用户名: 密码: 验证码:
含锂纳米复合氧化物爆炸合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是关于含锂离子纳米氧化物的爆炸合成、表征与应用研究;其次,设计了用于锂离子电池和提锂离子筛的无机粉体材料制备的专用含水炸药,并计算了爆轰参数。
     锂复合氧化物粉是非常重要的多孔材料。由于它们独特的隧道结构和良好的性能,这些材料作为工业原料被广泛用于催化、分离、化学传感器和电池领域。本文发展了新的合成方法来制备神奇的锂锰氧化物(LMO)、锂锌氧化物(LZO)和金属掺杂锂锰氧化物(LMO)材料,以便改进它们的物理和化学性能并改善它们的接触反应使用性能。为了生产纳米以及过渡金属元素掺杂的LMO材料,研究了几种合成方式来优化出更好的、环境友好的、大批量的、高效的和低成本的合成工艺。在合成纳米LMO、锂锌氧化物LZO和金属掺杂LMO材料研究中,采用了爆炸合成与固态燃烧反应结合的方法来制备过渡金属氧化物粉。在这两种方法联合合成纳米粉的研究中,优选了如爆轰压力、爆轰温度和焙烧温度与时间等合成工艺参数。并讨论了这些纳米复合氧化物的微观结构对性能的影响。通过锂离子吸附能力和锂离子电池充放电循环性能实验检验了新合成产品的接触反应活性,实验结果表明:提锂离子筛的锂离子吸附能力和锂离子电池充放电循环性能远高于目前的同类工业产品。
     讨论了因放热与吸热平衡演变所引发的反应加速(病态爆轰),最终演化为乳化炸药反应进程中非理想爆轰。尝试用X射线衍射仪和扫描电子显微镜直接观察了乳化炸药的微观结构。而且,首次用X射线衍射仪和透射电子显微镜检测炸药爆炸后的灰份用来评判炸药是否发生爆燃。用杜龙—派特(Dulong-Petit)定律估算了单质碳、金属氧化物和液态水的比热。给出了炸药爆炸反应方程式,用热化学数据预测了炸药的爆轰温度。
The major part of this research consists of studies on explosion synthesis methods, characterization, and applications of nanoscale oxides with lithium ion. The second part involves studies of design of water-containing explosives and calculation of detonation parameters for inorganic powder materials for lithium ion batteries and lithium ion sieves.
     Lithium composite oxide powders are very important microporous materials. They have been used widely as bulk materials in catalysis, separations, chemical sensors, and batteries, due to their unique tunnel structures and useful properties. Novel methods have been developed to synthesize novel nanoscale lithium manganese oxides (LMO), lithium zinc oxides (LZO) and metal-substituted LMO materials in order to modify their physical and chemical properties and to improve their catalytic applications. Different synthetic routes were investigated to find better, more sustainable, faster, and cheaper pathways on a batch production to produce nanoscale or metal-substituted LMO materials. In the synthetic study of nanosize LMO, LZO and metal-substituted LMO materials, a combination of explosion synthesis and solid-state combustion reaction was used to prepare transition metallic oxide powders. Preparative parameters of synthesis, such as detonation pressures, detonation temperature, calcinations temperature and time, were investigated in these combination syntheses of nanometer powders. Effect of properties of these nanometer oxides on the microstructure has been discussed. The catalytic activities of the novel synthetic nanoscale products has been evaluated on lithium ion adsorption abilities and circle properties of lithium ion batteries and were found to be much higher than their corresponding bulk materials.
     The propagation of unideal explosions of emulsion explosives arising reaction steps involving a competition between exothermic and endothermic reactions (pathological detonations) has been discussed. To predict the stability of emulsion explosives, X-Ray Diffractometer (XRD) and Scanning Electron Microscopy (SEM) have been used. Furthermore, for the criterion of deflagration, the explosive soot can be distinguished by XRD and Transmission Electron Microscope (TEM). The Dulong-Petit's law has been also used to predict specific heats for carbon, metallic oxides and liquid phase H20. Temperatures of detonation and explosive formulations are predicted by using thermochemistry information.
引文
[1] 袁俊生,纪志永.海水提锂研究进展.海湖盐与化工.2003,32(5):29-33.
    [2] 纪志永,许长春,袁俊生,李鑫钢.尖晶石型锂离子筛研究进展.化工进展.2005,24(12):1336—1341.
    [3] 张立德.纳米材料.北京:化学工业出版社,2000:96
    [4] 刘静.微米/纳米尺度传热学.北京:科学出版社,2001:20—25.
