用户名: 密码: 验证码:
冻融及高温后混凝土多轴力学特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冻融循环和高温使混凝土的强度降低,变形更为复杂,作为一种重要的承重材料,混凝土又广泛的应用于严酷的环境中,不可避免会受到冻融循环或高温的损伤。目前国内外虽有一些相关冻融循环及高温后混凝土力学性能的试验研究,但或者在某些方面尚不系统,如目前混凝土的抗冻指标与强度指标分别设计,缺乏引气混凝土经受冻融循环后强度降低规律的系统研究;或者仅是针对单轴应力状态而进行的,如冻融后引气混凝土的双轴力学特性、高温后普通混凝土的三轴力学特性、基于多轴试验的混凝土经受冻融循环、高温后的多轴本构模型等尚属空白。这些问题影响了人们对相应环境下混凝土力学特性的认识。本文结合国家自然科学基金项目《冻融条件下混凝土的多轴强度和破坏准则》(50479059)及辽宁省教委科研基金项目《恶劣环境因素下混凝土破坏准则和耐久性研究》(202390102),进行了经受冻融循环及高温后混凝土力学特性的试验研究,主要内容如下:
     (1)进行了多种强度等级、多种抗冻等级引气混凝土的冻融循环试验,对满足抗冻要求的混凝土进行了单轴压试验研究,对比分析了其宏观、微观形态,系统地探讨了各强度等级引气混凝土经受冻融循环后强度劣化的规律,给出了混凝土经受冻融循环后的单轴立方体强度、棱柱体抗压强度与冻融循环次数的关系式,通过试验得到的尺寸折算系数,得到了冻融循环后不同抗冻等级引气混凝土剩余强度的计算公式,提供了方便工程应用的表格。
     (2)进行了冻融循环后引气混凝土等比例双轴压及双轴拉压试验研究,分别分析了冻融循环后引气混凝土的强度、变形和弹性模量与冻融循环次数及应力比的关系,根据冻融循环后引气混凝土强度包络线随冻融循环次数的变化规律,建立了主应力空间的破坏准则。
     (3)进行了冻融循环后普通混凝土等比例双轴压及双轴拉压试验研究,分别分析了冻融循环次数及应力比对普通混凝土的强度、变形和弹性模量的影响,给出了双轴压应力状态下,最大主压应力方向初始弹性模量的计算公式,根据冻融循环后引气混凝土强度包络线随冻融循环次数的变化规律,建立了主应力空间的破坏准则。
     (4)进行了高温后普通混凝土等比例双轴压及双轴拉压试验研究,分别分析了高温后普通混凝土的强度、变形和弹性模量与温度及应力比的关系,给出了相应的计算公式,根据高温后普通混凝土强度包络线随温度的变化规律,给出了主应力空间的破坏准则。
     (5)进行了高温后普通混凝土等比例三轴压试验研究,分析了高温后应力比、温度对混凝土强度和变形的影响,建立了三轴应力状态下高温后普通混凝土八面体应力空间的破坏准则,根据子午面及偏平面上八面体正应力与剪应力随温度变化的规律,并结合常温时混凝土三轴破坏准则,将高温后混凝土破坏准则的应用范围扩大到较高静水压力区。
     (6)分析了高温后普通混凝土应力应变关系随温度的变化规律,计算了双轴应力下压应力方向峰值应力点处的等效单轴应变,建立了高温后普通混凝土双轴等效单轴应变本构模型;得到了以应力不变量表述的双轴应力状态下的屈服函数,分析了高温后普通混凝土有效应力与有效塑性应变的关系,建立了高温后普通混凝土双轴相关联塑性硬化本构模型,编制了相应的非线性有限元程序CECFE,采用建立的本构模型进行了算例分析,计算结果在整体上与试验值有较好的一致性。
     (7)分析了冻融循环后引气、普通混凝土应力应变关系随冻融循环次数的变化规律,得到了双轴应力下压应力方向峰值应力点处的等效单轴应变、屈服函数、硬化函数及硬化参数,建立了双轴应力下的等效单轴应变本构模型和相关联塑性硬化本构模型,并进行了算例分析,计算结果与试验值具有较好的一致性。
Freeze-thaw cycling or high temperature can hurt the strength of concrete, and result in more complex deformation. As a kind of bearing material, concrete is widely used in some severe environment. Therefore, suffering freeze-thaw cycling or high temperature is unavoidable for some reinforced concrete structures. Although some experimental studies on the deterioration of mechanical behavior of concrete, due to freeze-thaw cycling or high temperature, could be found at home and abroad, yet, to the best knowledge of the author, these studies are not systematic in some fields, or commonly concentrate on the uniaxialmechanical behavior. Such as systematic studies on the rule of strength decrease of air-entrained concrete after freeze-thaw cycling are lacking, the biaxial mechanical behavior of air-entrained concrete suffered freeze-thaw cycling, the tri-axial mechanical behavior of concrete suffered high temperature, and the multi-axial constitutive models based on corresponding multi-axial tests for concrete after freeze-thaw cycling or high temperature are still not studied. For the purpose of enlarging people's understanding on mechanical characteristics of concrete damaged by such severe conditions, this doctoral dissertation concentrates on corresponding experimental studies on the fields mentioned above, basing on the investigation on the project of National Nature Science Foundation "multi-axial stress and failure criterion of concrete in freeze-thaw environments" (50479059) and the project of educational department of Liao Ning province science foundation "Research on failure criterion and durability of concrete in severe environments"(2023901023). Main research contents are as follows:
