用户名: 密码: 验证码:
乏氧诱导因子-1α与食管鳞癌血管生成和化疗疗效的关系及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来研究发现乏氧是实体瘤中一种常见现象,是实体肿瘤微环境的基本特征之一。乏氧作为一种应激源,能激活肿瘤细胞内的一系列基因对乏氧作出应答反应,使肿瘤细胞内很多基因转录活性发生改变,其基因产物引起乏氧肿瘤细胞的一系列生物学行为改变。研究表明,在乏氧环境中为了保持能量供应,肿瘤细胞促血管生成能力极大提高,使肿瘤细胞更具有侵袭性,容易发生远处转移。而且乏氧会导致肿瘤细胞对放化疗的抗拒性增加,从而导致治疗失败。而在此过程中,乏氧诱导因子1(hypoxia inducible factor-1,HIF-1)起关键作用。但这种复杂的机制目前尚不清楚。因此HIF-1作为乏氧环境中起关键作用的转录因子,已成为近年来的研究热点。
     HIF-1是存在于哺乳动物和人体内一种转录因子,它是一个属于bHLH-PAS蛋白族的转录因子,由HIF-1α和HIF-1β两个亚单位组成。HIF-1的稳定和活性是由HIF-1α决定的,且HIF-1α是专一受O_2调节的亚基。由于在乏氧诱导肿瘤基因表达的信息通路上,HIF-1α起着中枢纽带作用。因此,研究HIF-1α与肿瘤生长、浸润、转移和治疗方面的关系有重要的意义。
     食管癌作为我国高发肿瘤,是否也存在乏氧耐受的分子机制目前尚不十分清楚。关于HIF-1α在食管癌中的表达研究较少,其与食管癌血管生成及化疗耐药的关系目前未见系统的研究报道。特别是其是否参与食管癌化疗耐药及其机制的研究,目前未见报道。
     为了探讨HIF-1α在食管癌组织中的表达及HIF-1α与食管癌血管生成的关系,本文采用半定量聚合酶链反应技术及免疫组化技术检测食管鳞癌组织中HIF-1α在mRNA水平及蛋白水平的表达,采用免疫组化技术检测食管鳞癌组织中VEGF、CD34的表达,观察了HIF-1α在食管癌中的表达情况及其与临床病理特征、VEGF和微血管密度的关系。为了探讨HIF-1α是否通过上调VEGF的表达而促进食管癌血管生成的机制,本文以食管鳞癌细胞株EC9706为研究对象,通过化学性乏氧诱导剂氯化钴(cobaltchloride,COCl_2)建立乏氧模型,体外模拟肿瘤乏氧微环境。采用半定量RT-PCR、Western-blot、免疫细胞化学技术检测乏氧诱导的HIF-1α、VEGF表达情况。进一步利用RNA干扰技术(RNA intefercnce,RNAi)观察小干扰RNA(small interference RNA,siRNA)转染EC9706细胞后乏氧诱导的HIF-1α和VEGF的表达的改变,初步探讨了HIF-1α在乏氧条件下对食管癌血管生成的调控作用及其机制以及以HIF-1α为靶点抗食管癌血管生成治疗的可能性。
     为探讨HIF-1α是否与食管癌化疗耐药有关及其参与耐药的机制,采用免疫组化技术检测食管鳞癌组织中HIF-1α的表达,并与临床化疗疗效相结合,探讨HIF-1α与食管癌化疗疗效的关系。从体外方面,以EC9706为研究对象,通过化学性乏氧诱导剂建立乏氧模型,采用MTS、半定量RT-PCR、免疫细胞化学、RNA干扰技术进一步从多药耐药、凋亡、细胞周期等方面,探讨了HIF-1α参与食管癌细胞乏氧条件下对不同机制的化疗药物产生耐药的机制。并进一步体外探讨以HIF-1α为新的靶点,应用RNA干扰技术逆转食管癌耐药的新途径。为以此为突破口进一步提高食管癌的化疗水平提供理论依据。
     第一部分乏氧诱导因子-1α在食管鳞癌组织中的表达及乏氧调节
     方法
     1.应用半定量RT-PCR及免疫组化技术对46例食管鳞癌组织及20例正常食管黏膜组织进行HIF-1αmRNA及蛋白水平的检测。
     2.应用化学乏氧法COCl_2(COCl_2加入培养液的终浓度为75μmol/l)体外模拟肿瘤乏氧微环境。
     3.应用半定量RT-PCR、免疫细胞化学、Western-blot检测乏氧环境下食管鳞癌细胞EC9706中HIF-1αmRNA及蛋白的表达情况。
     4.统计学处理:所有实验数据应用SPSS11.0软件进行分析,统计学数据用均数±标准差((?)±s)表示,采用χ~2检验、t检验、单因素方差分析、相关性检验。以α=0.05作为检验水准。
     结果
     1.食管鳞癌组织及正常食管黏膜组织中均可见HIF-1αmRNA的表达,食管鳞癌组织中HIF-1αmRNA表达水平(范围:0.32~1.62;平均1.17±0.25)显著高于正常食管黏膜组织(范围:0.18~0.58;平均0.35±0.12)(P<0.05)。而且癌组织中HIF-1αmRNA表达强弱不一,46例癌组织中高表达者(大于1.17)为24例,高表达率为52.17%。
     2.免疫组化法显示:食管鳞癌组织中HIF-1α蛋白的表达位于胞浆/核中,表达阳性率为41.31%(19/46);而在正常食管黏膜组织中呈阴性表达。
     3.食管鳞癌组织中HIF-1αmRNA表达水平与HIF-1α蛋白表达阳性率之间有显著正相关(P<0.05)。
     4.食管鳞癌组织中HIF-1αmRNA表达水平与肿瘤组织学分级、淋巴结转移、浸润深度、临床分期均无相关性(P>0.05)。
     5.食管鳞癌组织中HIF-1α蛋白的表达与淋巴结转移、浸润深度有显著相关性(P<0.05)。
     6.免疫细胞化学法结果:常氧培养EC9706细胞HIF-1α蛋白表达阴性,化学乏氧法培养8h,可见细胞浆/核呈强棕黄色染色。
     7.Western-blot结果显示:化学乏氧法4h即可诱导食管鳞癌EC9706细胞HIF-1α蛋白的表达,8h处于稳定表达状态。乏氧8h再氧合4h后HIF-1α蛋白表达显著减弱。
     8.而乏氧前后HIF-1αmRNA表达水平无明显变化(P>0.05)。
     第二部分乏氧诱导因子-1α与食管癌血管生成的关系及其机制
     方法
     1.血管生成抗原指标检测VEGF、CD34。应用免疫组化技术对上述46例食管鳞癌组织及20例正常食管黏膜组织标本进行VEGF、CD34的检测。微血管密度(MVD)以CD34特异性血管内皮染色强度计算。
     2.应用化学乏氧法CoCl_2(CoCl_2加入培养液的终浓度为75μmol/l)体外模拟肿瘤乏氧微环境。
     3.利用RNA干扰技术沉默HIF-1α基因的表达。应用半定量RT-PCR检测HIF-1α基因沉默效果。
     4.应用Western-blot和免疫细胞化学技术检测HIF-1α基因沉默后乏氧诱导HIF-1α蛋白表达变化。
     5.采用半定量RT-PCR、免疫细胞化学技术检测常氧培养细胞、乏氧培养细胞及RNA干扰后乏氧培养细胞中VEGF表达的变化。
     6.统计学处理:所有实验数据应用SPSS11.0软件进行分析,统计学数据用均数±标准差((?)±s)表示,采用χ~2检验、t检验、单因素方差分析。以α=0.05作为检验水准。
     结果
     1.VEGF阳性表达位于细胞浆内,食管鳞癌组织中阳性表达率为58.70%,显著高于正常食管黏膜组织的4.34%(P<0.05)。
     2.以组织中微血管内皮细胞CD34免疫组化染色评估MVD,癌组织中MVD范围在10~101之间,平均46.12±7.64。
     3.食管鳞癌组织中VEGF的表达与食管癌浸润深度、淋巴结转移显著相关(P<0.05)。MVD与食管癌浸润深度、淋巴结转移及临床分期显著相关(P<0.05)。
     4.食管鳞癌组织中HIF-1αmRNA表达水平与VEGF表达及MVD均无相关性(P>0.05),而HIF-1α蛋白的表达与VEGF表达及MVD均呈显著正相关(P<0.05)。
     5.针对HIF-1α基因的siRNA干扰技术,有效沉默HIF-1α基因的表达及乏氧诱导的HIF-1α蛋白表达。
     6.EC9706细胞乏氧培养后VEGF在mRNA水平和蛋白水平均表达增加(P<0.05)。针对HIF-1α基因的siRNA干扰技术,有效抑制乏氧诱导VEGF表达增加(P<0.05)。
     第三部分食管鳞癌中HIF-1α的表达与食管癌化疗耐药的关系及其机制
     方法
     1.48例中晚期食管鳞癌患者采用顺铂/紫杉醇方案化疗,评定疗效。
     2.应用免疫组化技术检测上述病例的石蜡包埋标本中HIF-1α蛋白的表达,探讨其与化疗疗效的关系。
     3.利用RNA干扰技术沉默HIF-1α基因的表达。
     4.采用MTS比色法检测常氧培养组和乏氧培养组EC9706细胞在顺铂/紫杉醇作用下细胞的抑制率。及RNA干扰后乏氧培养细胞在顺铂/紫杉醇作用下细胞的抑制率。
     5.采用RT-PCR、免疫细胞化学技术分别检测常氧和乏氧环境下EC9706细胞中的MRP1、Bcl-2、Bax的表达。及RNA干扰后乏氧培养细胞中的MRP1、Bcl-2、Bax表达变化。
     6.应用原位末端标记TUNEL法,Annexin V/PI双标记法检测RNA干扰前后紫杉醇对乏氧培养细胞EC9706细胞凋亡的影响
     7.用流式细胞仪检测RNA干扰前后乏氧条件下EC9706细胞的细胞周期。
     8.统计学处理:所有实验数据应用SPSS11.0软件进行分析,统计学数据用均数±标准差((?)±s)表示,采用χ~2检验、t检验、单因素方差分析。以α=0.05作为检验水准。
     结果
     1.48例食管鳞癌标本,21例为HIF-1α阳性表达,阳性表达率为43.75%。HIF-1α阳性表达者中无一例CR,5例达PR,化疗有效率为23.81%;而27例HIF-1α阴性表达者,化疗有效者19例,其中CR8例,PR11例,化疗有效率为70.37%。两组比较有显著性差异(P<0.05)。
     2.(1)以终浓度为10μg/ml、5μg/ml、2μg/ml的顺铂分别作用于常氧及乏氧培养细胞24h后,每一药物浓度常氧培养组细胞抑制率均显著高于乏氧培养组(P<0.05)。(2)以终浓度为100μg/ml、50μg/ml、20μg/ml的紫杉醇分别作用于常氧及乏氧培养细胞24h后,每一药物浓度常氧培养组细胞抑制率均显著高于乏氧培养组(P<0.05)。
     3.(1)以终浓度为10μg/ml、5μg/ml、2μg/ml的顺铂分别作用于乏氧条件下未转染、转染control siRNA和转染HIF-1αsiRNA培养细胞,相同药物浓度RNA干扰组抑制率显著高于未转染组及转染control siRNA组(P<0.05)。(2)以终浓度为100μg/ml、50μg/ml、20μg/ml紫杉醇分别作用于乏氧条件下未转染、转染control siRNA和转染HIF-1αsiRNA培养细胞,同一药物浓度RNA干扰组抑制率显著高于未转染组及转染control siRNA组(P<0.05)。
     4.乏氧后EC9706细胞MRP1在mRNA水平和蛋白水表达均增加(P<0.05)。同样乏氧条件,转染HIF-1αsiRNA后EC9706细胞较未转染及转染controlsiRNA组细胞相比,MRP1无论是mRNA水平或蛋白水平均表达减少(P<0.05)。
     5.TUNEL法检测结果显示:50μg/ml紫杉醇作用于相同乏氧条件下EC9706细胞24h后,转染HIF-1αsiRNA组出现大量凋亡细胞,凋亡细胞核被染成棕黄色,阳性率达38.63%,同未转染组的阳性率12.54%、转染control siRNA组的13.69%相比,差异均有显著性(P<0.05)。未转染组与转染阴性组间差异无统计学意义。(P>0.05)。
     6.流式细胞仪Annexin V FITC/PI测定细胞凋亡率结果:50μg/ml紫杉醇作用于相同乏氧条件下EC9706细胞24h后,转染HIF-1αsiRNA组可显著引起细胞凋亡,凋亡率达(36.57±3.36)%,与未转染组(13.54±2.61)%、转染controlsiRNA组(15.61±2.42)%相比,差异均有统计学意义(P<0.05)。而未转染组与转染control siRNA组差异无统计学意义(P>0.05)。
     7.乏氧后EC9706细胞,Bcl-2在蛋白水平和mRNA水平表达无显著变化(P>0.05)。相同乏氧条件,转染HIF-1αsiRNA后EC9706细胞较未转染及转染control siRNA组细胞相比,Bcl-2在蛋白水平和mRNA水平表达均无显著性差异(P>0.05)。
     8.乏氧后EC9706细胞,Bax在蛋白水平和mRNA水平表达均显著降低(P<0.05)。相同乏氧条件,RNA干扰组Bax在蛋白水平和mRNA水平较未转染组及转染control siRNA组表达均显著增强(P<0.05)。而未转染组与转染controlsiRNA组差异无统计学意义(P>0.05)。