    [5] A.K. Sikder., G. Maddala, J.P. Agrawal, H. Singh. Important aspects of behaviour of organic energetic compounds: a review. Journal of Hazardous Materials, 2001, A84: 1-26.
    [6] 孙育斌,雷家珩,陈永熙,薛理辉.Sol-Gel合成LiMn_2O_4及其锂离子脱嵌/嵌入性能与结构的研究.稀有金属材料与工程,2004,33(6):602—605.
    [7] A. A Bukaemskii, S. S. Avramenko, and L. S. Tarasova. Ultrafine a-Al_2O_3 Explosive Method of Synthesis and Properties. Combustion, Explosion, and Shock Waves, 2002, 38 (4) : 478-483.
    [8] A. A Bukaemskii. Physical Model of Explosive Synthesis of Ultrafine Aluminum Oxide. Combustion, Explosion, and Shock Waves, 2002, 38 (3): 360-364.
    [9] A. A Bukaemskii, and A. G. Beloshapko. Explosive Synthesis of Ultradisperse Aluminum Oxide in an Oxygen-Containing Medium. Combustion, Explosion, and Shock Waves, 2001, 37 (5) : 594-599.
    [10] Thomas J. Webster, Richard W. Siegel, and Rena Bizios. Design and Evaluation of Nanophase Alumina for Orthopaedic / Dental Applications. NanoStructured Materials, 1999, 12: 983-986.
    [11] A.N. Tsvigunov, L. A. Frolova, and V. G. Khotin. Detonation Synthesis of Cuprite with a Cubic Face-Centered Lattice (A Review). Glass and Ceramics, 2003, 60 (9-10) : 47-350.
    [12] Yi Lu, Zhenping Zhu, Zhenyu Liu. Catalytic growth of carbon nanotubes through CHNO explosive detonation. Carbon, 2004, 42: 361-370.
    [13] Polotai A. V., Ragulya A. V., Randall C. A. Preparation and Size Effect in Pure Nanocrystalline Barium Titanate Ceramics.- Ferroelectrics, 2003, 268 (1-4) : 84-89.
    [14] Pilipenko N.P. Konstantinova T.E., Tokiy V.V., Saakjants V.P. Peculiarities of zirconium hydroxide microwave drying process Functional materials, 2002, 9 (3) : 545-548.
    [15] 谢希德,方俊鑫.固体物理(上册).上海:上海科学技术出版社,1964:103—112.
    [16] 陈权.炸药爆轰合成超微金刚石的理论及应用问题研究:(博士学位论文),北京理工大学,1998.
    [17] N. Roy Greiner, D. S. Philips, J. D. Johnson and Freed Volk. Diamonds in Detonation Soot. Nature, 1988, 333: 440-442.
    [18] A. A. Vasil'eV, A. V. Trotsyuk. Experimental Investigation and Numerical Simulation of an Expanding Multifront Detonation Wave. Combustion, Explosion, and Waves, 2003, 39(1): 80-90.
    [19] 文潮,金志浩,关锦清,李迅,周刚,林俊德.炸药爆轰法制备纳米石墨粉.稀有金属材料与工程,2004,33(6):628—631.
    [20] 李晓杰.超硬材料的爆炸合成机理与实验技术研究:(博士学位论文),中国科学技术大学,1998.
    [21] 周刚.利用炸药中的碳爆轰合成超细金刚石的研究:(博士学位论文),北京理工大学,1995.
    [22] 杨世源.准球面汇聚冲击波高压回收装置及材料的冲击合成研究:(博士学位论文),中国工程物理研究院,2002.
    [23] Horie Y. Mass Mixing and Nucleation and Growth of Chemical Reactions in Shock Compression of Power Mixtures. In Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena 1995, Eds. L. E. Murr et al. Elsevier Science Publishers B. V., 1995.
    [24] S. S. Batsanov. Effects of Explosions on Materials. New York: Springer, 1994.
    [25] Horie, Y. Kinetic Modeling of Shock Chemistry. Proc. Of the Workshop "Shock Synthesis of Materials", Georgia Institute of Technology, May 24-26, 1994.
    [26] A. G. Mamalis, I.N. Vottea, D.E. Manolakos. On the Modelling of the Compaction Mechanism of Shock Compacted Powders. Journal of Materials Processing Technology 2001, 108: 165-178.
    [27] 章冠人.炸药爆炸产生超细金刚石微粉问题.爆炸与冲击,1998(2):118—122.