     (1) The freeze-thaw cycling tests are carried out on air-entrained concrete of various strength grades and frost resistance grades. For concrete samples meeting the request of frost resistance, systematic uniaxial compressive tests are followed, and the decrease of strengths with the increase of freezing-thawing cycles is analyzed systematacially. Relationships between uniaxial cube strength, prism strength and freezing-thawing cycles are derived from test results, respectively. The formula of residual strength of air-entrained concrete after freeze-thaw cycling is obtained, using the size converting coefficient derived from contrasting tests. And corresponding tables for engineering application are given.
     (2) Biaxial compressive and biaxial tensile-compressive experiments are made on the air-entraining concrete suffered freeze-thaw cycling. The relationships between strengths, strains, elastic moduli and freezing-thawing cycles, stress ratios are analyzed respectively. And corresponding biaxial failure criteria is built in principle stress space, based on the varying rule of failure envelopes, with freezing-thawing cycles.
     (3) Biaxial compressive and biaxial tensile-compressive experiments are conducted on the normal concrete suffered freeze-thaw cycling. The influences of freezing-thawing cycles, stress ratios on strengths, strains and elastic moduli are analyzed respectively. The formula of initial elastic modulus in the maximal principle stress direction is given. According to the varying rule of failure envelops with freezing-thawing cycles, the biaxial failure criterion is built in principle stress space.
     (4) Biaxial compressive and biaxial tensile-compressive experiments are made on the normal concrete suffered high temperature. The relationships between strengths, strains, elastic moduli and freezing-thawing cycles, stress ratios are analyzed respectively. And corresponding formulas are derived form test results. The biaxial failure criterion is built in principle stress space, following on the shape change of failure envelopes with temperatures.
     (5) Tri-axial compressive tests are conducted on the normal concrete suffered high temperature. The influences of high temperatures, stress ratios on strengths and strains are analyzed respectively and the tri-axial failure criterion is built. Based on the varying rules of the octahedral normal stresses, shear stresses in meridian plane and deviatoric plane, the tri-axial failure criterion is extended to higher hydrostatic stress state.
     (6) The varying rule of biaxial stress-strain curves is analyzed, for concrete suffered high temperature. Based on the equivalent uniaxial strains at peak compressive stresses deduced from test results, the biaxial equivalent uniaxial strain constitutive model is built. The yield functions expressed by stress invariants are obtained from test results. Based on the analysis of relationships between effective stresses and effective plastic strains, the biaxial associated plastic hardening constitutive model is built. Using CECFE programmed for concrete suffered severe conditions, the constitutive models are employed for analysis of FEM, and the calculated values are agreement with test results on the whole.
     (7) Basing on the varying rule of stress-strain curves of normal and air-entrained concrete with freezing-thawing cycles, the corresponding equivalent uniaxial strains at peak compressive stresses, yield functions and hardening parameters are obtained. The biaxial equivalent uniaxial strain constitutive model and the biaxial associated plastic hardening constitutive model are built, respectively for both normal concrete and air-entrained concrete suffered freeze-thaw cycling. The analysis of calculated examples indicates that the agreement of calculated results and test is quite well in general.
引文
[1] 张誉,蒋利学,张伟平等著.混凝土结构耐久性概论.上海,2003.12.
    [2] 亢景富,冯乃谦.水工混凝土耐久性问题与水工高性能混凝土.混凝土与水泥制品.1997,8(4):4-10.