     9.流式细胞仪检测细胞周期结果显示:常氧培养条件下,EC9706细胞G_1期、S期所占比例分别为(69.05±1.30)%、(23.72±1.30)%,乏氧培养8h组G_1期、S期所占比例分别为(78.29±2.70)%、(11.94±2.70)%,与常氧培养组相比乏氧培养组G_1期显著增加(P<0.05),S期显著减少(P<0.05)。RNA干扰组(转染HIF-1αsiRNA)乏氧8h后G_1期、S期细胞所占比例分别为(70.48±1.91)%、(21.86±1.90)%。转染control siRNA组乏氧8h后G_1期、S期所占比例分别为(77.86±2.31)%、(12.07±1.90)%。相同的乏氧条件下转染HIF-1αsiRNA与未转染组/转染control siRNA组相比,S期显著增加(P<0.05)、G_1期细胞减少(P<0.05)。
     结论
     1.食管鳞癌组织中HIF-1αmRNA水平显著高于正常食管黏膜组织。而食管鳞癌组织中HIF-1α在mRNA表达水平的高低与食管癌临床病理特征、VEGF的表达及MVD无相关性。HIF-1αmRNA水平与蛋白表达阳性率之间有相关性。
     2.食管鳞癌组织中HIF-1α在蛋白表达水平与淋巴结转移情况、侵润深度均相关。而且食管鳞癌中HIF-1α在蛋白表达水平与VEGF的表达及MVD呈显著正相关。而正常食管粘膜组织中HIF-1α蛋白表达阴性。
     3.食管鳞癌组织中HIF-1α在蛋白表达水平与化疗疗效有关,表达阳性者化疗有效率低。提示HIF-1α蛋白表达情况可作为预测食管癌化疗疗效的又一新的指标。
     4.体外化学乏氧法可诱导食管癌细胞HIF-1α蛋白表达,而对RNA水平表达无影响。提示,乏氧主要在转录后水平上影响食管癌细胞中HIF-1α的表达而达到调节其靶基因的目的。HIF-1α在蛋白水平的表达对食管癌的临床治疗具有重要的指导意义。
     5.针对HIF-1α的RNA干扰技术能有效沉默HIF-1α的基因表达。
     6.乏氧通过诱导HIF-1α蛋白表达上调VEGF表达引起新生血管形成。通过RNA干扰技术沉默HIF-1α基因表达后,乏氧诱导的VEGF表达可被显著抑制,提示以HIF-1α为靶点抗血管生成治疗的可能性。
     7.乏氧培养EC9706细胞对顺铂、紫杉醇这两种作用机制不同的药物均产生耐药。通过RNA干扰技术沉默HIF-1α基因表达后,可以逆转乏氧条件下的细胞耐药。
     8.乏氧通过诱导HIF-1α蛋白表达上调食管鳞癌细胞中多药耐药相关基因(MRP1)的表达可能是乏氧条件下化疗耐药的机制之一。
     9.乏氧条件下HIF-1α可能通过抑制促凋亡基因Bax的表达而发挥抗凋亡作用从而参与食管癌化疗耐药。
     10.HIF-1α参与的乏氧所导致EC9706细胞周期停滞可能是乏氧环境下细胞耐药的又一机制。通过RNA干扰技术沉默HIF-1α基因表达后,乏氧导致的细胞周期抑制被解除,从而逆转乏氧条件下的细胞耐药。
     11.乏氧环境下HIF-1α蛋白的过表达通过上调VEGF的表达导致食管鳞癌细胞促血管生成能力提高以及对不同机制的化疗药物耐药,因此HIF-1α可望成为新的靶点从而提高食管癌的治疗水平。
     创新点:
     1.首次系统地探讨了食管鳞癌组织中HIF-1α在mRNA水平及蛋白水平的表达。其蛋白水平的表达有望成为预测食管癌化疗疗效及临床预后的新的指标。
     2.利用RNAi技术及化学乏氧法,进一步探讨了乏氧环境中食管鳞癌细胞中VEGF在mRNA水平及蛋白水平的表达,从分子水平上明确了乏氧环境中HIF-1α促食管鳞癌血管生成的机制。
     3.首次系统地从分子水平上探讨了乏氧环境中食管鳞癌细胞耐药的复杂机制:乏氧环境中HIF-1α蛋白表达增加,从而上调MRP1表达;乏氧环境中HIF-1α通过抑制促凋亡基因Bax的表达而使乏氧细胞抗凋亡能力增加;以及乏氧环境中HIF-1α抑制细胞周期中的G_1期向S期转换,使乏氧细胞停滞在G_1期。
In recent years, a mounting body of evidence has demonstrated that a hypoxic microenvironment is common phenomena of many tumor types. Hypoxia, as a stimulating factor, can activate a series of genes responsing to hypoxia. It changes the transcription activity of many genes which induce many biological changes. Strong evidence has accumulated that hypoxia plays a pivotal role in tumor angiogenesis, progression and acquired treatment resistance. In the process, hypoxia-inducible factor 1 (HIF-1) plays a vital role in response to hypoxia. But the mechanism which may be compromised are not fully understood. Transcription factor HIF-1, as a key determinant in hypoxic microenvironment, has become one of the most popular subjects in recent.
     HIF-1, as Transcrettion factor, widespreadly presents in human and mammalian cells under hypoxia. It is a member of the basic helix-loop-helix Per, AhR, and Sim (bHLH-PAS) family. HIF-1 is composed of two subunits of HIF-1αand HIF-1β. The activity and stability of HIF-1, is decided by HIF-1α, a subnnit regulated by O_2. HIF-1αplays a crucial role in tumor cell adaptation to the hypoxic microenvironment through transcriptional regulation of its target genes. Therefore, it is of great importance to study the effects of HIF-1αin tumor growth, invasion, metastasis and therapy.
     Esophageal squamous cell carcinoma(ESCC) is one of the leading cancers in China. Is there the molecular mechanism of hypoxia response in it? At present, studies on the expression of HIF-1αare limited. The detail study about relationship between HIF-1αand angiogenesis, chemotherapy response in ESCC are seldom seen. Especially studies on relationship between HIF-1αand chemotherapy resistance and its mechanism in ESCC are not found.
     In order to study the relationship between HIF-1αand angiogenesis in ESCC, expression of HIF-1αon mRNA and protein levels in ESCC tissue was investigated respectively by reverse transcriptase polymerase chain reaction (RT-PCR) and immunohistochemistry. The expressions of VEGF and CD34 were detected using immunohistochemistry. The relationship between HIF-1αand clinical pathological factors,VEGF, and microvessel density (MVD) was analyzed. In order to investigate whether HIF-1αinduces angiogenesis through regulating the expression of VEGF, Cobalt chloride (COC12) was used to establish hypoxia model with EC9706 cell line to mimic hypoxic microenvironment of tumors, and RT-PCR, immunocytochemistry and Western-blot were used to observe the expression of HIF-1αand VEGF. In addition, RNA interference(RNAi) was used to silence HIF-1αgene expression. VEGF expression after silencing HIF-1αgene was observed in EC9706 cells under hypoxia. The regulation effect of HIF-1αon angiogenesis of ESCC under hypoxia and its mechanism were studied, and evaluate whether HIF-1αcould be used as a novel, tumor-specific target for anti-angiogenesis therapy in ESCC.
     In order to investigate the relationship between HIF-1αand chemotherapeutic resistance and its mechanism in ESCC, immunohistochemistry and 3-(4,5-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium(MTS) methods were used. Semi-quantative RT-PCR, immunocytochemistry, RNA interference were used to study the mechanism of chemotherapeutic resistance induced by HIF-1αunder hypoxia from aspects of multidrug resistance, apoptosis and cell cycle. In addition, RNA interference was used to investigate whether it could reverse the chemotherapeutic resistance of ESCC in vitro. All these studies would offer a theorectical foundation for enhancing therapeutic level by targeting HIF-1αas a breaking point in ESCC.
     PartⅠ: HIF-1αexpression in ESCC and its mechanism induced by hypoxia
     Methods
     1. The expression of HIF-1αin 46 cases of ESCC tissue and 20 cases of normal mucosa of esophagus was measured on mRNA and protein level by RT-PCR and immunohistochemistry.