    [28] 徐康.冲击波化学.化学进展,1994,6(4):125—139.
    [29] 陈鹏万.爆轰合成超细金刚石的理论及特性表征:(博士学位论文),北京理工大学,1999.
    [30] N. N. Thadhani. Shock-Induced and Shock-Assisted Solid-State Chemical Reactions in Powder Mixtures. Journal of Apply Physics, 1994, 76 (4): 2129-2138.
    [31] S. I. Troyanov, A. N. Tsvignov, V. G. Khotin, and T. B. Puzyreva. Detonation Synthesis and Crystal Structure of Six-Layer Silicon Carbide. Glass and Ceramics, 2000, 57 (7-8) : 241-242.
    [32] A. A Bukaemskii. Nanosize Powder of Zirconia Explosive Method of Production and Properties. Combustion, Explosion, and Shock Waves, 2001, 37 (4) : 481-485.
    [33] A. G. Merzhanov. Advanced Synthesis and processing of composites and Advanced Ceramics. Cermic Transactions, 1973, 56: 3.
    [34] 章桥新.自蔓延高温合成技术及应用.武汉:武汉工业大学出版社,1994,4.
    [35] 殷声.燃烧合成.北京:冶金工业出版社,1999,6.
    [36] 张树格.燃烧合成技术与粉末冶金.粉末冶金技术 1992,10(4):301—309.
    [37] 韩杰才,王华彬,杜善义.自蔓延高温合成的理论与研究方法.材料科学与工程.1997(2):6.
    [38] 殷声,赖和怡.自蔓延高温合成法(SHS)的发展.粉末冶金技术,1992,10(3):223.
    [39] 柯以侃,董慧茹.分析化学手册(第二版)第三分册光谱分析.北京:化学工业出版社,1998.
    [40] 傅正义.SHS技术研究进展—纪念SHS技术诞生三十周年.复合材料学报.2000,(1):5—10.
    [41] 储炜,吴晖,尤金跨.纳米科学技术在化学电源领域的新进[J].电源技术,1997,22(6):256-260.
    [42] 任学佑.纳米储氢电极材料发展现状[J].电池,2002,32(2):113—116.
    [43] 黄辉,张文魁,马淳安.纳米碳管的制备及其在化学电源中应用[J].化学通报,2002,(2):96—100.
    [44] 黄学杰,李泓,王庆.纳米储锂材料利锂离子电池[J].物理.2002,31(7):444—449.
    [45] 黄拥理,潘春跃,黄叮龙.聚合物锂离子蓄电池技术与市场[J].电源技术.2001,25(5):371—374.
    [46] 苏光耀,高德淑.电动车用大型蓄电池研究概况[J].电池世界.2000,(2):1—9.
    [47] Kanasaku T, Amezawa K, Yamamoto N. Hydrothermal synthesis and electrochemical properties of Li-Mn-spinel [J]. Solid State Tonics, 2000, 133: 51-56.
    [48] 刘兴泉,李庆,于作龙.锂离子电池阴极材料Li_(1+x)Mn_2OO4水热合成及表征.合成化学.1999,7 (4):382—388.
    [49] 赖琼钰,卢集政,郑中和.LiMn_2O_4的热压合成及锂脱嵌研究.四川大学学报(自然科学版),1999,36(1):122—125.
    [50] 沈霞,方建慧,苏毅玲,施利毅.锂离子筛的制备和应用.云南大学学报(自然科学版),2005,27(5A):465—467.
    [51] 雷家珩,尚建华,郭丽萍,袁启华.锂锰氧化物离子筛及其研究进展.无机盐工业,2002,34(6):15—16,42.
    [52] Qi Feng, Yoshitaka Miyai, Hirofumi Kanoh et al. Li~+ Extraction/insertion with spinel - type lithium manganese oxides [J]. Characterization of redox - type and ion - exchange - sites type. Langmuir, 1992, 8 (7): 1861-1867.
    [53] Kenta Ooi, Yoshitaka Miyai, Shunsaku Katoh, et al. Analysis of pH titration data in a λ-MnO_2 + LiOH system on the basis of redox mechanism [J].Langmuir,1990, (1): 289-291.
    [54] 孙育斌,雷家珩,陈永熙,薛理辉.Sol-Gel合成LiMn_2O_4及其锂离子脱嵌/嵌入性能与结构的研究.稀有金属材料与王程.2004,33(6):602—605.