    [3] T. C. Powers. The Air Requirement of Frost-Resis-tance Concrete. Proceedings of Highway Research Board. 1949, 29: 184-202.
    [4] T. C. Powers, Helmuth. R. A. Theory of Volume Change in Hardened Portland Cement Paste During Freezing, Proceedings. Highway Research Board. 1953, 32: 285-297.
    [5] T. C. Powers. A Working Hypothersis for Further Studies of Frost Resistance of Concrete. Proc. ACI. 1945 (41): 245-272.
    [6] 武汉钢铁设计院.冶金工厂热结构调查及温度实测资料.科学技术成果报告.1974,No.7408:11.
    [7] 时旭东.高温下钢筋混凝土杆系结构试验研究和非线性有限元分析(博士论文).北京:清华大学,1992.
    [8] 林志明,张雄.火灾混凝土损伤诊断的进展.建筑材料学报.2002,5(4):347-352.
    [9] Lawson. R. M. Fire tests on ribbed concrete floors. Elsevier Applied Science Publishers Ltd., 1986.
    [10] 陈荣毅,沈祖炎.钢筋混凝土结构抗火设计评述.工业建筑.1999,29(8):12-16.
    [11] G. G. Litvan. Phase transitons of adsorbatre: IV, Mechanism of frost action in hardenedcement paste. Jour of the Amer CEram Soc. Jan. 1972,55 (1): 38-42.
    [12] M. J. Setzer. A new approach to describe frost action in hardened cement paste and concrete, in Proc. of a conf., Univ. of Sheffield U. K., 1977: 312-325.
    [13] B. V. Enustun, Soo K. S., Bergeson K. L. Frost susceptibility of concrete in near-saturated states. Jour. of Mat. in Civ. Engrg. 1994,6 (2): 290-306.
    [14] G. Fagerlund. Degre' critique de saturation un outil pour I'estimation dela resistance au gel des materiaux de construction Mat et Constr. 1971, 4 (23): 211-285.
    [15] 姜双伦,姬立德,吴会强.混凝土的冻融破坏与外加剂.混凝土.2001,2:54-55.
    [16] G. Verbeck, R. Landgren. Influence of physsical characteristics of aggregates on frost resistance of concrete. Proc ASTM, 1960: 1063-1079.
    [17] P. D. Cady. Mechanism of frost action in concrete aggregates. Jour of Mat. 1969,4 (2): 294-311.
    [18] 徐定华,徐敏.混凝土材料学.北京:中国标准出版社,2002.
    [19] Everett. D. H. The thermodynamics of frost damage to porous sollids. Trans Faraday Society. 1961, 57: 1541-1551.
    [20] J. P. Bournazel, M. Moranville. Durability of concrete the crossroad between chemistry and mechanics. Cement and Concrete Research. 1997, 27 (10): 1543-1552.
    [21] 赵霄龙,军卫.,巴恒静.高性能混凝土抗冻性与孔结构的关系.工业建筑.2003,33(8):5-8.
    [22] 施士升.冻融循环对混凝土力学性能的影响.土木工程学报.1997,30(4):35-42.
    [23] 杨英姿,冯奇,范征宇等.负温混凝土抗渗性的试验研究.建筑技术.2002,33(10):738-740.
    [24] 王媛俐,姚燕.重点工程混凝土耐久性的研究与工程应用.北京:中国建材工业出版社,2001.
    [25] Y. X. Zhou, M. D. Cohen, L. W. Dolch. Effect of external loads on the frost-resistant properties of mortar with and without silica fume. ACI Mater. J. 1994, 91 (6): 595-601.
    [26] 覃维祖.引气作用及其对混凝土性能的影响.施工技术.2003,32(8):1-3.
    [27] Sun W., Mu R., al. X. L. e. Effect of chloride salt, freeze-thaw cycling and externally applied load on the performance of the concrete. Cement and Concrete Research. 2002, 32: 1859-1864.
    [28] Yamato, T. Emotoy, M. S. Strength and Thawing Resistance of Concrete in Corporating Condensed Silica Fume. ACI. 1986, SP-91: 1095-1117.
    [29] Bouguerra. A, Ledhe. M. A, al B. F. e. Effect of microstructure on the mechanical and thermal propertied of light weight concrete prepared from clay, cement, and wood aggregates. Cement and Concrete Reseatch. 1998, 28 (8): 1179-1190.
    [30] Mohamed. O. A., Rens. K. L., Stalnaker. Factors affecting resistance of concrete to freezing and thawing damage. ASCE Journal of Materials in Civil Engineering(USA). 2000. Feb: 6.