     2. To establish a hypoxia model of EC9706 cells by a chemical hypoxia inducer (Cobalt chloride, COCl_2).
     3. The expression of HIF-1αin EC9706 cells under hypoxia on mRNA and protein level was measured by RT-PCR immunocytochemistry and Western-blot.
     4. Statistical analysis: The SPSS11.0 Statistical Package was used for all analyses. Values were expressed as means±SD. Data were analyzed by t test, ANOVA and x~2 test. The standard of significant level wasα=0.05.
     Results:
     1. The mRNA expressions of HIF-1αwas detected in 48 cases of ESCC and 20 cases of normal mucosal tissue of esophagus. But the level in tumor tissue(range:0.32~1.62; mean: 1.17±0.25)was significantly higher than that in corresponding normal tissue(range: 0.18~0.58; mean 0.35±0. 12)(P<0.05). High level HIF-1αmRNA (more than 1.17) was detected in 24 out of 46 tumor cases, The high expression rate was 52.17%.
     2. HIF-1αimmunoreactivity was recognized in both cytoplasm and nuclei. The positive expression rate of HIF-1αwas 41.31%(19/46) in tumor samples. And it was negative expression in normal tissue.
     3. The mRNA expression level of HIF-1αwas positively correlated with its protein expression(P<0.05).
     4. The mRNA expression level of HIF-1αwas not associated with histological grades, lympha node metastasis, infutration depth, orclinical stage(P>0.05).
     5. HIF-1αprotein expression was positively correlated with infiltration depth and lympha node metastasis(P<0.05).
     6. Results of immunocytochemistry: HIF-1αimmunoreactivity of EC9706 cells in normoxia was negative, but strongly stained in plasmid/nuclear of EC9706 cells induced by chemical hypoxic condition.
     7. Results ofWestem-blot: HIF-1αprotein expression detected in EC9706 cells under hypoxia condition for 4h and it was stable expressied till 8h hypoxia. HIF-1αprotein expression significantly decreased when EC9706 cells were reoxygenated for 4h after being under hypoxia for 8h.
     8. Whereas HIF-la mRNA expression did not change before and after hypoxia
     PartⅡ: Relationship between HIF-1 alpha and angiogenesis and its
     mechanism in ESCC
     Methods
     1. The angiogenenic profile was assessed using VEGF and CD34. The expression of VEGF and CD34 in above 46 cases of ESCC tissue and 20 cases of normal mucosa of esophagus were measured by immunohistochemistry. MVD was calculated according to immunohistochemical staining of the adhesion molecule CD34 of the endothelial cells.
     2. A hypoxia model of EC9706 cells was established by a chemical hypoxia inducer (Cobalt chloride, COCl_2).
     3. RNA-interference targeting HIF-1αwas used to silence the expression of HIF-1αin human EC9706 cell line. The effect of HIF-1αgene silencing was measured by RT-PCR.
     4. The expression level of HIF-1αinduced by hypoxia after RNAi were measured by Western-blot and immuncytochemistry.
     5. The expression of VEGF in EC9706 cells, which were under normaxia or under hypoxia or after RNAi under hypoxia, was measured respectively by immunocytochemistry and Semi-quantitative RT-PCR.
     6. Statistical analysis: The SPSS11.0 Statistical Package was used for all analyses. Values were expressed as means±SD. Data were analyzed by t test, ANOVA and x~2 test. The standard of significant level wasα=0.05.
     Results:
     1. VEGF expression was detected in cytoplasm. The positive rate was 58.70%, which was significantly higher than that (4.34%) in normal mucosa (P<0.05).
     2. MVD in the ESCC tissue ranged from 10 to 101, median 46.12±7.64.
     3. The expression of VEGF in ESCC was closely related to tumor infiltration depth (P<0.05) and lymph node metastasis(P<0.05). MVD was closely related to tumor infiltration depth (P<0.05), lymph node metastasis(P<0.05), and clinical stage(P<0.05).
     4. The mRNA expression level of HIF-1αwas not associated with VEGF expression or MVD(P>0.05). Whereas HIF-1αprotein expression was positively correlated with VEGF expression(P<0.05) and MVD(P<0.05).
     5. HIF-1αmRNA expression was obviously knocted down by small interferencing RNA(siRNA). In addition, HIF-1αprotein expression induced by hypoxia in EC9706 cells was inhibited effectively by RNAi (P<0.05).
     6. The expression of VEGF on mRNA and protein level was significantly increased under hypoxia condition(P<0.05). The expression of VEGF on mRNA and protein level under hypoxia was greatly down-regulated by small interferencing RNA(siRNA) targeting HIF-1α(P<0.05).
     PartⅢ: Relationship between HIF-1αand chemotherapy resistance and its mechanism in ESCC
     Methods
     1. Platixal in combination with cisplatin was used in 48 patients with ESCC at advanced stage.The chemotherapy response was evaluated.
     2. HIF-1αprotein in the specimens from the 48 patients was measured by immunohistochemistry, and the relation of HIF-1αand chemotherapy response was analyzed.
     3. RNA-interference targeting HIF-1αwas used to silence the expression of HIF-1αin human EC9706 cell line.
     4. Growth inhibition rates of EC9706 cells treated with cisplatian/platixal were measured by MTS colorimetric assay under normoxic or hypoxic condition after RNA interference under hypoxia.
     5. The expressions of MRP1, Bcl-2 and Bax were measured respectively by RT-PCR, immunocytochemistry in EC9706 cells under normia, hypoxia and after RNA interference under hypoxia.
     6. The apoptosis rate of EC9706 cells treated by platixal under hypoxia before and after RNAi was studied by TUNEL assay and Annexin V/PI double staining, respectively.
     8. Cell cycles of EC9706 cells before and after RNAi under hypoxia were analyzed with flow cytometry.
     10. Statistical analysis: The SPSS Statistical Package was used for all analyses. Association between the variables were tested by analysis of variance and x~2 test, t test. The standard of significant level wasα=0.05.
     Results:
     1. Of 48 specimens 21 (43.75%) had positive expression of HIF-1αprotein. Among 21 cases with positive expression of HIF-1α, there was none complete response case and 5 cases of partial responses, and the response rate was 23.81%; whereas in 27 eases with negative expression of HIF-1α, there were 8 cases of complete responses and 11 cases of partial responses, and the response rate was 70.37%. There was significant difference between two groups (P<0.05).
     2. After being treated by cisplatin (10μg/ml, 5μg/ml, 2μg/ml), the growth inhibition rates of EC9706 cells under normoxia were significant higher than those under hypoxia(P<0.05). After being treated by platixal (100μg/ml, 50μg/ml, 20μg/ml) the growth inhibition rates of EC9706 cells under normoxia were significantly higher than those under hypoxia (P<0.05) .
     3. In the untransfected group, transfected with control siRNA group and transfected with HIF-1αsiRNA group treatedby cisplatin (10μg/ml, 5μg/ml, 2μg/ml) under hypoxia, respectively, the growth inhibition rates of EC9706 cells transfected with HIF-1αsiRNA were significantly higher than those in the untransfected group and transfected with control siRNA group (P<0.05). In the untransfected group, transfected with control siRNA group and transfected with HIF-1αsiRNA group treated with platixal (100μg/ml, 50μg/ml, 20μ/ml) under hypoxia respectively, the growth inhibition rates of cells transfected with HIF-1αsiRNA were significantly higher than those in the untransfected group and transfected with control siRNA group (P<0.05).
     4. Expression of MRP1 on mRNA and protein level was significantly increased in EC9706 cells after hypoxia (P<0.05). MRP1 expression on mRNA and protein level in cells transfected with HIF-1αsiRNA was significantly lower than those in untransfected group and transfected with control siRNA group under hypoxia (P<0.05).
     5. TUNEL detection revealed that after being treated with platixal (50μg/ml)under hypoxia, the apoptosis rate in HIF-1αsiRNA group(38.63%) was significantly higher than that in untransfected group (12.54%), and the transfected with control siRNA group (13.69%) (P<0.05).
     6. Flow cytometer(Annexin V FITC/PI) revealed that after being treated with platixal (50μg/ml) under hypoxia, the apoptosis rate in the transfected with HIF-1αsiRNA group (36.57±3.36)% was significantly higher than that in untransfected group (13.54±2.61)%, and the transfected with control siRNA group (15.61±2.42)% (P<0.05).
     7. There was not significant difference of Bcl-2 expression on mRNA and protein level between normoxia group and hypoxia group (P>0.05), as well as between the transfected with HIF-1αsiRNA group, the transfected with control siRNA group and the untransfected group (P<0.05) .
     8. The expression of Bax on mRNA and protein level was significantly decreased in EC9706 cells after hypoxia(P<0.05). Bax expression on mRNA and protein level in cells transfected with HIF-1αsiRNA was significantly higher than those in untransfected group and transfected with control siRNA group under hypoxia(P<0.05).
     9. The results of flow cytometry showed that the cells in G_1-phase, S-phase were (69.05±1.30)% and (23.72±1.30)%, respectively during normoxia. The cells in G_1-phase, S-phase was (78.29±2.70)% and (11.94±2.70)%, respectively during hypoxia. An increase of G_1-phase and a decrease of S-phase was observed in EC9706 cells in response to hypoxia(P<0.05); the cells in G_1-phase, S-phase of cells in HIF-1αsiRNA transfection group was (70.48±1.91)% and (21.86±1.90)%, respectively after hypoxia for 8h, whereas the cells in G_1-phase, S-phase of cells in transfected with control siRNA group was (77.86±2.31)% and (12.07±1.90)% respectively, under the same hypoxia. Compared with untransfected group and transfected with control siRNA group, the cells in G_1-phase decreased and the cells in S-phase increased significantly(P<0.05).
     Conclusions
     1. The mRNA expression of HIF-1αin ESCC tissue is Significantly higher than that in corresponding normal mucosa. The level of HIF-1αmRNA expression is not correlated with clinicopathological features, VEGF expression or MVD.
     2. There is positive correlation between the level of HIF-1αmRNA expression and the positive rate of HIF-1αprotein expression. HIF-1αprotein expression in ESCC tissue is correlated with lymph node metastasis and invasion depth. HIF-1αprotein expression is correlated with VEGF expression and MVD, which indicats that HIF-1αprotein expression in ESCC tissue is correlated with angiogenesis.
     3. The expression of HIF-1αprotein was associated with chemotherapy response. The patients with positive expression of HIF-1αprotein have lower chemotherapeutic efficacy, suggesting that HIF-1αprotein can be used as a new indicator to predict chemotherapy response.
     4. Chemical hypoxia inducer (Cobalt chloride, COCl_2) establishs a hypoxia model in vitro to mimic hypoxia environment in tumor, and overexpression of HIF-1αprotein in EC9706 cells can be induced, while the expression of HIF-1αmRNA does not change after hypoxia. It indicates that hypoxia mainly affects the expression HIF-1αon protein level. Therefore, it is more important pratice to measure HIF-1αexpression on protein in the treatment of ESCC.
