用户名: 密码: 验证码:
基于多Agent协调的资源调配研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
资源分配是人类活动中一类常见而重要的决策活动。例如,工程计划制订就是这样的一类决策活动,它有两个主要特点:一是工程计划由众多专家、技术人员共同决策;二是必须考虑在资源有限等约束条件下完成计划。这一问题中广泛而复杂的协调活动亟需理论、方法的指导和实施技术的支持。传统方法往往将其转化为规划问题,需要仲裁者或者决策者收集所有相关信息,进行集中运算,不仅求解工作量大,不适应现代计算的负债均衡、高容错性等要求,而且决策变量的个数在建模之后就固定了,缺乏应有的灵活性。因此,很难在信息不完全和开放的实际环境下得到应用。
     Internet技术的普及使得基于软件Agent的协调支持成为新的研究热点。目前已出现了一些简单情形中的应用原型,如会议或访问日程的安排等。一般说来,对于协调的需求是由于资源、实体、信息的分布特性以及它们之间的相互依赖而产生的。资源分配群体决策的特点恰好具有这样的特性及依赖关系。首先,决策所需的知识、信息是分布在各个决策者之中,决策者一般很难看到问题的全面视图;其次,决策者主观能力各不相同,因此感知得到的信息可能不完全、不准确;第三,决策者对于同一目标的各个决策选项的偏好不尽相同,他们对目标的选择一般难以摆脱自身利益的影响,因而即使在总体目标明确的情况下仍然存在子目标不尽一致的可能性;最后,由于现实世界中存在私有信息如专业知识,使得完全的信息交换是非常困难的。MAS协调可以容许信息分布、信息不精确、个体自治等几项特性,比任何其他方法更适用于群体决策。本文从多Agent系统的视角出发,对资源约束下的计划整合问题进行了较为深入的探讨。
     本文就研究基础和背景作了综述,包括MAS协调的相关原理,已有的方法和相关技术,以及MAS协调的相关应用等等,其中,MAS协调的基础理论主要从Agent/MAS的研究现状、MAS中的协调和协调模型两个方面进行了阐述;Agent/MAS的研究现状主要介绍了一些已有的理论、方法和技术,分析了各自的特点;MAS协调和协调模型则主要描述了协调研究的概况,对主要的几种协调模型进行了简单分析。并且说明了研究资源约束的MAS协调的意义和内容。
     个体理性是社会智能的基础。在对Agent进行本质和特性分析的基础上,论文重点提出了基于知识水平的协调推理,阐述了基于BDI框架建立个体理性的方法。与传统方法相比,个体理性的构造更容易适应开放式复杂系统的局部、不精确的信息,而且具有很好的动态性、健壮性,也更易于建模、设计与实现。
     现代人工智能的特点是社会智能,个体的理性在群体交互中集聚为更高层次、更复杂的智能,即使是再复杂的个体没有良好的社会交互支持,也难以完成复杂的任务。因此,论文把多Agent交互及协调博弈作为研究重点,建立了交互的简单模型并通过它分析了协调产生的环境和背景,从协调博弈理论上讨论了避免协调失败的方法,并且给出了相关的实施技术的形式化表述,为构建MAS资源约束的多计划协调提供了基础。
     基于MAS和Agent的设计易于理解和实现,具备负载分布性、容错性,在动态环境中具有很强的适应性,这些都更适用于资源调配的实际工程应用。本文在综合前面论及的个体理性和MAS协商协调两方面理论的基础之上,针对资源有限条件下的计划整合问题,探讨了基于MAS协调的资源调配方法。首先分析了资源有限情况下多个并行计划同时运作的环境,然后描述了该环境下的Agent协商模型和通信模型。由于个体决策取决于Agent所代表的用户,着重讨论了这一方法中的个体决策模型,提出了MAReco (Multi-Agent Resource Coordination)这一基于MAS仿真的资源约束多计划整合模型,在三个合理假设——个体理性,信息交换,MAS协商——的基础上,得出了形式化模型和通过社会选择协商求解的方法。
     本文还以MAReCo推广应用可能遇到的困难为出发点,进一步阐述了资源约束的计划整合中MAS协调的应用背景,并且从系统构架、协调对象的确定、协调规则的设计等方面,比较详细地探讨了如何将MAReCo应用于具体的运输调度系统的构造。通过数据试验,验证了基于MAReco的MATs(Multi-Agent Transit Scheduling)在单阶段计划、多阶段计划两种情况下的可行性和效果。
     本文所做基于MAS协调的资源调配研究,对于供应链管理、智能交通系统、智能软件体系的研究与应用均有重要的理论意义和参考价值。
Resource allocation is an important type of decision making activity in project planning. Actually, group decision in project planning has two attributes. Firstly, the plan is made by many specialists together. Secondly, the plan must be executable under constraints as resource limitation. It is urgently needed of theory and method to support the coordination in this kind of problem. The traditional approach generally models this problem with mathematic programming, where the central decision-maker has to collect all information, and the model can hardly be changed once it is constructed. It has a lot of limitation in practice. Especially it is not easy to be applied in the open environment where information is incomplete and inaccurate.