    [31] N. Bouzoubaa^, M. H. Zhang, V. M. Malhotra. Mechanical properties and durability of concrete made with high-volume fly ash blended cements using a coarse fly ash. Cement and Concrete Research. 2001, 31: 1393-1402.
    [32] B. B. Sabir. Mechanical properties and frost resistance of silica fume concrete. Cement and Concrete composites. 1997, 19: 285-294.
    [33] Malhotra. V. M. Mechanical Properties, durability and drying shrinlage of Portland Cement concrete incorporating silica fume, Cement, concrete and daggregtes. ASTM. 1983,5 (1): 3-13.
    [34] Jacobsen S., Marchand J., Homain H. SEM observations of the microstructure of frost deteriorated and self-healed concrete. Cement andConcrete Research. 1995, 25 (8): 1781-1790.
    [35] Penttala V., Al-Neshawy F. Stress and strain state of concrete during freezing and thawing cycles. Cement and Concrete Research. 2002, 32: 1407-1420.
    [36] Rosta(?), S. F. Stress-strain behavior of concrete at extremely low temperature. Cement and Concrete Research. 1980, 10: 565-572.
    [37] E. K. Attiogbe. Predicting freeze-thaw durability of concrete --A new approach. ACI Mat. Jour. 1996, 93 (5): 457-464.
    [38] B.B.Sabir,K.kouyiali.掺引气剂冷凝硅灰混凝土的抗冻耐久性.低温建筑技术.1995,2:50-52.
    [39] 刘和斌.低强度高抗冻耐久性混凝土试验研究.混凝土.1997,2:24-37.
    [40] 游有鲲,缪昌文,慕儒等.粉煤灰高性能混凝土的研究.混凝土与水泥制品.2000,10(5):14-15.
    [41] 曹建国,李金玉,林莉田等.高强混凝土抗冻性的研究.建筑材料学报.1999,2(4):292-297.
    [42] Max. J. Setzer. Freeze-thaw and deicing resistance of concrete, Report RILEM TC 117-FDC. Mat. and Struc., Supplement. 1997: 3-6.
    [43] 李田,刘西拉.钢筋锈蚀和混凝土冻融破坏的可靠性分析及防范措施.建筑结构学报.1995,16(2):43-50.
    [44] 范沈抚.高强硅粉混凝土抗冻性及气泡结构的试验研究.水利学报.1990,7(7):20-24.
    [45] 严安,李启令,吴科如.高性能混凝土在荷载作用下的冻融性能及其可靠性分析.混凝土与水泥制品.2000,3:3-6.
    [46] 丁雁飞,孙景进.硅粉混凝土抗冻性研究.混凝土.1991,6(3):41-45.
    [47] T. C. Powers. Basic consideration pertaining to freezing-and-thawing tests. Proc. ASTM,. 1955, 55: 1132-1153.
    [48] G. G. Litvan. Frost action in cement in the pressure of de-icers. Cement and Concrete Research. 1976, 6: 351-356.
    [49] 卫军,张晓玲,赵霄龙.混凝土结构耐久性的研究现状和发展方向.工业建筑.1997,27(5):1-7.
    [50] 金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望.浙江大学学报(工学版).2002,36(4):371-381.
    [51] 关宇刚,伟孙.,缪昌文.基于可靠度与损伤理论的混凝土寿命预测模型阐述与建立.硅酸盐学报.2001,29(6):530-534.
    [52] 慕儒,缪昌文,刘加平等.氯化钠、硫酸钠溶液对混凝土抗冻性的影响及其机理.硅酸盐学报.2001,29(6):523-529.
    [53] 卢木.耐久性混凝土耐久性研究现状和研究方向.工业建筑.1997,27(5):1-7.
    [54] 杜天玲,孟云芳,王治虎.提高混凝土抗冻耐久性技术的研究综述 宁夏农学院学报.2002,23(2):80-83.
    [55] 程红强,张雷顺,李平先.冻融对混凝土强度的影响.河南科学.2003,2(1):215-216.
    [56] 于长江.冻融环境下普通混凝土的多轴破坏准则.大连:大连理工大学硕士论文,2004.3.
    [57] 宋玉普,覃丽坤,张众等.冻融循环后混凝土双轴压的试验研究及理论分析.水利学报.2004,1:95-99.
    [58] 蔡吴,覃维祖,刘西拉.冻融循环作用下混凝土力学性能的损失.工程力学(增刊).1996:29-33.