     5. RNA interference targeting HIF-1αmakes a specificity of HIF-1αsilencing.
     6. The overexpression of VEGF regulated by HIF-1αcould be attenuated markedly by HIF-1αsiRNA treatment. Therefore, to silence the expression of HIF-1αmay inhibit the angiogenesis, which offers an avenue of anti-angiogenesis gene therapy for ESCC.
     7. EC9706 cells under hypoxia is resistant to cisplatin and taxol, the two different chemotherapeutic drugs. Whereas RNAi silencing HIF-1αgene can reverse the resistance to the two drugs.
     8. HIF-1αcan upregulate the expression of MRP1, which may involve in the chemotherapeutic resistance of EC9706 cells under hypoxia.
     9. Hypoxia-mediated down-regulation of Bax in EC9706 cells occurs via HIF-1α-dependent mechanism and contributes to chemoresistance.
     10. HIF-1αis involved in the cell cycle arrest in EC9706 cells in response to hypoxia which may be another therapeutic resistance mechanism under hypoxia.
     11. The overexpression of HIF-1αinduces angiogenesis and resistance to varied chemotherapeutic drugs. Therefore, HIF-1αcan be used as a novel, tumor-specific target for anticancer therapy in ESCC. This would offer one new way and a theoretic foundation to target therapy for ESCC.
     Original points:
     1. The expression of HIF-1αon mRNA and protein level in ESCC was systematically studied. The results indicated that HIF-1αprotein expression can be regarded as a new index to predict chemotherapeutic response in ESCC.
     2. RNAi and chemical mimic hypoxia were used to further explore the expression of VEGF on mRNA and protein level. The results indicated that HIF-1αprotein was involved in angiogenesis through upregulating VEGF expression.
     3. The complex mechanism of cell resistance to chemotherapeutic drugs under hypoxia in ESCC was explored systematically. The results indicated that HIF-1αprotein was involved in chemoresistance under hypoxia by by inducing cell cycle arrest in G_1 phrase and up-regulation the expression of MRP1 and down-regulation the expression of Bax which play a role in apoptosis.
引文
1. Vaupel P, Briest S, Hokel M. Hypoxiainbreastcancer: pathogenesis, characterization and biological/therapeutic implication. Wein Meal Wochenschr, 2002, 152 (13-14): 334-342
    2. Stadler P, Becker A, Feldmann H, et al. The hypoxic subvolume influences the prognosis of head and neck cancer. Int J Radiat Oncol Biol Phys, 1998, 42:147
    3. Vaupel P, Mayer A, Briest S, et al. Oxygenation gain factor:a novel parameter characterizing the association between hemoglobin level and the oxygenation status of breast cancers. Cancer Res, 2003, 63:7634-7637
    4. Rak J, Yu JL. Oncogenes and tumor angiogenesis:the question of vascular "supply" and "demand". Semin Cancer Biol, 2004, 14 (2): 93-104
    5. Vaupel P, Mayer A. Hypoxia and anema:effects on tumor biology and treatment resistance. Transfus Clin Biol, 2005, 12 (1): 5-10
    6. Marx J. Cell biolgy: How cells endure Low oxygen [J]. Science, 2004, 303 (5663): 1454-1456
    7. Semenza GL. HIF-1 and tumor progression: Pathophysiology and therapeutics[J]. Trends Mol Med, 2002, 8(4 suppl): S62-67
    8. Lee JW, Bae SH, Jeong JW, et al. Hypoxia-inducible factor(HIF-1)alpha:its protein stability and biological functions[J].Exp Mol Med, 2004, 36 (1): 1-12
    9. Jiang BH, Zheng JZ, Leung sw, ET AL. Transactivation and inhibitory domains of hypoxia-inducible factor 1 alpha.Modulation of transcriptional activity by oxygen tension[J]. J Biol Chem, 1997, 272 (31): 19253-19260
    10. Stroka DM, Burkhardt T, Desbaillets I, et al. HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J, 2001, 15 (13): 2445-2453
    11. Kaelin WG Jr. How oxygen makes presence felt[J]. Genes Dev, 2002, 16 (12): 1441-1445
    12. Semenza GL. Targeting HIF-1 for cancer therapy [J]. Nat Rev Cancer, 2003, 3 (10): 721-732
    13. Bos R, van der Group P, Greiger AE, et al. Levels of hypoxia-inducible factor 1 alpha indepentdently predict prognosis in patients with lymph node negative breast carcinoma. Cancer, 2003, 97(6): 1573-1581
    14. Zhong H, De Marzo AM, Laughner E, et al. Overexpression ofhypoxia-inducible factor 1 alpha in common human cancersand their metastases[J]. Cancer Res, 1999, 59 (22): 5830-5835
    15. Harris AL. Hypoxia:a key regulatory factors factor in tumour growth[J]. Nat Rev Cancer, 2002, 2 (1): 38-47
    16. Vaupel P, Thews O, Hoeckel M. Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol, 2001, 18 (4): 243-259
    17. Koong AC, Denko NC, Hudson KM, et al. Candidate genes for the hypoxia tumor phenotype. Cancer Res, 2000, 60 (4): 883-887
    18. Wang Gl, Jiang BH, Rue EA, et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O_2 tension. Proc Natl Acad Sci USA, 1995, 92 (12): 5510-5514
    19. Huang LE, Gu J, Schhau M, et al. Regulation of hypoxiainducible factor 1 alpha is mediated by an O_2-dependent degradation domain via the ubiquitinproteasome pathway. Proe Natl Acad Sci U S A, 1998, 95 (14): 7987-7992
    20. Ryan HE, Poloni M, McNulty W, et al. Hypoxia-inducible factorlalpha is a positive factor in solid tumor growth [J]. Cancer Res, 2000, 60 (15): 4010-4015
    21. Schindl M, Schoppmann SF, Samoningg H, et al. Overexpression of hypoxia-inducible factor 1 alpha is associated w ith an unfavorable prognosis in lymph node-positive breast cancer [J]. Clin Cancer Res, 2002, 8 (6): 1831-1837
    22. Bimer P, Schindl M, Obermair A, et al. Overexp ression of hypoxia-inducible factor 1 alpha is a marker for an unfavorable prognosisin early-stage invasive cervical cancer [J]. Cancer Res, 2000, 60(17): 4693-4696
    23. Giatromanolaki A, Koukourakis MI, Sivridis E, et al. Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer, 2001, 85(6): 881-890
    24.夏曙,于世英,袁响林.乏氧诱导因子-1α在非小细胞肺癌中的表达研究.中国肺癌杂志,2004,7(4):344-346
    25. Koukouralds MI, Giatromanolaki A,.Skarlatos J, et al. Hypoxia inducible factor (HIF-1α and HIF-2α) expression in early esophageal cancer, and response to photodynamic therapy and radiotherapy. Cancer Res, 2001, 61(5): 1830-1832
    26. Kurokawa T, Miyamoto M, Kato K, et al. Overexpression of hypoxia-inducible-factor 1 alpha (HIF-lalpha) in oesophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Br J Cancer, 2003, 89 (6): 1042-1047
    27.夏曙,于世英,袁响林,等.乏氧对肺腺癌细胞A549细胞p糖蛋白和多药耐药相关蛋白表达的影响.中华医学杂志,2004,84(8):663-666
    28.吴强,杨述华,王锐英,等.干扰RNA沉默HIF-1α在缺氧状态下对骨肉瘤细胞VEGF表达的影响.癌症,2005,24(5):531-535
    29. Jiang YA, Fan LF, Jiang CQ, et al. Expression and significance of PTEN, hypoxia-inducible factor-1 alpha in colorectal adenoma and adenocarcinoma. World J Gastroenterol, 2003, 9 (3): 491-494
    30. Volm M, Koomagi R. Hypoxia-inducible factor(HIF-1) and its relationship to apoptosiss and prolixferation in lung cancer. Anticancer Res, 2000, 20(3A): 1527-1533
    31. Bos R, Zhong H, Hanrahan CF, et al. Levels of hypoxiainducible-1 alpha during breast carcinogenesis [J]. J Natl Cancer Inst, 2001, 93 (4):309-313
    32. Mohamed KM, Le A, Duong H, et al. Correlation between VEGF and HIF-1 alpha expression in human oral squamous ecll carinoma. Exp Mol Pathol, 2004, 26 (2): 143-152
    33. Birner P, Gatterbauer B, Oberhuber G, et al. Expression of hypoxia-inducible factor-1 alpha in oligodendrogliomas: its impact on prognosis and on neoangiogenesis[J]. Cancer, 2001, 92 (1): 165-171
    34. Matsuyama T, Nakanishi K, Hayashi T, et al. Expression of hypoxia-inducible factor-lalpha in esaphodeal squamous cell carcinoma. Cancer Sci, 2005, 96 (3): 176-182
    35. Epstein AC, Gleadle JM, McNeill L, et al. Elgans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation[J]. Cell, 2001, 107 (1): 405-408
    36. Wenger RH, Kvietikova I, Rolfs A, et al. Hypoxia-inducible factor 1 alpha is regulated at the post-mRNA level. Kidney Int, 1997, 51 (2):560-562
    37. Kallio PJ, Pongratz I, Gradin k, et al. Activation of hypoxia-inducible factor 1α: posttranscriptional regulation and conformational change by recruitment of the amt transcription factor. Proc Natl Acad Sci U S A, 1997, 94 (11):5667-5672
    38. Zhong H, Agani F, Baccala AA, et al. Increased expression ofhypsxia inducible factor-1 alpha in rat and human prostate cancer [J]. Cancer Res, 1998, 58 (23): 5280-5284
    39. ZagZag D. Angiogenic growth factors in neural embryogenesis and neoplasia[J]. Am J Pathol, 1995, 14 (2): 293-309
    40. Shobe M, Rockwell P, Goldstein N, et al. Halting angiogenesis suppresses carcinoma cell invasion. Nat Med, 1997, 8 (11): 1201-1212
    41.郭文忠,冉宇靓,王贵齐,等.VEGF和MMP-9在食管癌中的表达及低氧调节.中华肿瘤杂志,2002,24(1):44-47
    42. Shibusa T, Shijubo N, Abe S. Tumor angiogenesis and vascular endothelial grouth factor statement in stage I lung adenocarcinoma [J]. Clin Cancer Res, 1998, 4(6): 1483-1487
    43. Folkman J. Clinical applications ofreserach on angiogenesis. N Engl J Med, 1995, 333 (26): 1757-1763
    44. Zetter BR. Angiogenesis and tumor metastasis. Annu Rev Med, 1998, 49(2): 407-424
    45. Kimura S, Kitadai Y, Tanaka S, et al. Exprssion of hypoxia-inducible factor(HIF)-1α is associated with vascular endothelial growth factor expression and tumor angiogenesis in human oesophageal squamous cell carcinoma. Eur J Cancer, 2004, 40 (12):1904-1912