     The swift prevalence of internet has made coordination based on software agent being a new research hotspot. There have been some simple applications like schedule management. The demand for coordination comes from the distributation of resources, entities, information and the interdependencies among them. The characteristics of group decision on resource allocation just bring this kind of properties and interdependencies. Firstly, the knowledge and information needed in the decision are distributed among each decision-maker; therefore no one can see the global view of the decision problem easily. Secondly, the decision-makers’specialities and capabilities are various, so the percepted information are different and even inaccurate. Thirdly, the decision-makers’preference are unlike and their choices of objective are dependent on their own preference. Lastly, there exist privacies in reality, which make it hard to exchange all information. Thus, MAS coordination is more applicable to group decision. This dissertation studied the MAS coordination applied in project plan integration with resource constraint.
     In the first place, the research basis and background is introduced, which include theories of MAS coordination, current methods, technologies and applications. The theories of MAS coordination is set forth from the review of agent and MAS study, coordination model. Current theories, methods and technologies are introduces, and their properties are analysed. The several mainstream coordination models are also discussed. The content and significance are proposed as the end of introduction.
     Individual rationality is a foundation of social intelligence. Based on the analysis of agents’characteristics and nature, several mainstream infrastructures of agent are discussed, especially the BDI framework. Then a new method to construct individual rationality is presented. Compared with traditional approach, this method is more applicable to open complex system with its dynamical and robust properties.
     Modern AI is focused on social intelligence. The individual rationalities converge on higher and complicated intelligence during social interaction. Without right support of social interaction, even more complicated individuals can hardly complete complex task. Thus, this dissertation treats multi agent interaction and coordination game as keystone. From the simplest interaction to corperation, each level of interactions between agents is analysed. The communication in interaction is also introduced. Then, coordination method based on coordination knowledge level is discussed. The coordination model is analysed using coordination game.
     Design based on agent and MAS is easy to be understood and implemented, and has merits such as load-balance, fault-tolarence, and adapted to dynamical context, which are more applicable in practical project resource allocation. Based on forementioned individual rationalities and social interaction, this dissertation focused on resource constrained multi-plans integration problem, and exploit a new method of resource allocation. Firstly the context where multi-plans run simultenously with limited resources is analysed. Then coordination model and agent communication are described. Since individual decisions is affected by the users that agent representats, individual decision making process is emphasized. MAReCo is proposed based on these thought. With three reasonable assumptions, namely individual rationality, information exchange and MAS negotiation, a formal description and solving approach are presented.
     To the implementation and practice of MAReCo, this dissertation taking transit scheduling for example, set forth the application background, system architecture, design of coordination rules and coordination objects, and MATs is constructe. Through numerical test, the feasibility and effectiveness of MATs is verified.
     This study on resource allocation has significant value to supply chain management, intelligent transportation system, and intelligent software.