    [59] 李金玉,曹建国,徐文雨等.混凝土冻融破坏机理的研究.水利学报.1999,1:41-49.
    [60] 覃丽坤.高温及冻融循环后混凝土多轴强度和变形试验研究.博士论文.大连:大连理工大学,2004.2
    [61] Morihiro. H. Mechanical study on deterioration of rock and concrete due to freezing and thawing action (Dissertation). Department of Civil Engineering: Tohoku University, 1994.
    [62] Robinson. G. S. Behavior of Concrete in Biaxial Compression. Proceeding ASCE, ST1, Feb. 1967: 71-86.
    [63] Kupfer. H, Hilsdorf. H. k, Rusch. H. Behavior of Concrete under Biaxial Stress. Journal of ACI. 1969: 656-666.
    [64] Mills. L. L, Zimmerman. R. M. Compressive Strength of Plain Concrete under Multiaxial Loading Conditions. Journal of ACI. 1970: 802-807.
    [65] Chuanzhi W., zhenhai G., Xiuqin Z. Experimental Investigation of Biaxial and Triaxial Compressive Concrete Strength. ACI Materials Journal, March-April. 1987, 84 (2): 92-100.
    [66] Gersle. K. H. Simple Formulation of Biaxial Concrete Behavior. Journal of ACI. 1981, 78 (1): 62-68.
    [67] Gersle. K. H. Simple Formulation of Triaxial Concrete Behavior. Journal of ACI. 1981, 78 (5): 382-387.
    [68] Launay. P, Gachon. H. Strain and Ultimate Strength of Concrete under Triaxial Stress. Special Publication, SP-34, ACI. 1970, 1: 269-282.
    [69] Rosenthal. I, Glucklich. J. Strength of Plain Concrete under Biaxial Stresses. Journal of ACI. 1970: 903-914.
    [70] Liu. T. C. Y, Nilson. A. H. Stress-Strain Response and Fracture of Concrete in Uniaxial and Biaxial Compression. ACI Journal, Proceedings 1972, 69 (5): 291-295.
    [71] Cedolin. L, Crutzen. Y. R. J, Poli. S D. Yriaxial Stress-Strain Relationship for Concrete. ASCE. 1977, 103 (EM3): 423-469.
    [72] 过镇海,王传志.多轴应力下混凝土的强度和破坏准则研究.土木工程学报.1991,24(3):1-14.
    [73] 王传志,过镇海,张秀琴.二轴和三轴受压混凝土的强度试验.土木工程学报.1987,20(1):15-26.
    [74] 李伟政,过镇海.二轴拉压应力状态下混凝土的强度和变形试验研究.水利学报.1991,8:51-56.
    [75] 宋玉普,赵国藩.复杂应力状态下混凝土的变形和强度特性.海洋工程.1991,9(2):20-31.
    [76] 蒋林华,谢年祥,林毓梅.拉压二轴受力下混凝土特性的试验研究.水利学报.1990,3:59-65.
    [77] 宋玉普,赵国藩,彭放.三轴加载下混凝土的变形和强度.水利学报.1991,12:17-23.
    [78] 宋玉普,赵国藩,彭放等.三轴加载状态下轻骨料混凝土的变形特性.大连理工大学学报.1994,34(3):345-351.
    [79] 徐积善,何淅淅.双轴拉压应力下混凝土的强度和变形.水利学报.1986,11:59-64.
    [80] 宋玉普,赵国藩.应变空间混凝土的破坏准则.大连理工大学学报.1991,31(4):455-462.
    [81] 中华人民共和国建设部.混凝土结构设计规范(GB50010-2002).北京:中国建筑工业出版社,2002.4.
    [82] 中国建筑科学院结构所.苏联混凝土及钢筋混凝土设计规范(CHM3Ⅰ-Ⅱ-21,75).1982.10.
    [83] Bresler. B., Iding. R. H. Fire Response of Prestressed Concrete Members. Fire Safety of Concrete Structures. 1983, ACI SP-80: 69-113.
    [84] Weigler. H., R. F. Influence of High Temperatures on Strength and Deformations of Concrete. Concrete for Nuclear Reactors. 1972, ACI SP 34, Detroit: 481-493.
    [85] Harade. T, etc. Strength, Elasticity and Thermal Properties of Concrete Subjected to elevated Temperature. ACI. 1972, Vol 1, SP 34, Detroit: 377-406.
    [86] 李卫,过镇海.高温下混凝土的强度和变形性能的试验研究.建筑结构学报.1993,14(1):8-16.