    [55] 童辉,孙育斌,陈永熙,郭丽萍,巫辉,雷家珩.溶胶—凝胶法合成锂离子筛前驱体LiMn_2O_4的研究.化工新型材料.2004,32(4):33—35.
    [56] 陈永熙,周立娟,郭丽萍,张楠,赵俊.锂锰氧化物中锰的平均化合价的测定研究.武汉理工大学学报.2001,23(10):1—3.
    [57] 雷家珩,弓巧侠,尚建华,陈永熙,袁启华.锂离子筛前驱体正尖晶石结构LiMn_2O_4的合成及其特性研究.武汉大学学报(理学版).2001,47(6):707—711.
    [58] G. Ceder, M. K. Aydinol, A. F. Kohan. Application of first-principles calculations to the design of rechargeable Li-batteries. Computational Materials Science. 1997, 8: 161-169.
    [59] A. N. Tsvigunov, V. G. Khotin, V. V. Vaskevich, A. S. Krasikov, B. S. Svetlov, and A. S. Vlasov. Synthesis of a New Modification of Aluminum Oxide, Gahnite, and Zincite in Detonation. Glass and Ceramics. 2000. 57 (11-12) : 392-395.
    [60] 陈宗淇.胶体化学.北京:高等教育出版社,1984.
    [61] 马晓青.冲击动力学.北京:北京理工大学出版社,1992.
    [62] 北京工业学院八系《爆炸及其作用》编写组.爆炸及其作用.北京:国防工业出版社,1979.
    [63] 孙锦山,朱建士.理论爆轰物理.北京:国防工业出版社,1995.
    [64] 王礼立,余同希,李永池.冲击动力学进展.合肥:中国科学技术大学出版社,1992:313.
    [65] 徐锡中,张万箱.实用物态方程理论导引.北京:科学出版社,1986.
    [66] 徐士明.理想气体状态方程在计算炸药爆炸参数上的应用.沈阳工业学院学报,1994,13(3):55—61.
    [67] 董海山,周芬芬.高能炸药及相关性能.北京:科学出版社,1989.
    [68] 叶大伦,胡建华.实用无机物热力学分析数据(第二版).北京:冶金工业出版社,2002:533—594.
    [69] Betsy M. Rice, Jennifer Hare. Predicting heats of detonation using quantum mechanical calculations. Thermochimica Acta, 2002, 384: 377-391.
    [70] Jonas A. Zukas, William P. Waiters. Explosive effects and applications. New York: Springer-Verlag New York, Inc., 1998.124.
    [71] D. Thorburn Burns, Robert J. Lewis, Jane Bridges. Systematic approach to the identification of water-gel explosives. Analytica Chimica Acta, 1998, 375: 255-260.
    [72] 袁昌明.澜沧铅矿硫化矿炸蓟自爆危险性分析.工业安全与环保,2003,29(3):24—26.
    [73] 陈宗淇.胶体化学.北京:高等教育出版社,1984.
    [74] 李瑞勇.纳米氧化铝的爆轰合成及其晶型和尺寸的控制研究:(博士学位论文),大连理工大学,2006.
    [75] 白春礼.纳米科技现在与未来.成都:四川教育出版社,2001:328.
    [76] 韩爱军,宋洪昌,李凤生,杨毅.湿润态超细黑索金炸药爆炸特性研究.兵工学报,2001,22(3):416—418.
    [77] 徐如人,庞文琴.分子筛与多孔材料化学.北京:科学出版社,2004:529.
    [78] 吴宇平,戴晓兵,马军棋,程预江.锂离子电池—应用与实践.北京:化学工业出版社,2004:186.
    [79] 杨继红,杨阳,施南华.颗粒物后处理技术概论.北京:化学工业出版社,2004.
    [80] Jacqueline Akhavan. The Chemistry of Explosives. Cambridge: The Royal Society of Chemistry, 1998. 103.
    [81] 天津化工研究院等编.无机盐工业手册 上册(第二版).北京:化学工业出版社,1996.
    [82] Betsy M. Rice, Jennifer Hare. Predicting heats of detonation using quantum mechanical calculations. Thermochimica Acta, 2002, 384: 377-391.
    [83] 翁世伟,陈松茂.化工产品实用手册(二).上海:上海交通大学出版社,1989:118.
    [84] 任特生.硝胺及硝酸酯炸药化学与工艺学.北京:化学工业出版社,1994:31.
    [85] 郑水林.超细粉体加工技术与应用.北京:化学工业出版社,2004.