引文
[1] V. R. Lesser. Reflections on the nature of multi-agent coordination and its implications for an agent architecture. Autonomous Agents and Multi-Agent Systems, 1998, Vol. 1, (1), 89~111
    [2] P. Wegner. Interactive software technology. Handbook of Computer Science and Engineering. CRC Press,1996
    [3] D. Gelernter and N. Carriero. Coordination Languages and their Significance. Communications of the ACM, 1992, Vol. 35, (2), 97~107
    [4] T. W. Malone and K. Crowston. The Interdisciplinary Study of Coordination. ACM Computing Surveys, 1994, Vol. 26, (1), 87~119
    [5] N. R. Jennings. Commitments and Conventions: The Foundation of Coordination in Multi-Agent Systems. The Knowledge Engineering Review, 1995, Vol. 8, (3), 223~250
    [6] 张维明, 姚莉. 智能协作信息技术. 北京: 电子工业出版社, 2002
    [7] 罗明. 基于 MAS 理论的 ODSS 协调支持机制研究[博士学位论文]. 华中理工大学系统工程研究所, 1999
    [8] G. Edwin and M. T. Cox. Resource Coordination in Single Agent and Multiagent Systems. 13th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'01), 2001, 18~24
    [9] K. Hirayama. Distributed Lagrangean Relaxation Protocol for the Generalized Mutual Assignment Problem. Joint Workshop of Vietnamese Society of AI, SIGKBS-JSAI, ICS-IPSJ and IEICE-SIGAI on Active Mining, 2004
    [10] E. Kutanoglu and S.D. Wu. On combinatorial auction and Lagrangean relaxation for distributed resource scheduling. IIE Transactions, 1999, Vol. 31, 813~826
    [11] X. Miao et al. A Normative-Descriptive Approach to Hierachical Team Resource Allocation. IEEE Tran. on Sys. Man. and Cyb., 1992, Vol. 32, (3)
    [12] O. F. Rana, M. Winikoff, L. Padgham, J. Harland. Applying Conflict Management Strategies in BDI Agents for Resource Management in Computational Grids. Proc. 25th Australasian Computer Science Conference (ACSC2002), 2002, Vol. 4, 205~214
    [13] J. Sauer, H.-J. Appelrath. Scheduling the Supply Chain by Teams of Agents. Proc. of the 36rd Hawaii International Conference on System Sciences (HICSS-36), 2003, 10 pages on CD
    [14] D. Montana, J. Herrero, G. Vidaver, G. Bidwell. A multiagent society for military transportation scheduling. Journal of Scheduling, 2000, Vol. 3, 225~246
    [15] M. Wooldridge. 多 Agent 系统引论. 电子工业出版社, 2003
    [16] C. Hewitt. Viewing Control Structures as Patterns of Passing Messages. Artificial Intelligence, 1977, Vol. 8, (3), 323~364
    [17] M. Minsky. The Society of Mind. Simon & Schuster, 1985
    [18] M. Minsky and D. Riecken. A Conversation with Marvin Minsky about Agents. Communications of the ACM, 1994, Vol. 37, (7), 22~29
    [19] M. Wooldridge and N. R. Jennings. Intelligent agents: theory and practice. The Knowledge Engineering Review. 1995, Vol. 10, (2), 115~152
    [20] M. Wooldridge and N. R. Jennings. Agent Theories, Architectures, and Languages: a Survey. Intelligent Agents, Berlin: Springer-Verlag, 1995, 1~22
    [21] Y. Shoham. Agent-oriented programming. Artificial Intelligence. 1993, Vol. 60, 51~92
    [22] A. E. Roth. Axiomatic Models of Bargaining. Lecture Notes in Economics and Mathematical Systems. 1979, Vol. 170
    [23] P. Maces. Agents that Reduce Work and Information Overload. Communications of the ACM, 1994, Vol. 37, (7), 31~40
    [24] S. P. Singh, T. Jaakkola, M. I. Jordan. Reinforcement Learning with Soft State Aggregation. Advances in Neural Information Processing Systems, 1995, Vol. 7
    [25] B. Hayes-Roth. An architectrue for Adaptive Intelligent System. Artificial Intelligence: Special Issue on Agents and Interactivity, 1995, Vol. 72, 329~365
    [26] M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. Proceedings of the 6th National Conference on Artificial Intelligence (AAAI-87), 1987, 677~682
    [27] M. P. Georgeff and F. F. Ingrand. Decision-making in an embedded reasoning system. Proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI-89), 1989, 972~978
    [28] M. E. Bratman. Intension, Plans and Practical Reason. 1st ed. Cambridge, MA: Harvard Univ. Press, 1987
    [29] P. R. Cohen and H. J. Levesque. Intention is Choice of Commitment. Artificial Intelligence, 1990, Vol. 42, (3), 213~261
    [30] A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning. 1992, 473~484
    [31] M. P. Singh. Intentions for Multiagent Systems. MCC Technical Report, No. KBNL-086-93, 1993
    [32] M. Wooldridge. The Logical Modelling of Computational Multi-Agent Systems. PhD thesis, UMIST, Manchester, 1992
    [33] M. P. Singh. A Logic of Situated Know-how. National Conference on Artificial Intelligence (AAAI), 1991
    [34] Y. Labrou, R. Finin, Y. Peng. Agent Communication Language: The Current Landscape. IEEE Intelligent Systems. 1999
    [35] DARPA Knowledge Sharing Initiative External Interfaces Working Grouping. Specification of the KQML Agent communication languages. Http://www.cs.umbc.edu/kqml/kqmlspec.ps, 1993
    [36] Foundation for Intelligent Physical Agents. FIPA 97 specification part 2: Agent communication Language. 1997
    [37] J. Hendler. Agents and the semantic Web. IEEE Intelligent Systems, 2001, Vol. 16, (2), 30~37.