    46. Ogata Y, Fujita H, Yamana H, et al. Expression of vascular endothelial growth factor as a prognostic factor in node-positive squamous cell carcinoma in the thoracic esophagus: long-term follow-up study. World J Surg, 2003, 27(5): 584-589
    47. Du JR, Jiang Y, Zhang YM, et al. Vascular endothelial growth factor and microvascular density in esophageal and gastric carcinomas. World J Gastroenterol, 2003, 9 (7): 1604-1606
    48. Jiang CQ, Liu ZS, Qian Q, et al. Relationship of hypoxia-inducible factor 1 alpha(HIF-1 alpha) gene expression with vascular endothelial growth factor(VEGF) and microvessel density(MVD) in human colorectal and adenocarcinoma. Ai Zheng, 2003, 22 (11): 1170-1174
    49. Mohamed KM, Le A, Duong H, et al. Correlation between VEGF and HIF-1 alpha expression in human oral squamous cell carcinomas. Exp Mol Pathol, 2004, 76 (2): 143-152
    50. Liu Y, Cox SR, Mortia T, et al. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5' enhancer [J]. Circ Res, 1995, 77 (3): 638-643
    51. Shweiki D, Itin A, Softer D. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 1992, 359 (6398): 834-845
    52. Song E, Lee SK, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med, 2003, 9 (3): 347-351
    53. Wall NR, Shi Y. Small RNA: can RNA interference be exploited fortherapy? Lancet, 2003, 362 (9393): 1401-1403
    54. Chi JT, Chang HY, Wang NN, et al. Genomewideview of gene silencing by small interfering RNAs. Proc Natl Acad Sci USA, 2003, 100 (11): 6343-6346
    55. Ait-Si-Ali S, Guasconi V, Harel-Bellan, A. RNA interference and its possible use in cancer therapy. Bull Cancer, 2004, 91 (1):15-18
    56.吴强,杨述华,叶树楠,等.RNA干扰沉默缺氧诱导因子-1α治疗骨肉瘤的实验研究.中华医学杂志,2005,85(6):409-413
    57.孙学英,孟凡强,姜洪池,等.联合反义缺氧诱导因子-1与B7基因治疗肿瘤的实验研究.中华肿瘤杂志,2005,27(7):404-407
    58. Boehm T, Folkman J,Browder T, et al. Antiangiogenenic therapy of experimental cancer, does not-induce acquired drug resistance. Nature, 1997, 390 (6658) :404-407
    59. Shannon AM, Bouchier Hayes DJ, Condron CM, et al. Tumour hypoxia, chemothe-rapeutic resistance and hypoxia-related therapies. Cancer Treat Rev, 2003, 29(4): 297-307
    60. Powis G, Kirkpatrick L. Hypoxia inducible factor-lalpha as a cancer drug target[J]. Cancer Treat Rev, 2003, 29 (4): 297-307
    61. Beasley NJ, Leek R, Alam M, et al. Hypoxia-inducible factors HIF-1αand HIF-2α in head and neck cancer:relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Res, 2002, 62 (9): 2493-2497
    62. Koukourakis MI, Giatromanolaki A, Sivridis E, et al. Hypoxia-induciblefactor (HIF 1α and HIF2α), angiogenesis,and chemoradiotherapy outcome of squamous cell head and neck cancer. Int J Radiat Oncol Biol Phys, 2002, 53(5): 1192-1202
    63. Ajani JA. Contributions of chemotherapy in the treatment of carcinoma of the esophagus: results and commentary. Semin Oncol, 1994, 21 (4):474-482
    64. Ajani JA, Ilson DH, Daugherty K, et al. Activity of taxol in patientswith squamous cell carcinoma and adenocarcinoma of the esophagus. J Natl Cancer Inst, 1994, 86 (14): 1086-1091
    65.黄镜,蔡锐刚,孟平均,等.紫杉醇联合顺铂治疗晚期食管鳞癌.中华肿瘤杂志,2004,26(12):753-755
    66. Littlewood TJ.The impact of hemoglobin levels on treatment outcomes in patients with cancer. Semin Oncol, 2001, 28 (supp 18): 49-53
    67. Aebersold DM, Burri P, Beer KT, et al. Expression of hypoxia-inducible factor-1 alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer [J]. Cancer Res, 2001, 61 (7) :2911-2916
    68. Vaupel P, Kellcher DK, Hockel M. Oxygen. status of malignant tumors: pathogenesis ofhypoxia and significance for tumor therapy. Semin Oncol, 2001, 28 (2 Suppl 8):29-35
    69. Hockel M,Vaupel P. Tumor hypoxia:definitios and current clinical,biological,and molecular aspects. J Natal Cancer Inst, 2001, 93 (4):266-276
    70. Semenza GL. Hypoxia-inducible factor 1: master regulator of O_2 hemeostasis [J]. J Natal Cancer Inst, 1998, 8 (5): 588-594
    71. Bracken CP, Whitelaw ML, Peet DJ. The hypoxia-inducible factors ker transcriptional regulators ofhypoxia responses. Cell Mol Life Sci, 2003, 60 (7): 1376-1393
    72. Bachitary B, Schindl M, P6tter R, et al. Overexpression of hypoxia-inducible factor 1α indicatesdiminished response to radiotherapy and unfavorableprognosis in patients receiving radical radiotherapy for cervical cancer. Clin Cance Res, 2003, 9 (6): 2234-2240
    73. Sohda M, Ishikawa H, Masuda N, et al. Pretreatment evaluation of combined HIF-lalpha, p53 and p21 expression is useful and sensitive indicator of response to radiation and chemotherapy in oesophageal cancer. Int J Cancer, 2004, 110 (6): 838-844
    74. Narasaki F, Oka M, Fukuda M, et al. Multidrug resistance-associated protein gene expression and sensitiveity in human lung cancer cells [J]. Anticancer Res,1997 (5A): 3493-3497
    75.张咏梅,宋光耀,张淑慧,等.MRP1mRNA,GST-π mRNA在食管癌组织中的表达及意义.现代肿瘤医学,2005,13(3):332-334
    76.王尧河,张云汉,付保进,等.谷胱甘肽硫转移酶同功酶基因在食管癌组织中的表达.河南医科大学学报,1997,32(3):18-21
    77.徐峰,赵立群,郭明洲.食管癌组织和非癌组织中差异基因分析和GST-πmRNA的表达.中华消化杂志,2002,22(1):35-37
    78.李建辉,侯东祥,郭党学,等.MRP和LRP的表达与食管鳞癌临床病理特征的关系.西安交通大学学报(医学版),2005,26(4):377-380
    79. Cole SP, Bhardwaj G, Gerlach JH, et al. Overe-xpression of a novel transporter gene in multidrug resistant lung cancer cell line [J]. Science, 1992, 258 (5088): 1650-1654
    80.王延明,陈志霞,王爱民,等.食管癌多药耐药基因和多药耐药相关蛋白基因的研究[J].癌症,2000,19(4):353-355
    81.扬俊兰,石延章,魏秀芳.食管鳞癌组织多药耐药蛋白表达的研究.临床肿瘤学杂志,1999,4(3):6-8
    82.祁绍艳,李继昌,王留兴,等.食管、贲门癌组织中P-糖蛋白与多药耐药相关蛋白的表达.郑州大学学报(医学版),2007,42(1):147-149
    83. Wartenberg M, Ling FC, Muschen M, et al. Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor(HIF-1) and reactive oxygen species. FASEB J, 2003, 17(3): 503-505
    84. Comerford KM, Wallace T J, Karhausen J, et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res, 2002, 62(12): 3387-3394
    85.邓建华,白进良,马鹏程,等.谷胱甘肽转移酶-Pi与缺氧诱导因子-1α在膀胱癌组织中的表达及意义.癌症,2006,25(2):190-193
    86. Koomagi R, Mattem J, Volm M, et al. Glucose-related protein(GRP78) and its Relationship to the drug-resistance proteins P170, GST-pi, LRP56 and angiogenesis in non-small cell lung carcinomas. Anticancer Res, 1999, 19 (5B): 4333-4336
    87. Murphy B J, Andrews, GK, Bittel D, et al. Activation of metallothionein gene expression by hypoxia involves metal response elementsand metal transcription factor-1. Cancer Res, 1999, 59 (6): 1315-1322
    88. Raleigh JA, Chou SC, Calkins Adams DP, et al. A clinical study ofhypoxia and metallothionein protein expression in squamous cellcarcinoma. Clin Cancer Res, 2000, 6 (3): 855-862
    89. Sakata K, Kwok TT, Murphy B J, et al. Hypoxia-induced drug resistance:comprarison to p-glycoprotein-associated drug resistance. Br J Cancer, 1991, 64 (5): 809-814
    90. Greijer AE, de jong MC, Scheffer GL, et al. Hypoxia-induced acidification causes mitoxantrone resistance not mediated by drug transporters in human breast cancer cells. Cell Oncol, 2005, 27 (1): 43-49
    91. Hyun JY, Chun YS, Kim TY, et al. Hypoxia-inducible factor 1 alpha-mediated resistance to phenolic anticancer. Chemotherapy, 2004, 50 (3): 119-126
    92. Song X, Liu X, Chi W, et al. Hypoxia-induced resistance to cisplatin and doxorubicin in nonsmall cell lung cancer is inhibited by silencing of HIF-1 alpha gene. Cancer Chemother Pharrnacol, 2006, 58 (6): 776-784
    93. Zheng D, Jinzhao W, Fushin Y, et al. Apoptosis-Resistance of Hypoxic CellsMultiple Factors Involved and a Role for IAP-2. Am J Pathol 2003, 163 (2): 663-671
    94. Graeber TG, Osmanian C, Jacks T, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature, 1996, 379 (6560): 88-91
    95. Vaupel P. The role of hypoxia-induced factors in tumor progression. Oncol, 2004, 9 (suppl5): 10-17
    96.樊利芳,刁路明,陈德基,等.肺癌组织中缺氧诱导因子-1α的表达及其与凋亡和增殖的关系.癌症,2002,21(3):254-258
    97. Back JH, Jang JE, Kang CM, et al. Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis [J]. Oncogene, 2000, 19 (40): 4621-4631
    98. Unruh A, Ressel A, Mohamed HG, et al. The hypoxia-inducible factor-1 alpha is a negative factor for tumor therapy [J]. Oncogene, 2003, 22 (21): 3213-3220
    99. Achison M, Hupp TR. Hypoxia attenuates the p53 response to cellular damage [J]. Oncogene, 2003, 29 (22): 3431-3440
    100. Akakura N, Kobayashi M, Horiuchi I, et al. Constitutive expression of hypoxiainducible factor-lalpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation[J]. Cancer Res, 2001, 61 (17): 6548-6554
    101. Zhang X, Kon T, Wang H, et al. Enhancement of hypoxia-induced tumor cell death in vitroand radition therapy in vivo by use of small interfering RNA targeted to hypoxia-inducible factor-10t. Cancer Res, 2004, 64 (22): 8139-8142
    102. Yu EZ, Li YY, Liu XH, et al. Antiapoptotic action of hypoxia-inducible factor-1 alpha in human endothelial cells [J]. Lab Invest, 2004, 84 (5): 552-561
    103. Jean PP, Denis M, Martine R, et al. HIF-1α a pro-or anti-apoptotic pritein?[J]. Biochem Pharmacol, 2002, 64 (56): 889-892
    104. Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia [J]. Proc Natl Acad Sci U S A, 2000, 97 (16): 9082-9087
    105. Achison M, Hupp TR. Hypoxia attenuats the p53 response to cellular damage[J]. Oncogene, 2004, 23 (29): 4975-4983
    106. Dong Z, Venkatachalam MA, Wang J, et al. Up-regulation of apoptosis inhibitory pritein IAP-2 by hypoxia. HIF-1-independent mechanisms. J Biol Chem, 2001, 276 (22): 18702-18709
    107. Vauple P, Harrison L. Tumor hypoxia:causative factors, compensatory mechanism,and cellular response. The Oncologist, 2004, 9 (suppl 5): 4-9