    [87] 南建林,过镇海,时旭东.混凝土的温度—应力耦合本构关系.清华大学学报.1997,37(6):87-90.
    [88] Bertero. V. V., M. P. Influence of Thermal Exposures on Mechanical Characteristics of Concrete. Concrete for Nuclear Reactors. 1972, ACI SP-34, Detroit: 505-531.
    [89] 南建林,过镇海,时旭东.温度升降循环下混凝土变形性能的试验研究.建筑科学1997,2:16-21.
    [90] Crispino. E. Studies on the Technology of Concretes under Thermal Condition. Concrete for Nuclear Reactor 1972, ACI SP-34, Detroit: 443-479.
    [91] Khoury. G. A, al. e. Strain of concrete during first heating to 600℃ under load. Magazine of Concrete Research. 1985, 37 (133): 195-215.
    [92] Khoury. G. A. Strain of Concrete during First Cooling from 600℃ under Load. Magazine of Concrete Research. 1986, March: 3-12.
    [93] 过镇海,卫李.混凝土在不同应力—温度途径下的变形试验和本构关系.土木工程学报.1993,26(5):58-69.
    [94] Abrams. M. S. Compressive Strength of Concrete at Temperature to 1600° F. Temperature and Concrete. 1971, ACI SP-25, Detroit: 33-59.
    [95] Malhotra. H. L. The Effect of Temperature on the Compressive Strength of Concrete. Magazine of Concrete Research. 1956, Aug.: 85-94.
    [96] Schneider. U. Properties of materials at high temperatures concrete. 1985.
    [97] Castillo. C, A. J D. Effect of transient high temperature on high-strength concrete. ACI Materials Journal. 1990, 87 (1): 43-53.
    [98] 钮宏,陆洲导,陈磊.高温下钢筋与混凝土本构关系的试验研究.同济大学学报.1990,18(3):287-297.
    [99] 孙伟,罗欣,Chan S.Y.N.高性能混凝土的高温性能研究.建筑结构学报.2000,3(1):27-32.
    [100] R. De. Borst, P. P. J. M. Peeters. Analysis of concrete structures under thermal loading. Comput. Methods Appl. Mech. Engrg. 1989, 77: 293-310.
    [101] Purkiss. J. A., J. W. D. Apparatus for Compression Test on Concrete at High Temperature. Magazine of Concrete Research. 1973, June: 102-108.
    [102] Khoury. G. A, etc. Transient thermal strain of concrete: literal review, conditions within specimen and behaviour of individual constituents. Magazine of Concrete Research. 1985, Sept.: 131-143.
    [103] Chan. Y. N, Peng. G. F, Chan. K. W. Comparison between high strength concrete and normal strength concrete subjected to high temperature. Materials and Structures. 1996, 29 (194): 616-619.
    [104] Marechal. J. C. Variations in. the Modulus of Elasticity and Poisson's Ratio with Temperature. Concrete for Nuclear Reactors. 1972, Vol. Ⅰ、Ⅱ、Ⅲ. ACI SP34-27, Detroit: 495-503.
    [105] D. J. Nauss, C. B. Oland, G. C. Robinson. Testing program for concrete at temperaure to 894°K. Proc. 6th. Internat. on Struct. Mech. in Reactor Technology, Pads, 1981.
    [106] Z. P. Bazant, A. Asghari, J. Schmidt. Experimental study of creep hardened cement paste at variable water content. Material and Structures. 1976, 9: 279-290.
    [107] Kaplan. M. F., Roux. F. J. P. Effects of Elevated Temperature on the Properties of Concrete for the Containment and Shielding of Nuclear Reactors. Concrete for Nuclear Reactors. 1972, ACI SP-34, Detroit: 437-441.
    [108] 朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系.四川建筑科学研究.1990,1:37-43.
    [109] Bardhan-Roy. B. K. Fire Resistance-Design and Detailing, Handbook of Structural Concrete. London, 1983.
    [110] Campbell-Allen. D, M. D. P. The Influence of Aggregate on the Behaviour of Concrete at Elevated Temperature. Nuclear Engineering and Design. 1967, 6: 65-77.
    [111] Landerson. S. On the Multiaxial Behaviour of Concrete Exposed to High Temperature. Nuclear Engineering and Design 75. 1982: 271-282.
    [112] C. Ehm, U. Schneider. The high temperature behavior of concrete under biaxial conditions. Cement and concrete research. 1985, 15: 27-34.