    [38] 吕宏伟. Agent 通信语言及相关理论的研究. 计算机工程, 2004, Vol. 30, (3)
    [39] J. L. Austin. How to Do Things with Words. Oxford: Oxford University Press, 1962
    [40] J. R. Searle. Collective intentions and actions. Intentions in Communication, Cambridge, MA: MIT Press, 1990, 401~416
    [41] 凌兴宏,李绪蓉,丁秋林. 基于 XML 的 Agent 通信语言. 计算机应用研究,2003, Vol. 7
    [42] M. Wooldridge. Intelligent Agent. MultiAgent Systems, Massachusetts, MA: The MIT Press, 1999, 27~78
    [43] S. Ahuja, N. Carriero, D. Gelernter. Linda and Friends. IEEE Computer, 1986, Vol. 19, (8), 26~34
    [44] P. Zoeteweij. Coordination-Based Distributed Constraint Solving in DICE. Proceedings of the 2003 ACM Symposium on Applied Computing, 2003, 360~366
    [45] P. Zeoteweij. A Coordination-Based Framework for Distributed Constraint Solving. Proceedings of the 2003 ACM symposium on Applied computing, 2003
    [46] J. A. Giampapa and K. Sycara. Team-Oriented Agent Coordination in the RETSINA Multi-Agent System. Tech. report CMU-RI-TR-02-34, Robotics Institute, Carnegie Mellon University, 2002.
    [47] L. M. J. Hogg and N. R. Jennings. Socially intelligent reasoning for autonomous agents. IEEE Trans. on Systems, Man and Cybernetics - Part A, 2001, Vol. 31, (5), 381~399
    [48] M. Barbuceanu and M.S. Fox. Capturing and modeling coordination knowledge for multiagent systems. International Journal of Cooperative Information Systems, 1996, Vol. 5, 275~314
    [49] C. B. Excelente-Toledo, R. A. Bourne, N. R. Jennings. Reasoning about commitments and penalties for coordination between autonomous agents. Proc. 5th Int Conf on Autonomous Agents (Agents-2001), 2001, 131~138
    [50] 李凡长. 基于 DFL 的多 Agent 协调工作机制研究. 自动化学报, 2003, Vol.129, (16), 1002~1007
    [51] 史忠植. 智能主体及应用(第 1 版). 北京:科学出版社. 2000
    [52] 严莉萍, 鲍敢峰, 尤晋元. 一种基于分布式组件协调的脚本语言 Concerto. 上海交通大学学报, 2001, Vol. 35, (2)
    [53] 严莉萍,鲍敢峰,尤晋元. 一种基于 Petri 网的分布组件协调模型. 软件学报, 2002, Vol. 13, (4)
    [54] 马光伟,徐晋晖,石纯一. 社会 Agent 的 BDO 模型. 计算机学报, 2001, Vol. 24, (5), 521~528
    [55] 陈智. ODSS 中基于协调知识水平的分布式协调支持器的理论与应用研究[博士学位论文]. 华中理工大学系统工程研究所, 1998
    [56] H. A. Simon. The Sciences of the Artificial. Cambridge, MA: MIT Press, 1981
    [57] H. S. Nwana, L. Lee, N. R. Jennings. Co-ordination in Software Agent Systems. BT Technol J., 1996, Vol. 14, (4), 7~18
    [58] N. R. Jenning, S. Parsons, P. Noriega, C. Sierra. On Argumentation-Based Negotiation. International Workshop on Multi-Agent Systems (IWMAS-98), 1998
    [59] M. Huber, E. H. Durfee. Deciding When to Commit to Action During Observation-based Coordination. First International Conference on Multiagent Systems (ICMAS '95). 1995
    [60] J. S. Rosenschein. Rational Interaction: Cooperation Among Intelligent Agents. Ph. D. Dissertation. Stanford Univ. 1986
    [61] Y. Shoham and M. Tennenholtz. On the Synthesis of Useful Social Laws for Artificial Agent Societies. Proc. of the 10th National Conference on Artificial Intelligence (AAAI-92), 1992
    [62] Y. Shoham and M. Tennenholtz. On the emergence of social conventions: modeling, analysis, and simulations. Artifical Intelligence, 1997, Vol. 94, 139~166.