    108. Piret JP, Lecocq C, Toffoli S, et al. Hypoxia and CoCl_2 protect HepG2 cells against serum deprivation-and t-BHP-induced apoptosis: a possible anti-apoptotic role for HIF-1. Exp Cell Res, 2004, 295 (2): 340-349
    109.黄磊,敖启林,李芳,等.低氧对紫杉醇诱导的人卵巢癌细胞A2780凋亡的影响及机制.癌症,2005,24(4):408-413
    110.陈丽荣,郑树,Willingham MC,等.紫杉醇诱发人乳癌细胞凋亡的机制研究[J].中华肿瘤杂志,1997,19(2):103-106
    111. Wang TH, Wang HS, Soong YK. Paclitaxelinduced cell death :where the cell cycle and apoptosis come together [J]. Cancer, 2000, 88 (11): 2619-2628
    112.张晓晶,刘云鹏,侯科佐,等.紫杉醇诱导黑色素瘤A375细胞凋亡的分子机制.肿瘤防治杂志,2005,12(22):1710-1715
    113. Cooper BW, Donaher E, Lazarus HM, et al. A phase I and pharmacodynamic study of sequential topotecan and etoposide in patients with relapsed or refractory acute myelogenous and lymphoblastic leukemia. Leuk Res, 2003, 27 (1): 35-44
    114. Makin G, Dive C. Apoptosis and cancer chemotherapy. Trends Cell Biol, 2001, 11 (11): S22-S26
    115. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998, 281 (5381):1322-1326
    116. Gross A, McDonnell JM, Korsmeyer SJ: BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999, 13 (15): 1899-1911
    117. Martinou JC, Green DR. Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol, 2001, 2 (1):63-67
    118. Budihardjo I, Oliver H, Lutter M, et al. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol, 1999, 15:269-290
    119. Green DR. Apoptotic pathways: the roads to ruin. Cell,1998, 94 (6):695-698
    120. Nakata B, Muguruma K, Hirakawa K, et al. Predictive value of Bcl-2 and Bax protein expression for chemotherapeutic effect in gastric cancer, a pilot study[J]. Oncology, 1998, 55 (6) :543-547
    121. Satomi D, Takiguchi N, Koda K, et al. Apoptosis and apoptosis-associated gene products relatedto the response to neoadjuvant chemotherapy for gastric cancer[J]. Int J Oncol, 2002, 20 (6):1167-1171
    122. Korsmeyer S J, Shore GC. Regulated targeting of BAX to mitochondria. J Cell Biol, 1998, 143(1):207-215
    123. Dong Z, Wang JZ, Yu F, et al. Apoptosis-Resistance of Hypoxic Cells Multiple Factors Involved and a Role for IAP-2. Am J Pathol 2003, 163 (2): 663-671
    124. Zheng D, Jinzhao W. Hypoxia selection of death-resistant cells:a role Bcl-X_L.The J Biol Chemist, 2004, 279 (10): 9215-9221
    125. Piret JP, Minet E, Coss JP, et, al. Hypoxia-inducible factor-1-dependent overexpression of myeloid cell factor-1 protects hypoxic cells against tert-butyl hydroperoxide-induced apoptosis. J Bio Chem, 2005, 280 (10): 9336-9344
    126. Sasabe E, Tatemoto Y, Li D, et al. Mechanism of HIF-lalpha-dependent suppression ofhypoxia-induced apoptosis in squamous cell carcinoma cells. Cancer Sci, 2005, 96 (7): 394-402
    127. Zhang Q, Zhang ZF, Rao JY, et al. Treatment with siRNA and antisense oligonucleotides targeted to HIF-1 alpha induced apoptosis in human tongue squmous cell carcinomas. Int J Cancer, 2004, 111 (6): 849-857
    128. Sowter H M, Ratcliffe P J, Watson P, et al. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res, 2001, 61(18): 6669-6673
    129. Kim J Y, Ahn H J, Ryu JH, et al. BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor lalpha. J Exp Med 2004,199 (1): 113-124
    130. Shoshani T, Faerman A, Mett I, et al. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol Cell Biol 2002, 22 (7): 2283-2293
    131. Erba E, Mascellani E, Pifferi A, et al. Comparison of cell-cycle phase perturbations induced by the DNA-minor-groove alkylator tallimustine and by melphalan in the SW626 cell line. Int J Cancer, 1995, 62 (2): 170-175
    132. Carmeliet P, Dor Y, Herbert JM, et al. Role ofhypoxia-mediated apoptosis,cell proliferation and tumor angiogenesis. Nature, 1998, 30 (6692): 485-490
    133. Hanze J, Eul BG, Savai R, et al. RNA interference for HIF-1 alpha inhibits its downstream signaling and affects cellular proliferation[J]. Biochem Biophys Res Commun, 2003, 312 (3): 571-577
    134. Goda N, Ryan HE, Khadivi B, et al. Hypoxia-inducible factor 1 alpha is essential for cell cycle arrest during hypoxia[J]. Mol Cell Biol, 2002, 23 (1): 359-369
    135. Goda N, Dozier S J, Johnson RS. HIF-1 in cell cycle regulation, apoptosis, and tumor progression. Antioxid Redox Signal, 2003, 5(4): 467-473
    136. Gardner LB, Li Q, Park MS, et al. Hypoxia inhibits G1/S transition through regulation of p27 expression. J Biol Chem, 2001, 276(11): 7919-7926
    137. Green SL, Freiberg RA, Giaccia AJ. p21(Cipl) and p27(Kipl) regulate cell cycle reentry after hypoxic stress but are not necessary for hypoxia-induced arrest. Mol Cell Biol, 2001, 21 (4):1196-1206
    138. Gardner LB, Li Q, Park MS, et al. Hypoxia inhibits G_1/S transition through regulationo f p27 expression. J Biol Chem, 2001,276 (11):7919-7926
    139. Greco O, Marples B, Joiner MC, et al. How to overcome (and exploit) tumor hypoxia for targeted gene therapy. J Cell Physiol, 2003,197(3): 312-325
    140. Um JH, Kang CD, Bae JH, et al. Association of DNA-dependent protein kinase with hypoxia inducible factor-1 and its implication in resistance to anticancer drags in hypoxic tumor cells. Exp Mol Med, 2004, 36(3): 233-242
    141. Chang Q, Qin R, Huang T, et al. Effect of antisense hypoxia-inducible factor lalpha on progression, metastasis, and chemosensitivity of pancreatic cancer. Pancreas, 2006, 32 (3): 297-305
    142.马超,周庚寅,肖颖,等.RNA干扰沉默缺氧诱导因子-1α逆转乳腺癌的耐药性.中华病理学杂志,2006,35(6):357-360
    143. Post DE, van Meir EG. A novel hypoxia-inducible factor(HIF) activated oncolytic adenovirus for cancer therapy[J]. Oncogene, 2003, 22(14): 2065-2072
    144.汲振余,赵立群,杨观瑞,等.HIF-1α在食管上皮细胞中的诱导表达及对光动力疗法的影响.肿瘤,2006,26(6):507-511
    1. Vaupel P, Briest S, Hokel M. Hypoxiainbreastcancer: pathogenesis, characterization and biological/therapeutic implication. Wein Med Wochenschr, 2002, 152 (13-14): 334-342
    2. Becker A, Hansgen G; Bloching M, et al. Oxygenation of squamous cell carcinoma of head and neck: comparison of primary tumors, neck node metastases, and normal tissue. Int J Radiat Oncol Biol Phys, 1998, 42 (1):35-41
    3. Stadler P, Becker A, Feldmann HJ, et al. Influence of the hypoxic subvolume on the survival with head and neck cancer. Int J Radiat Oncol Biol Phys 1999, 44(4):749-754
    4. Vaupel P, Mayer A, Briest S, et al. Oxygenation gain factor: a novel parameter characterizing the association between hemoglobin level and the oxygenation status of breast cancers. Cancer Res, 2003, 63 (22): 7634-7637
    5. Rak J,Yu JL.Oncogenes and tumor angiogenesis: the question of vascular "supply" and "demand". Semin Cancer Biol, 2004, 14(2):93-104
    6. Vaupel P, Mayer A. Hypoxia and anema: effects on tumor biology and treatment resistance. Transfus Clin Biol, 2005,12(1):5-10
    7. Semenza GL. Targeting HIF-1 for cancer therapy [J]. Nat Rev Cancer, 2003, 3 (10):721-732
    8. Semenza GL. HIF-1 and tumor progression:Pathophysiology and therapeutics [J]. Trends Mol Med, 2002, 8(4 suppl):S62-67
    9. Harris AL. Hypoxia:a key regulatory factors factor in tumour growth [J]. Nat Rev Cancer, 2002, 2(1):38-47
    10. Zhong H, De Marzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor 1 alpha in common human cancers and their metastases [J]. Cancer Res, 1999, 59(22):5830-5835
    11. Vaupel P, Thews O, Hoeckel M. Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol, 2001, 18(4):243-259
    12. Koong AC, Denko NC, Hudson KM, et al. Candidate genes for the hypoxia tumor phenotype. Cancer Res, 2000, 60(4):883-887
    13. Lee JW, Bae SH, Jeong JW, et al. Hypoxia-inducible factor(HIF-1) alpha: its protein stability and biological functions [J]. Exp Mol Med, 2004, 36(1): 1-12
    14. Jiang BH, Zheng JZ, Leung SW, et al. Transactivation and inhibitory domains of hypoxia-inducible factor 1 alpha.Modulation of transcriptional-activity by oxygen tension [J]. J Biol Chem, 1997, 272(31): 19253-19260
    15. Hur E, Chang KY, Lee E, et al. Mitogen-activated protein kinase kinase inhibitor PD98059 blocks the trans-activation but not the stabilization or DNA biding ability of hypoxia-inducible factor-1 alpha [J]. Mol Pharmacol, 2001, 59(5): 1216-1224
    16. Osada M, Imaoka S, Sugimoto T, et al. NADPH-cytochrome P-450 reductase in the plasma membrane modulates the activation of hypoxia-inducible factorl [J]. J Biol Chem, 2002, 277(26): 23367-23373
    17. Sang N, Stiehl DP, Bohensky J, et al. MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J Biol Chem, 2003, 278(16): 14013-14019
    18. Clifford SC, Asituti D, Hooper L, et al. The pVHL-associated SCF ubiquitin ligase comlex: mocular genetic analysis of elongin B and C, Rbxl and HIF-1 alpha in renal cell carcinoma. Oncogene, 2001, 20(36): 5067-5074
    19. Marx J. Cell biology: How cells endule low oxygen [J]. Science, 2004, 303(5663): 1454-1456
    20. Jiang BH, Jiang G, Zheng JZ, et al. Phosphatidylinositol3-Kinase signaling controls levels of hypoxia-inducible factor 1 [J]. Cell Growth Differ, 2001, 12(7): 363-369
    21. Alvarez-Tejado M, Alfranca J, Aragones J, et al. Lack of evidence for the involvement of the phosphoinositide 3-Kinase/Akt pathway in the activation of hypoxia-inducible factors by low oxygen tension [J]. J Biol Chem, 2002, 277(16): 13508-13517
    22. Semenza GL. Expression of hypoxia-inducible factor 1: mechanisms and consequence. Biolchem Pharmacol, 2000, 59(1):47-53