    [113] K. Kordina, C. Ehm, U. Schneider. Effect of biaxial loading on the high temperature behaviour of concrete. Proc. 1st Symp, on Fire Safety Science, Gaithersburg, MD, 1985.
    [114] K. -CH. Thienel, F. S. Rostasy. Strength of concrete subjected to high temperature and biaxial stress: Experiments and modelling. Materials and Structures. 1995, 28: 575-581.
    [115] A. Khennane, G. Baker. Plasticity models for the biaxial behaviour of concrete at elevated temperatures, Part Ⅰ: Failure criterion. Computer Methods in Applied Mechanics and Engineering. 1992, 100: 207-223.
    [116] A. Khennane, Baker G. Plasticity models for the biaxial behaviour of concrete at elevated temperatures, Part Ⅱ: Implementation and simulation tests. Computer Methods in Applied Mechanics and Engineering. 1992, 100: 225-248.
    [117] Ellingwood B., T. D. Lin. Flexure and shear behavior of concrete beams during fires. Journal of Structural Engineering. 1991,117 (2): 440-458.
    [118] Z. Huang, I. W. Burgess, R. J. Plank. Three-dimensional modeling of two full-scale fire tests on a composite building. Proc. Instn. Civ. Engrs. Structs & Bldgs. 1999, Aug.: 243-255.
    [119] 姚亚雄,朱伯龙.钢筋混凝土框架结构火灾反应分析.同济大学学报.1997,25(3):255-261.
    [120] Hume B. Fire models training manual for FSO's volume 3: HAZARD-I. PRDG publication number 7/98.
    [121] 范维澄,刘乃安.火灾安全科学---一个新兴交叉的工程科学领域.中国工程科学.2001,10(1):6-14.
    [122] Gerlich. J. T. C., P. C. R C., A. H. B. Design of streel-framed walls for fire resistance. Fire and Materials. 1996, 20: 90-96.
    [123] Anderberg. Y., Forsen. N. E. Fire resistance of concrete structures. Nodic Concrete Research. 1988, Oslo, Norway: 1-17.
    [124] Sarshar. R, Khroury. G. A. Material and environmental factors influencing the compressive strength of unsealed cement paste and concrete at high temperatures. Magazine of Concrete Research. 1993, 45 (162): 51-61.
    [125] Mohamedbhai. G. T. G. Effect of Exposure Time and Rates of Heating and Cooling on Residual Strength of Heated Concrete. Magazine of Concrete Research. 1986, Sept.: 151-158.
    [126] Thelanderson. S. Mechanical Behaviour of Concrete under Torsional Loading at Transient, High Temperature Condition Lund Institute of Technology, Bulletin No. 46, 1974.
    [127] Ahmed. A. E., Al-shaikh. A. H., Arafat. T. I. Residual compressive and bond strength of limestone aggregate concrete subjected to elevated temperatures. Magazine of Concrete Research. 1992, 44 (159): 117-125.
    [128] Noriaki, Nishizawa, Okamura H. Strength and Inelastic Properties of Concrete at Elevated Temperature. Concrete for Nuclear Reactors. 1972, ACI SP-34, Detroit: 407-421.
    [129] H. Weigier, R. Fisher. Beton Bei Temperature von 100c bis 750c Beton Herstellung Verwendung 1968.
    [130] Lie. T. T, R K. V. K. Thermal and mechanical properties of steel-fiber-reinforced concrete at elevated temperatures. Canadian Journal of Civil Engineering. 1996, 23 (2): 511-517.
    [131] Marechal. J. C. Thermal Conductivity and Thermal Expansion Coefficients of Concrete as a Function of Temperature and Humidity. Concrete for Nuclear Reactors. 1972, ACI SP-34, Detroit: 1047-1057.
    [132] 金贤玉,钱在兹,金南国.混凝土受火时温度分布的试验研究.浙江大学学报.1996,30(3):286-294.
    [133] Kordina.K.国际预应力协会(FIP)防火专业委员会主席的报告.第九届国际预应力协会防火会议----结构防火 建筑工程情报资料,1983.
    [134] 吴波,袁杰,王光远.高温后高强混凝土力学性能的试验研究.土木工程学报.2000,33(2):8-12.
    [135] 贾锋.受高温后混凝土抗压强度的试验研究.青岛建筑工程学院学报.1997,18(1):10-14.
    [136] 朱玛.高温后混凝土强度实验研究.湘潭矿业学院学报.2000,15(2):70-72.
    [137] 徐或,徐志胜,朱玛.高温作用后混凝土强度与变形试验研究.长沙铁道学院学报.2000,18(2):13-17.
