off Chile[J]. Estuarine Coastal and Shelf Science, 2005, 62(1-2):217-231.
    230 Benoit E, Rochet M-J. A continuous model of biomass size spectra governed by predation and the effects of fishing on them[J]. Journal of Theoretical Biology, 2004, 226(1):9-21.
    231 Borgmann U. Particle-Size-Conversion Efficiency and Total Animal Production in Pelagic Ecosystems[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1982, 39(5):668-674.
    232 Cyr H, Peters R H. Biomass-size spectra and the prediction of fish biomass in lakes[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1996, 53(5):994-1006.
    233 Zhou M, Huntley M E. Population dynamics theory of plankton based on biomass spectra[J]. Marine Ecology Progress Series, 1997, 159:61-73.
    234 Edvardsen A, Zhou M, Tande K S, et al. Zooplankton population dynamics: Measuring in situ growth and mortality rates using an Optical Plankton Counter[J]. Marine Ecology Progress Series, 2002, 227:205-219.
    235 Gerlach S A, Hahn A E, Schrage M. Size spectra of benthic biomass and metabolism[J]. Marine Ecology Progress Series, 1985, 26(1-2):161-173.
    236 Heip C H R, Duineveld G, Flach E, et al. The role of the benthic biota in sedimentary metabolism and sediment-water exchange processes in the Goban Spur area (NE Atlantic)[J]. Deep-Sea Research II, 2001, 48(14-15).
    237 Jennings S, Warr K J, Mackinson S. Use of size-based production and stable isotope analyses to predict trophic transfer efficiencies and predator-prey body mass ratios in food webs[J]. Marine Ecology Progress Series, 2002, 240:11-20.
    238 Thygesen U H, Farnsworth K D, Andersen K H, et al. How optimal life history changes with the community size-spectrum[J]. Proceedings of the Royal Society of London, Series B: Biological Sciences, 2005, 272(1570):1323 -1331
    239 Rice J C, Rochet M-J. A framework for selecting a suite of indicators for fisheries management[J]. ICES Journal of Marine Science, 2005, 62(3):516-527.
    240 Bianchi G, Gislason H, Graham K, et al. Impact of fishing on size composition and diversity of demersal fish communities[J]. ICES Journal of Marine Science, 2000, 57(3):558-571.
    241 Dinmore T A, Duplisea D E, Rackham B D, et al. Impact of a large-scale area closure on patterns of fishing disturbance and the consequences for benthic communities[J]. ICES Journal of Marine Science, 2003, 60(2):371-380.
    242 Zimmer K D, Hanson M A, Butler M G, et al. Size distribution of aquatic invertebrates in two prairie wetlands, with and without fish, with implications for community production[J]. Freshwater Biology, 2001, 46(10):1373-1386.
    243 Piet G J, Jennings S. Response of potential fish community indicators to fishing[J]. ICES Journal of Marine Science, 2005, 62(2):214-225.
    244 Xu B, Jin X. Variations in fish community structure during winter in the southern Yellow Sea over the period 1985-2002[J]. Fisheries Research (Amsterdam), 2005, 71(1):79-91.
    245 Daan N, Gislason H, Pope J G, et al. Changes in the North Sea fish community: evidence of indirect effects of fishing?[J]. ICES Journal of Marine Science, 2005, 62(2):177-188.
    246 Shin Y-J, Rochet M-J, Jennings S, et al. Using size-based indicators to evaluate the ecosystem effects of fishing[J]. ICES Journal of Marine Science, 2005, 62(3):384-396.
    247 Gislason H, Rice J. Modelling the response of size and diversity spectra of fish assemblages to changes in exploitation[J]. ICES Journal of Marine Science, 1998, 55(3):362-370.
    248 FAO. Fisheries management. 2. The ecosystem approach to fisheries. FAO Technical Guidelines for Responsible Fisheries, 4[M]. 2003.
    249 ICES. Report of the Working Group on Ecosystem Effects of Fishing Activities (WGECO). ACE:04[J]. 2005.
    250 Rice J. Environmental health indicators[J]. Ocean & Coastal Management, 2003, 46(3-4):235-259.
    251 Yurista P, Kelly J R, Miller S. Evaluation of optically acquired zooplankton size-spectrumdata as a potential tool for assessment of condition in the Great Lakes[J]. Environmental Management, 2005, 35(1):34-44.
    252 EPA. New indicators of coastal ecosystem condition[M]. Washington DC: Office of Research and Development, 2005.
    253 Jung S, Houde E D. Fish Biomass Size Spectra in Chesapeake Bay[J]. Estuaries, 2005, 28(2).
    254 Kimmel D G, Roman M R, Zhang X. Spatial and temporal variability in factors affecting mesozooplankton dynamics in Chesapeake Bay: Evidence from biomass size spectra[J]. Limnol. Oceanogr, 2006, 51(1):131-141.
    255 Hurtt G C, Armstrong R A. A pelagic ecosystem model calibrated with BATS data[J]. Deep-Sea Research Part II, 1996, 43(2-3):653-683.
    256 Hurtt G C, Armstrong R A. A pelagic ecosystem model calibrated with BATS and OWSI data[J]. Deep-Sea Research Part I-Oceanographic Research Papers, 1999, 46(1):27-61.