    23.陆雪官,王顺,胡超苏,等.鼻咽癌细胞在乏氧.再氧合过程中HIF-1α和VEGF基因mRNA水平表达变化的初步研究.中华放射肿瘤学杂志,2002,11(3):199-201
    24.吴强,杨述华,王瑞英,等.干扰RNA沉默HIF-1α在缺氧状态下对骨肉瘤细胞VEGF表达的影响.癌症,2005,24(5):531-535
    25. Zhong H, Marzo AM, Laughner E, et al. Overexpression of hypoxia-inducible dactor 1 alpha in comm.on human cancers and their metastases. Cancer Res, 1999, 59(22): 5830-5835
    26. Talks KL, Turley H, Garter KC, et al. The expression and distribution of the hypoxia-inducible factors HIF-1 alpha and HIF-2 alpha in normal human tissue, cancers, and tumor-associated macrophages. Am J Pathol, 2000, 157(2): 411-421
    27. Bos R, van der Groep P, Greiger AE, et al. Levels of hypoxia-inducible factor 1 alpha indepentdently predict prognosis in patients with lymph node negative breast carcinoma. Cancer, 2003, 97(6):1573-1581
    28. Schindl M, Schoppmann SF, Samonigg H, et al. Overexpression of hypoxia-inducible factor 1 alpha is associated with an unfavorable prognosis in lymph node-positive brest cancer [J]. C lin Cancer Res, 2002, 8(6): 1831-1837
    29. Zhong H, Semenza GL, Simons JW, et al. Up-regulation of hypoxia-inducible factor 1 alpha is an early event in prostate carcinogenesis. Cancer Detect Prev, 2004, 28(2): 88-93
    30. Bimer P, Schindl M, Obermair A, et al. Expression of hypoxia-inducible factor 1 alpha in epithelial ovarian tumors: Its impact on prognosis and on response to chemotherapy [J]. Clin Cancer Res, 2001,7(6): 1661-1668
    31. Jiang YA, Fan LF, Jiang CQ, et al. Expression and significance of PTEN, hypoxia-inducible factor-1 alpha in colorectal adenoma and adenocarcinoma. World J Gastroenterol, 2003, 9(3): 491-494
    32.樊利芳,刁路明,陈得基,等.肺癌组织中缺氧诱导因子-1α的表达及其与凋亡和增殖的关系.癌症,2002,21(3):254-258
    33. Volm M, Koomagi R. Hypoxia-inducible factor(HIF-1) and its relationship to apoptosiss and prolixferation in lung cancer. Anticancer Res, 2000, 20(3A):1527-1533
    34. Kurokawa T, Miyamoto M, Kato K, et al. Overexpression of hypoxia-inducible-factor 1 alpha (HIF-lalpha) in oesophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Br J Cancer, 2003, 89(6):1042-1047
    35. Shobe M, Rockwell P, Goldstein N, et al. Halting angiogenesis suppresses carcinoma cell invasion. Nat Med, 1997, 8(11): 1201-1212
    36. Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol, 1996, 16(9): 4604-4613
    37. Semenza GL. Hypoxia-inducible factor 1: master regulator of O_2 hemeostasis [J]. J Cell Mol Med, 2004, 8(4): 423-431
    38. Claffey KP, Brown LF, del Aguila LF, et al. expression of vascular permeability factor/vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. Cancer Res, 1996, 56(1): 172-181
    39. Carmeliet P, Jain PK. Angiogenesis in cancer and other diseases. Nature, 2000, 407(6801): 249-257
    40. Kunz M, Ibrahim SM. Mocular response to hypoxia in tumor cells[J]. Mol Cancer, 2003, 3(10): 721-732
    41. Shweiki D, Itrin A, Softer D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-mediated angiogenesis. Nature, 1992, 359(6398): 843-845
    42. Shweiki D, Neeman M, Itrin A, et al. Induction of vascular endothelial growth factor expression by hypoxia and glucose deficiency unmulticell spheroids:implication for tumor angiogenesis. Proc Natl Acad Sci USA, 1995, 92(3): 768-772
    43. Damert A, Machein M, Breier G, et al. Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-chriven mechanism. Cancer Res, 1997, 57(17): 3860-3864
    44. Ravi R, Mookerjee B, Bhujwlla ZM, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1 alpha. Genes Dev, 2000, 14(1): 34-44
    45. Jiang CQ, Liu ZS, Qian Q, et al. Regulation of hypoxia-inducible factor 1 alpha(HIF-1 alpha) geng expression with vascular endothelial growth factor (VEGF) and microvessel density(MVD) in human colorectal adenoma and adenocarcinoma. Ai Zheng, 2003, 22(11): 1170-1174
    46. Mohamed KM, Le A, Duong H, et al. Correlation between VEGF and HIF-1 alpha expression in human oral squmous cell carcinoma. Exp Mol Pathol, 2004, 76(2): 143-152
    47. Kimura S, Kitadai Y, Tanaka S, et al. Exprssion of hypoxia-inducible factor(HIF)-1α is associated with vascular endothelial growth factor expression and tumor angiogenesis in human oesophageal squamous cell carcinoma. Eur J Cancer, 2004, 40(12): 1904-1912
    48. Kuwai T, Kitadai Y, Tanaka S, et al. Exprssion of hypoxia-inducible factor(HIF)-1α is associated with vascularization in human colorectal carcinoma. Int J Cancer, 2000,105(2):176-181
    49. Bruick RK, Mcknight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science, 2001,294(5545): 1337-1340
    50. Shannon AM, Bouchier Hayes D J, Condron CM, et al. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev, 2003, 29(4): 297-307
    51. Vaupel P, Hokel M. Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance. Int J Oncol, 2000 17(5): 869-879
    52. Harrison L, Blackwell K. Hypoxia and Anemia:Factors in decreased sensitivity to radiation therapy and chemotherapy? Oncol, 2004, 9(Suppl 5):31-40
    53. Carmeliet P, Dot Y, Herbert JM, et al. Role of hypoxia-mediated apoptosis, cell proliferation and tumor angiogenesis. Nature, 1998, 30(6692):485-490
    54. Hanze J, Eul BG, Savai R, et al. RNA interference for HIF-1 alpha inhibits its downstream signaling and affects cellular proliferation [J]. Biochem Biophys Res Commun, 2003, 312(3):571-577
    55. Goda N, Ryan HE, Khadivi B, et al. Hypoxia-inducible factor 1 alpha is essential for cell cycle arrest during hypoxia [J]. Mol Cell Biol, 2002, 23(1): 359-369
    56. Goda N, Dozier SJ, Johnson RS. HIF-1 in cell cycle regulation, apoptosis, and tumor progression. Antioxid Redox Signal, 2003, 5(4): 467-473
    57. Gardner LB, Li Q, Park MS, et al. Hypoxia inhibits G1/S transition through regulation of p27 expression. J Biol Chem, 2001, 276(11):7919-7926
    58. Green SL, Freiberg RA, Giaccia AJ. p21(Cipl) and p27(Kipl) regulate cell cycle reentry after hypoxic stress but are not necessary for hypoxia-induced arrest. Mol Cell Biol, 2001, 21 (4):1196-1206
    59. Greco O, Marples B, Joiner MC, et al. How to overcome (and exploit) tumor hypoxia for targeted gene therapy. J Cell Physiol, 2003, 197(3): 312-325
    60. Um JH, Kang CD, Bae JH, et al. Association of DNA-dependent protein kinase with hypoxia inducible factor-1 and its implication in resistance to anticancer drugs in hypoxic tumor cells. Exp Mol Med, 2004, 36(3): 233-242
    61. Unruh A, Ressel A, Mohamed HG, et al. The hypoxia-inducible factor-1 alpha is a negative factor for tumor therapy. Oncogene, 2003, 22(21): 3213-3220
    62. Pujol JL, Simony J, Cautier V, et al. Immunohistochemical study of pglycoprotein distribution in lung cancer [J]. Lung Cancer, 1993, 10(1-2):1-12
    63. Narasaki F, Oka M, Fukuda M, et al. Multidrug resistance-associated protein gene expression and sensitiveity in human lung cancer cells [J]. Anticancer Res, 1997(5A): 3493-3497
    64. Koomagi R, Mattern J, Volm M, et al. Glucose-related protein(GRP78) and its relationship to the drug-resistance proteins P170, GST-pi, LRP56 and angiogenesis in non-small cell lung carcinomas. Anticancer Res, 1999, 19(5B):4333-4336
    65. Comerford KM, Wallace TJ, Karhausen J, et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1)gene. Cancer Res, 2002, 62(12): 3387-3394
    66.夏曙,于世英,袁响林,等.乏氧对肺腺癌细胞A549细胞p糖蛋白和多药耐药相关蛋白表达的影响.中华医学杂志,2004,84(8):663-666
    67.朱虹,陈孝平,罗顺峰,等.缺氧诱导因子1α依赖性缺氧诱导人肝癌细胞多药耐药相关基因的表达及意义.中华外科杂志,2005,43(5):277-281
    68. Wartenberg M, Donmez F, Ling FC, et al. Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid grown from pluripotent embryonic stem cells. FASEB J, 2001, 15(6):995-1005
    69. Wartenberg M, Ling FC, Musehen M, et al. Regulation of the multidrug resistance transporter p-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species. FASEB J, 2003, 17(3):503-506
    70.邓建华,白进良,马鹏程,等.谷胱甘肽转移酶-Pi与缺氧诱导因子-1α在膀胱癌组织中的表达及意义.癌症,2006,25(2):190-193
    71. Sakata K, Kwok TT, Murphy BJ, et al. Hypoxia-induced drug resistance: comprarison to p-glycoprotein-associated drug resistance. Br J Cancer, 1991, 64(5): 809-814
    72. Greijer AE, de jong MC, Scheffer GL, et al. Hypoxia-induced acidification causes mitoxantrone resistance not mediated by drug transporters in human breast cancer cells. Cell Oncol, 2005, 27(1):43-49
    73. Hyun JY, Chun YS, Kim TY, et al. Hypoxia-inducible factor 1 alpha-mediated resistance to phenolic anticancer. Chemotherapy, 2004, 50(3): 119-126
    74. Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev, 1996, 76(3):839-885
    75. Hochachka PW, Buck LT, Doll CJ, et al. Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanismsfor surviving oxygen lack. Proc Natl Acad Sci USA, 1996, 93(18):9493-9498
    76. Lopez-Bameo J, Pardal R, Ortega-Saenz P. Cellular mechanism of oxygen sensing. Annu Rev Physiol, 2001, 63:259-287
    77. Semenza GL. HIF-1 and tumor progression: pathophysiology andtherapeutics. Trends Mol Med, 2002, 8(4 Suppl):S62-S67
    78. Brown JM. The hypoxic cell: a target for selective cancer therapy:eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res, 1999, 59 (23):5863-5870
    79. Harris AL. Hypoxia: a key regulatory factor in tumour growth. Nat Rev Cancer, 2002, 2(1):38-47
    80. Zheng D, Jinzhao W, Fushin Y, et al. Apoptosis-Resistance of Hypoxic CellsMultiple Factors Involved and a Role for IAP-2. Am J Pathol, 2003, 163(2):663-671