    [138] 阎继红,林志伸,胡云昌.高温作用后混凝土抗压强度的试验研究.土木工程学报.2002,35(5):17-19.
    [139] 谢狄敏,钱在兹.高温 (明火) 作用后混凝土强度与变形试验研究.工程力学.1996,增刊:054-058.
    [140] 谢狄敏,钱在兹.高温作用后混凝土抗拉强度与粘结强度的试验研究.浙江大学学报(自然科学版).1998,32(5):597-602.
    [141] 吕天启,赵国藩,林志伸.高温后静置混凝土力学性能试验研究.建筑结构学报.2004,25(1):63-70.
    [142] 马忠诚.火灾后钢筋混凝土结构损伤评估与抗震修复.哈尔滨建筑大学博士论文.1997.
    [143] 吴波.火灾后钢筋混凝土结构的力学性能.北京:科学出版社,2003.9.
    [144] 宋玉普,张众,覃丽坤.高温后混凝土双轴拉—压力学特性试验研究.大连理工大学学报.2006,46(1):54-58.
    [145] 胡倍雷.高温后混凝土在复杂应力状态下的变形和强度特性的试验研究.四川建筑科学研究.1994,1:47-50.
    [146] 吴波.高温后混凝土变形特性及本构关系的试验研究.建筑结构学报.1999,20(5):42-48.
    [147] 沈蓉,凤凌云,戎凯.高温(火灾)后钢筋力学性能的评估.四川建筑科学研究.1991,2:5-9.
    [148] 李固华,郑盛娥,杨彦克.高温后砾石混凝土性能实验研究.混凝土与水泥制品.1991,6:16.
    [149] 郭进军,宋玉普,张雷顺.混凝土高温后进行粘结劈拉强度试验研究.大连理工大学学报.2003,43(2):213-217.
    [150] 杨彦克,李固华.火灾混凝土结构损伤评估现状与发展.四川建筑科学研究.1993,2:6-11.
    [151] 金贤玉.火灾时混凝土对温度反应的试验研究.浙江大学学报(自然科学版).1992:35-70.
    [152] S. H. Ahmad, S. Hamoush. A constitutive model for concrete exposed to high temperature, in: Elastic Plastic Failure Modeling of Structures with Applications. ASME Pressure Vessels and Piping Conf, Pittsburgh, PA, USA, 1988: 145-152.
    [153] W. Nechnech, F. Meftah, J. M. Reynouard. An elastic-plastic damage model for plain concrete subjected to high temperatures. Engineering Structures. 2002, 24: 597-611.
    [154] 宋玉普.钢筋混凝土有限元分析中的力学模型研究.博士学位论文.大连:大连理工大学,1988.
    [155] 沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析.北京:清华大学出版社,1993.
    [156] 过镇海.混凝土的强度和变形.北京:清华大学出版社,1997.
    [157] 宋玉普,赵国藩.钢筋混凝土结构分析中的有限单元法.大连:大连理工大学出版社,1994.6.
    [158] Willam. K. J, Wamke. E. P. Constitutive Models for the Triaxial Behavior of Concrete. IABSE Proceeding. 1975, 19: 1-30.
    [159] Darwin. D, Pecknold. D. A Nonlinear Biaxial Stress-Strain Law for Concrete. ASCE. 1977, 103 (EM2): 229-241.
    [160] Romstad. K. M, Taylor. M. A, Herrmann. L. R. Numerical Biaxial Characterization for Concrete. ASCE. 1974, 100 (EMS): 935-948.
    [161] 宋玉普,赵国藩,彭放等.多轴应力下多种混凝土材料的通用破坏准则.土木工程学报.1996,29 (1):25-32.
    [162] 钱在兹,钱春.混凝土复杂受力状态下的统一强度准则.土木工程学报.1996,29 (2):46-55.
    [163] 宋玉普,赵国藩,靳国礼等.平面应变状态下的混凝土变形和强度特性.水利学报.1990,5:22-29.
    [164] 宋玉普,赵国藩.混凝土内时损伤本构模型.大连理工大学学报.1990,30 (5):577-584.
    [165] 董哲仁.钢筋混凝土非线性有限元法原理与应用.北京:中国水利水电出版社,2002.11.
    [166] 朱伯芳.有限元法原理与应用(第二版).北京:中国水利水电出版社,1998.
    [167] W. F. Chen. Plasticity in reinforced concrete. New York, 1982.
    [168] 吴晓涵.面向对象结构分析程序设计.北京:科学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700