    [63] M. Boman. Norms as Constraints on Real-Time Autonomous Agent Action. Lecture Notes in Artifical Intelligence, 1997, Vol. 1237
    [64] E. Ephrati et al. Deriving Multi-Agent Coordination through Filtering Strategies. Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95), 1995
    [65] S. Kraus. Agents Contracting Tasks in Non-Collaborative Envirnoments. Proc. ofthe First International Joint Conference on Artificial Intelligence(IJCAI-93), 1993, Vol. 1
    [66] D. E. Bell, H. Raiffa, A. Tversky. Decision Making: Descriptive, Normative, and Prescriptive Interactions. Cambridge: Cambridge University Press, 1991
    [67] A. Rapoport and A. M. Chammah. Prisoner's Dilemma: A Study in Conflict and Cooperation. University of Michigan Press, 1965
    [68] K. Lendenmann and A. Rapoport. Decision Pressures in 2x2 Games. Behavioral Science, 1980, Vol. 25, 107~119
    [69] G. E. Kersten. NEGO - Group Decision Support System. Information and Management, 1985, Vol. 8, (5), 237~246
    [70] M. Jarke, M. T. Jelassi, M. F. Shakun. MEDIATOR: Toward a Negotiation Support System. European Journal of Operational Research, 1987, Vol. 31, (3), 314~334
    [71] K. Sarit. Automated Negotiation and Decision Making in Multiagent Environments. ACAI 2001, 2001, Vol. LNAI 2086, 150~172
    [72] A. Rubinstein. Perfect equilibrium in a bargaining model. Econometrica, 1982, Vol. 50, (1), 97~109.
    [73] R. Schwartz and S. Kraus. Bidding mechanisms for data allocation in multiagentenvironments. Intelligent Agents IV: Agent Theories, Architectures, and Languages, 1998, 61~75
    [74] S. Kraus. An overview of incentive contracting. Artificial Intelligence Journal, 1996, Vol. 83, (2), 297~346
    [75] M. P. Wellman and P. R. Wurman. Market-aware agents for a multiagent world. Robotics and Autonomous Systems, 1998, Vol. 24, 115~125
    [76] K. I. Shimomura. The bargaining set and coalition formation. Technical Report: 95-11, Brown University, Dept. of Economics, 1995
    [77] T. W. Sandholm and V. R. Lesser. Coalition formation among bounded rational agents. Artificial Intelligence, Special issue on Principles of Multi-Agent Systems, 1997, Vol. 94, 99~137
    [78] T. Sandholm, K. Larson, M. R. Andersson, O. Shehory, F. Tohm. Coalition structuregeneration with worst case guarantees. Artificial Intelligence Journal, 1999, Vol. 111, 209~238
    [79] S. Parsons, C. Sierra, N. R. Jennings. Agents that reason and negotiate by arguing. Journal of Logic and Computation, 1998, Vol. 8, (3), 261~292
    [80] S. Kraus, K. Sycara, A. Evenchik. Reaching agreements through argumentation: a logical model and implementation. Artificial Intelligence, 1998, Vol. 104, 1~69
    [81] H P. Nii. Blackboard systems: the blackboard model of problem solving and the evolution of blackboard architecture. The AI Magzine, 1986, Vol. l7, (2), 38~53
    [82] R. G. Smith. The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver. IEEE Transactions on Computers, 1980, Vol. C-29, (12), 1104~1113
    [83] K. S. Decker and V. R. Lesser. Generalizing the partial global planning algorithm. International Journal of Intelligent and Cooperation Systems. 1992, Vol. 1, (2), 319~346
    [84] A. Rao and M. Georgeff. BDI Agents from Theory to Practice. Technical Note 56, AAII, 1995.