    81. Graeber TG, Osmanian C, Jacks T, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature, 1996, 379 (6560):88-91.
    82. Johnstone RW, Ruefi AA, Lowe SW. Apoptosis:a link between cancer genetics and chemotherapy. Cell, 2002, 108(2): 153-164
    83. Letai A, Bassik MC, Walensky LD, et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell, 2002, 2(3): 183-192
    84. Adams JM, Cory S. The Bcl-2 protein family:arbiters of cell survival. Science, 1998, 281(5381): 1322-1326
    85. Makin G, Dive C. Apoptosis and cancer chemotherapy. Trends Cell Biol, 2001, 11(11): S22-S26
    86. Nakata B, Muguruma K, Hirakawa K, et al. Predictive value of Bcl-2 and Bax protein expression for chemotherapeutic effect in gastric cancer a pilotstudy [J]. Oncology, 1998, 55 (6): 543-547
    87. Satomi D, Takiguchi N, Koda K, et al. Apoptosis and apoptosis-associated gene products relatedto the response to neoadjuvant chemotherapy for gastric cancer[J]. Int J Oncol, 2002, 20 (6):1167-1171
    88. Kondo S, Shinomura Y, Kanayama S, et al. Modulation of apoptosis by endogenous Bcl-xL expression in MKN-45 human gastric cancer cells[J]. Oncogene, 1998, 17 (20):2585-2591
    89. Janine T, Erler-Christopher J, Cawthorne J, et al. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and independent mechanism and contributes to drug resistance. Molecular and Cellular Biology, 2004, 24(7):2875-2889
    90. Acs G, Zhang P J, McGrath CM, et al. Hypoxia-inducible erythroprotein signaling in squmous dysplasia and aquamous cell carcinoma of the uterine cervix and its potential role in cervical carcinogensis and tumor progresssios [J]. Am J Patho, 2003,162(6):1789-1806
    91. Yu EZ, Li YY, Liu XH, et al. Antiapoptotic action of hypoxia-inducible factor-1 alpha in human endothelial cells [J]. Lab Invest, 2004, 84(5):553-561
    92. Piret JP, Mottet D, Raes M, et al. CoCl_2, a chemical inducer of hypoxia-inducible factor-lalpha, and hypoxia reduce apoptotic cell death in hepatoma call line HepG_2 [J]. Ann N Y Acad Sci, 2002, 973:443-447
    93. Zaman K, Ryu H, Hall D, et al. Protcetion from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(wafl/cipl), and erythropoietin [J]. J Neurosci, 1999, 19(22):9821-9830
    94. Akakura N, Kobayashi M, Horiuchi I, et al. Constitutive expression of hypoxia-inducible factor-lalpha renders pancreatic cells resistant to apoptosis induced by hypoxia and nutrient deprivation [J]. Cancer Res, 2002, 61(17): 6548-6554
    95. Unruh A, Ressel A, Mohamed HG, et al. The hypoxia-inducible factor-lalpha is a negative factor for tumor therapy [J]. Oncogene, 2003, 22(21):3213-3220
    96. Efler JT, Cawthome C J, Williams K J, et al. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor-1-dependent and-independent mechanisms and contributes to drug resistance [J]. Mol Cell Biol, 2004, 24(7): 2875-2889
    97. Sasabe E, Tatemoto Y, Li D, et al. Mechanism of HIF-lalpha-dependent suppression of hypoxia-induced apoptosis in squamous cell carcinoma cells. Cancer Sci, 2005, 96(7):394-402
    98. Piret JP, Minet E, Coss JP, et al. Hypoxia-inducible factor-1-dependent overexpression of myeloid cell factor-1 protects hypoxic cells against tel-t-butyl hydroperoxide-induced apoptosis. J Bio Chem, 2005, 280(10):9336-9344
    99. Dong Z, Wang J. Hypoxia selection of death-resistant cells. A role for Bcl-X(L). J Biol Chem, 2004, 279(10): 9215-9221
    100.黄磊,敖启林,李芳,等.低氧对紫杉醇诱导的人卵巢癌细胞A2780凋亡的影响及机制.癌症,2005,24(4):408-413
    101. Baek JH, Jang JE, Kang CM, et al. Hypoxia-induced VEGF enhances tumor Suviability via suppression of serum deprivation-induced apoptosiss [J]. Oncogene, 2000, 19(40):4621-4631
    102. Jean PP, Denis M, Martine R, et al. HIF-1α a pro-or anti-apoptotic pritein? [J]. Biochem Pharmacol, 2002, 64(56):889-892
    103. Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia [J]. Proc Natl Acad Sci U S A, 2000, 97(16):9082-9087
    104. Achison M, Hupp TR. Hypoxia attenuats the p53 response to cellular damage[J]. Oncogene, 2003, 22(22): 3431-3440
    105. Dong Z, Venkatachalam MA, Wang J, et al. Up-regulation of apoptosis inhibitory pritein IAP-2 by hypoxia.Hif-1-independent mechanisms. J Biol Chem, 2001, 276(22): 18702-18709
    106. Sowter H M, Ratcliffe P J, Watson P, et al. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res, 2001, 61(18): 6669-6673
    107. Kim J Y, Ahn H J, Ryu JH, et al. BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1 alpha. J Exp Med, 2004, 199(1): 113-124
    108. Shoshani T, Faerman A, Mett I, et al. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol Cell Biol, 2002, 22(7): 2283-2293
    109. Bruick RK. Expression of the gene encoding the proapoptotic NIP3 protein is induced by hypoxia. Proc NatlAcad Sci U S A, 2000, 97(16): 9082-9087
    110. Piret JP, Lecocq C, Toffoli S, et al. Hypoxia and COCl_2 protect HepG2 cells against serum deprivation-and t-BHP-induced apoptosis: a possible anti-apoptotic role for HIF-1. Exp Cell Res, 2004, 295 (2): 340-349
    111. Kaelin WG Jr. How oxygen makes its presence felt. Genes Dev, 2002, 16(12): 1441-1445
    112. Mabjeesh NJ, Post DE, Willard MT, et al. Geldanamycin induces degradation of hypoxia-inducible factor lalpha protein via the proteosome pathway in prostate cancer cells [J].Cancer Res, 2002,62(9):2478-2482
    113. Yeo EJ, Chun YS, Cho YS, et al. YC-1: A protential anticancer drug targeting hypoxia-inducible factor 1 [J]. J Natl Cancer Inst, 2003, 95(7):516-525
    114. Lee RD, Talks KL, Pezzella F, et al. Relation of hypoxia-inducible factor-2 alpha(HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in human breast cancer[J]. Cancer Res, 2002, 62(5): 1326-1329
    115. Sun X Kanwar JR, Leung E, et al. Gene transfer of antisense hypoxia inducible factor-1 alpha enhances the therapeutic efficacy of cancer immunotherapy [J]. Gene Ther, 2001, 8(8):638-645
    116.孙学英,孟凡强,姜洪池,等.联合反义缺氧诱导因子-1α与B7-1基因治疗肿瘤的实验研究.中华肿瘤杂志,2005,27(7):404-407
    117. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806-811
    118. Fire A. RNA-triggered gene silencing. Trends Genet, 1999,15(9):358-363
    119. Hannon GL. RNA interference. Nature, 2002, 418(6894): 244-251
    120. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411 (6836):494-498
    121. Post DE, Van Meir EG.. A novel hypoxia-inducible factor(HIF) activated oncolytic adenovirus for cancer therapy [J]. Oncogene, 2003, 22(14):2065-2072
    122.吴强,杨述华,叶树楠,等.RNA干扰缺氧诱导因子-1α治疗骨肉瘤的实验研究.中华医学杂志,2005,85(16):409-413
    123.汲振余,赵立群,杨观瑞,等.HIF-1α在食管上皮细胞中的诱导表达及对光动力疗法的影响.肿瘤,2006,26(6):507-511
    124. Zhang X, Kon T, He Wang H, et al. Enhancement of hypoxia-induced tumor cell death in vitro and radition therapy in vivo by use of small interfering RNA targeted to hypoxia-inducible factor-1α. Cancer Res, 2004, 64(22): 8139-8142
    125. Song X, Liu X, Chi W, et al. Hypoxia-induced resistance tocisplatin and doxorubicin in nonsmall cell lung cancer is inhibited by silencing of HIF-1 alpha. Cancer Chemother Pharmacol, 2006, 58(6):776-784
    126. Zhang Q, Zhang ZF, Rao JY, et al. Treatment with siRNA and antisense oligonucleotides targeted to HIF-1 alpha induced apoptosis in human tongue squmous cell carcinomas. Int J Cancer, 2004, 111(6):849-857
    127.马超,周庚寅,肖颖,等.RNA干扰沉默缺氧诱导因子-1α逆转乳腺癌的耐药性.中华病理学杂志,2006,35(6):357-360

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700