    257 Moloney C L, Field J G. The size-based dynamics of plankton food webs. 1. A simulation model of carbon and nitrogen flows[J]. Journal of Plankton Research, 1991, 13(5):1003-1038.
    258 Moloney C L, Field J G, Lucas M I. The size-based dynamics of plankton food webs. 2. Simulations of three contrasting southern Benguela food webs[J]. Journal of Plankton Research, 1991, 13(5):1039-1092.
    259 Armstrong R A. Grazing limitation and nutrient limitation in marine ecosystems: Steady state solutions of an ecosystem model with multiple food chains[J]. Limnology and Oceanography, 1994, 39(3):597-608.
    260 Carr M-E. A numerical study of the effect of periodic nutrient supply on pathways of carbon in a coastal upwelling regime[J]. J. Plankton Res., 1998, 20(3):491-516.
    261 Fasham M J R, Boyd P W, Savidge G. Modeling the relative contributions of autotrophs and heterotrophs to carbon flow at a Lagrangian JGOFS station in the Northeast Atlantic: The importance of DOC[J]. Limnology and Oceanography, 1999, 44(1):80-94.
    262 Fulton E A, Smith A D M, Johnson C R. Biogeochemical marine ecosystem models I: IGBEM--a model of marine bay ecosystems[J]. Ecological Modelling, 2004, 174(3):267-307
    263 Sin Y, Wetzel R L. Ecosystem modeling analysis of size-structured phytoplankton dynamics in the York River estuary, Virginia (USA). I. Development of a plankton ecosystem model with explicit feedback controls and hydrodynamics[J]. Marine Ecology Progress Series, 2002, 228:75-90.
    264 王睿照, 张志南. 海洋底栖生物粒径谱的研究[J]. 海洋湖沼通报, 2003, (4):61-68.
    265 王新刚 , 孙松 . 粒径谱理论在海洋生态学研究中的应用[J]. 海洋科学 , 2002, 26(4):36-39.
    266 林岿璇, 张志南, 王睿照. 东、黄海典型站位底栖动物粒径谱研究[J]. 生态学报, 2004,24(2):241-245.
    267 Short A D. Beach and shoreface morphodynamics[M]. New York: John Wiley, 1999.392.
    268 Cozar A, Garcia C M, Galvez J A. Analysis of plankton size spectra irregularities in two subtropical shallow lakes (Esteros del Ibera, Argentina)[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2003, 60(4):411-420.
    269 Quinones B, Renato A. Size-distribution of planktonic biomass and metabolic activity in the pelagic system DALHOUSIE UNIVERSITY (CANADA) 1992.
    270 Gillooly J F, Charnov E L, West G B, et al. Effects of size and temperature on developmental time[J]. Nature, 2002, 417(6884):70-73.
    271 Schwinghamer P, Hargrave B, Peer D, et al. Partitioning of production and respiration among size groups of organisms in an intertidal benthic community[J]. Marine Ecology Progress Series, 1986, 31(2):131-142.
    272 Banse K. Mass-scaled rates of respiration and intrinsic growth in very small invertebrates[J]. Marine Ecology Progress Series, 1982, 9(3):281-297.
    273 Banse K, Mosher S. Adult body mass and annual production/biomass relationships of field populations[J]. Ecological Monographs, 1980, 50(3):335-379.
    274 王睿照. 南黄海典型海域底栖动物粒径谱研究, 中国海洋大学, 青岛.2003.
    275 Poff N L, Palmer M A, Angermeier P L, et al. Size structure of the metazoan community in a Piedmont stream[J]. Oecologia, 1993, 95(2):202-209
    276 Spicer J I, Gaston K J. Amphipod gigantism dictated by oxygen availability?[J]. Ecology Letters, 1999, 2(6):397-403.
    277 Chapelle G, Peck L S. Polar gigantism dictated by oxygen availability[J]. Nature, 1999, 399(6732):114-115.
    278 McClain C R, Rex M A. The relationship between dissolved oxygen concentration and maximum size in deep-sea turrid gastropods: an application of quantile regression[J]. Marine Biology, 2001, 139(4):681-685.
    279 Davison W, Franklin C E. The Antarctic nemertean Parborlasia corrugatus: an example of an extreme oxyconformer[J]. Polar Biology, 2002, 25(3):238-240.
    280 Makarieva A M, Gorshkov V G, Li B L. Biochemical universality of living matter and its metabolic implications[J]. Functional Ecology, 2005, 19(4):547-557.
    281 Drgas A, Radziejewska T, Warzocha J. Biomass Size Spectra of Near-Shore Shallow-Water Benthic Communities in the Gulf of Gdansk (Southern Baltic Sea)[J]. Marine Ecology, 1998, 19(3):209-228.
    282 Tittel J, Zippel B, Geller W, et al. Relationships between plankton community structure and plankton size distribution in lakes of northern Germany[J]. Limnology and Oceanography, 1998, 43(6):1119-1132.
    283 于子山, 张志南, 韩洁. 渤海大型底栖动物次级生产力的初步研究[J]. 青岛海洋大学学报, 2001, 31(6):867-871.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700