    [86] 周瑞发,韩雅芳,陈祥宝.纳米材料科技.北京:国防工业出版社,2003.
    [87] 王冬凡.爆炸合成锂锰氧化物的专用乳化炸药研究:(硕士论文,导师:谢兴华教授),安徽理工大学,2006.
    [88] 沈俊,陶菲,田从学,张昭.Pechini法合成尖晶石LiCo_xMn_(2-x)O_4及其结构表征.四川有色金属,2004,(2):25—28.
    [89] 王英华.X光衍射技术基础.北京:原子能出版社,1993:14,87.
    [90] 谢兴华.煤矿雷管点火剂设计中的模糊数学方法.爆炸与冲击,1997,17(3):254—258.
    [91] 汪旭光,聂森林,云主惠,胡能钦.浆状炸药的理论与实践.北京:冶金工业出版社,1985,79.
    [92] 柯以侃,董慧茹.分析化学手册(第二版)第三分册光谱分析.北京:化学工业出版社,1998.
    [93] 中南矿冶学院分析化学教研室等编著.化学分析手册.北京:科学出版社,1982.
    [94] 张青莲.无机化学丛书.第九卷 锰分族·铁系·铂系.北京:科学出版社,1996.
    [95] 张青莲.无机化学丛书.第一卷 稀有气体·氢·碱金属.北京:科学出版社,1984.
    [96] 周霖.爆炸化学基础.北京:北京理工大学出版社,2005:15.
    [97] 曹忠良,王珍云.无机化学反应方程式手册.长沙:湖南科学技术出版社,1982.
    [98] 汪旭光.乳化炸药(第二版).北京:冶金工业出版社,1993:132.
    [99] Edwin Kroke, Marcus Schwarz. Nanotubes formed by detonation of CN precursors. Advanced Materials. 1999, 11 (2): 158-161.
    [100] E. D. Obraztsova, M. Fujii, S. Harashi, V. L. Kuznetsov, Yu. V. Butenko, A. L. Chuvilin. Raman identification of onion-like carbon. Carbon. 1998, 36 (5-6): 821-826.
    [101] Jong-Soo Lee, Kwangsue Park, Sahn Nahrn, Soo-Won Kim, Sangsig Kim. Ga_2O_3 nanomaterials synthesized from ball-milled GaN powders. Journal of Crystal Growth. 2002, 224: 287-295.
    [102] Feng Li, Jiaqing Xu, Xianghua Yu, Liying Chen, Jianmin Zhu, Zhengrong Yang, Xinguan Xin. One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles. Sensors and Actuators B. 2002, 81: 165-169.
    [103] Helmut Dosch. Some general aspects of confinement in nanomaterials. Applied Surface Science. 2001, 182: 192-195.
    [104] T. Jiang and K. Xu. FTIR study of iltradispersed diamond powder synthesized by explosive detonation. Carbon. 1995, 33 (12): 1663-1671.
    [105] R. Kalish. The search for donors in diamond. Diamond and Related Materials. 2001, 10: 1749-1755.
    [106] E. Mironov, A. Koretz, E. Petrov. Detonation synthesis ultradispersed diamond structural propertied investigation by infrared absorption. Diamond and Related Materials. 2002, 11: 872-876.
    [107] N. I. Chkhalo, M. V. Fedorchenko, E. P. Kruglyakov, A. I. Volokhov, K. S. Baraboshkin, V. F. Komarov, S. I. Kostyukov, E. A. Petrov. Ultradipersed diamond powders of detonation nature for polishing X-ray mirros. Nuclear Instruments and Methods in Physics Research A. 1995, 359: 155-156.
    [108] Edwin Kroke, Marcus Schwarz. Nanotubes formed by detonation of C/N precursors. Advanced Materials. 1999, 11 (2): 158-161.
    [109] 刘宝康.CRH型乳化炸药性能测定.矿冶工程,1982(4):8—14.
    [110] 陈厚和.乳化炸药爆速的估算.爆破器材,1986(1):4—7.
    [111] 花宝岭.乳化炸蓟在冲击波作用下化学反应过程的研究.矿冶,1993(3):16—19.
    [112] 杨民钢.静压力对乳化炸药性能影响的试验研究.爆破器材,1994(2):1—5.
    [113] 成新法.乳化炸药爆速和抛掷威力的研究.爆破器材,1994(1):1—4.
    [114] 李建军.粉状乳化炸药爆轰性能的试验研究.爆破器材,1996(5):4—7.