    [85] M. P. Singh. Synthesizing coordination requirements for heterogeneous autonomous agents. Autonomous Agents and Multi-Agent Systems, 2000, Vol. 3, (2), 107~132
    [86] A. Newell. The knowledge level. Artificial Intelligence, 1982, Vol. 18, 87~127
    [87] N. R. Jennings. Towards a cooperation knowledge level for collaborative problem solving. Proceedings of the Tenth European Conference on Artificial Intelligence, 1992, 224~228
    [88] R. M. Malyankar and N. V. Findler. A Methodology for Modeling Coordination in Intelligent Agent Societies. Computational and Mathematical Organization Theory, 1998, Vol. 4, (4), 317~345
    [89] K. S. Decker and V. R. Lesser. Designing a family of coordination algorithms. Proceedings of the 13th International Workshop on Distributed Artificial Intelligence, 1994, 65~84
    [90] A. Agostini. Notes on formalizing coordination. AIIA 99: Advanced in ArtificialIntelligence, 2000, 285~296
    [91] P. J. Gmytrasiewicz and E. H. Durfee. Rational coordination in multi-agent environments. AAMAS Journal, 2000 , Vol. 3, (4), 319~350
    [92] K. Miyashita and M. Hori. A distributed architecture for planning and scheduling that learns through negotiation cases. Proceedings of the 5th IEEE International Conference on Emerging Technologies and Factory Automation, 1996, 136~142
    [93] 胡山立,石纯一. Agent 的意图模型. 软件学报, 2000, Vol. 7, 965~970
    [94] P. Cohen and H. Levesque. Intention is Choice with Commitment. Artificial Intelligence, 1990, Vol. 42, 213~261
    [95] J. Bryant. A simple rational expectation Keynes-type model. Quarterly Journal of Economics, 1983, Vol. 97, 525~529
    [96] T. C. Schelling. The strategy of conflict. Cambridge, MA: Harvard University Press, 1960
    [97] J. E. Meade. 效率、公平与产权. 北京经济学院出版社, 1992
    [98] R. Cooper, D. V. DeJong, R. Forsythe, T. W. Ross. Selection Criteria in Coordination Games: Some Experimental Results. American Economic Review, 1990, Vol. 80, (1), 218~233
    [99] R. Cooper, D. V. DeJong, R. Forsythe, T. W. Ross. Communication in Coordination Games. Quarterly Journal of Economics, 1992, Vol. 107, 739~771
    [100] J. V. Huyck, R.Battalio, R. Beil. Asset Markets as an Equilibrium Selection Mechanism: Coordination Failure, Game Form Auctions, and Tacit Communication. Games and Economic Behavior, 1993, Vol. 5, 485~504
    [101] J. Farrell, and M. Rabin. Cheap Talk. The Journal of Economic Perspecives, 1996, Vol. 10, 103~118
    [102] J. S. Rosenschein and G. Zlotkin. Rule of Encounter: Design conventions for automated negotiation among computers. The MIT Press, 1994
    [103] G. A. Hazelrigg. Systems Engineering: An Approach to Information-Based Design. Prentice-Hall, 1996
    [104] K. S. Barber, D. C. Han, T. H. Liu. Coordinating Distributed Decision MakingUsing Reusable Interaction Specification. Design and Applications of Intelligent Agents, Lecture Notes in Artificial Intelligence, 2000, Vol. 1881, 1~15
    [105] S. Ossowski. Co-ordination in artificial agent societies: social structures and its implications for autonomous problem solving agents. Lecture Notes in Artificial Intelligence, 1999, Vol. 1535
    [106] C. P. Chambers. Multi-Utilitarianism in Two-Agent Quasilinear Social Choice. International Journal of Game Theory, 2005, vol. 33, (3), 315~334
    [107] Y. S. Xu and N. Yoshihara. A New Insight into Three Bargaining Solutions in Convex Problems. Discussion Paper Series a453, Institute of Economic Research, Hitotsubashi University. 2004
    [108] M. Fenster, S. Kraus, J. S. Rosenschein. Coordination without communication: Experimental validation of focal point techniques. Proceedings of International Conference on Multi-Agent Systems (ICMAS'95), 1995, 102~108
    [109] A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, L. Tummolini. Coordination artifacts: Environment-based coordination for intelligent agents. Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’04), 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700