    [115] 解立峰,刘学强.乳化炸药受压钝化问题的探讨.爆破器材,1991(2):6—9.
    [116] 唐健军.多元混合炸药的配方设计及最优化问题.爆破器材,1992(5):1—5
    [117] 宋锦泉.乳化炸药爆轰特性研究:(博士学位论文),北京科技大学,2000.
    [118] 陆明.工业炸药配方设计.北京:北京理工大学出版社,2002.
    [119] 龙德权.探寻统一乳化炸药油相材料的研究.爆破器材 2000,29(3):12—15.
    [120] 简新春.乳化剂对乳化炸药质量影响的试验研究.2003(6):16-18.
    [121] 徐国财.乳化炸药基本粒子的测试与表征.爆破器材.1996(5):1—4.
    [122] 中英锋,汪旭光,肖裕民.乳化炸药粒径分布的表征方法及分布模拟算法.爆破器材.1998(5):1—4.
    [123] 崔安娜,汪旭光.乳化基质粒子的结构和观察技术.爆破器材,1984(1):30—32.
    [124] [俄]格拉兹阔娃.马庆云译.爆炸物燃烧的催化作用.北京:国防工业出版社,1982.
    [125] 吴洁红,夏斌,周平.煤矿许用炸药爆燃倾向测试方法综述.煤矿爆破 2005(2):25—27.
    [126] 吴洁红.炸药爆燃测试方法的探讨.煤矿爆破 2003(4):22—23,26.
    [127] MT378-1995.煤矿用炸药抗爆燃性测定方法和判定规则.煤炭工业部,1995.
    [128] 葛德学.爆炸合成纳米锌锂氧化物的专用乳化炸药实验研究:(硕士学位论文,导师:谢兴华教授),安徽理工大学,2005.
    [129] 闻辂.矿物红外光谱学.成都:重庆大学出版社.1998.
    [130] 郭炳焜,徐徽,王先友,肖立新.锂离子电池.长沙:中南大学出版社,2003:106—143
    [131] 吴宇平,万春荣,姜长印.锂离子二次电池.北京:化学工业出版社,2002:108
    [132] 郭炳焜,李新海,杨松青.化学电源—电池原理及制造技术.长沙:中南大学出版社,2003
    [133] Jun Sugiyama, Tatsuo Noritake, Tatsumi Hioki, Takumi Itoh, Tadahiro Hosomi, Hisao Yamauchi. A new variety of LiMnO_2: high-pressure synthesis and magnetic properties of tetragonal and cubic phases of Li+xMn_(1-x)O (x~0.5). Materials Science and Engineering. 2001, B84: 224-232.
    [134] Shuhua Ma, Hideyuki Noguchi, Masaki Yoshio. An observation of peak split in high temperature CV studies on Li-stoichiometric spinel LiMn_2O_4 electrode. Journal of Power Sources. 2004, 125: 228-235.
    [135] J.B. Donnet, et al. Dynamic Synthesis of Diamonds. Diamond and Related Materials, 2000 (9): 887-892.
    [136] Http://www.Plasmachem.com/frameset_mail.html
    [137] Thomas R. A. Bussing, Joseph.M. Ting. Pulse Detonation Synthesis. USP5, 855,827
    [138] Tomoki TSUMURA and Michio INAGAKI. Effect of Crystallinity on Electrochemical Insertion/Extraction of Li in Transition Metal Oxides. J. Mater. Sci. Technil. 1999, 15 (6): 509-514.
    [139] Shixi ZHAO, Hanxing LIU, Qiang LI and Shixi OUYANG. Synthesis and Structure Transformation of Orthorhombic LiMnO_2 Cathode Materials by Sol-gel Method. J. Mater. Sci. Technil. 2004, 20 (1): 46-48.
    [140] Peng Zhengshun. Synthesis and Electrochemical Studies on Spinel Phase LiMn_2O_4 Cathode Materials Prepared by Different Processes. Rare Metals. 1999, 18 (2): 143-148.
    [141] Jason Rogers Brown. Synthesis and Characterization of Novel Lithium Ion Battery Cathode Materials Produced Via Assisted Soft Chemistry. A Dissertation in The University of Michigan, 2002.
    [142] A. Singhal, G. Skandan, G. Amatucci, F. Badway, N. Yec, A. Manthiram, H. Yed, J.J. Xud. Nanostructured electrodes for next generation rechargeable electrochemical devices. Journal of Power Sources. 2004, 129: 38-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700