用户名: 密码: 验证码:
成型充填过程中非等温非牛顿粘性流动的ALE有限元与无网格自适应耦合模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注塑成型是目前塑料成型的主要方法之一,生产的制品如磁带盒、计算机键盘等。该工艺的流程为,首先将熔融的高聚物熔体以较大的流速注射入模具型腔中,直至充满整个腔体,然后待塑料熔体充分固化后开启模具脱出塑料制品,最后再循环进入下一个制品的生产。
     为提高模具的生产效率和水平,人们迫切需要发展针对该工艺过程的高效的数值分析工具来取代传统的费时费力的试模修模的过程。因而,在过去的数十年中,注塑成型过程的数值模拟引起了越来越广泛的关注。尽管如此,仍然还有很多问题有待进一步的研究,如自由面的准确追踪以及稳定、高效、精确地求解控制方程等。本论文的研究工作正是以解决这些问题为目标而展开的。
     移动自由面的准确追踪对于注塑成型过程的数值模拟具有十分重要的意义。根据建立方程所采用参考系的不同,目前已有的处理方法大体上可归类为拉格朗日方法、欧拉方法以及任意拉格朗日欧拉方法(ALE)。在ALE方法中,计算网格的运动独立于物质构型的运动,结合了拉格朗日方法和欧拉方法的优点。本文第三章将给出一个基于ALE方法的自由面追踪和网格生成-重生成模型,可在准确确定移动自由面空间位置的同时尽量避免发生网格扭曲。在所发展的模型中,充填域变质量体系的实时网格生成被简化为移动自由面附近区域的多边形三角化过程,大大减少了网格处理所需的计算量。此外,还引入了局部Laplacian光顺方案来提高计算网格的质量,并发展了多种机制来处理自由面与模具边界的接触问题。
     实现注塑成型模拟的另外一个关键问题是须发展能稳定求解控制方程初边值问题的数值方法。众所周知,采用标准Galerkin方法模拟不可压缩流动问题通常会导致两种类型的虚假数值振荡。其一来源于控制方程组的可约化混合特性,该特性限制了速度-压力(u-p)插值空间的自由选取。不满足所谓LBB条件的非协调的插值模式,如u-p的等低阶插值模式,将导致压力场的虚假空间振荡。第二种类型的数值振荡是由控制方程的对流特性引起的,尤其易发生在对流占优的情况下,这是由于标准的空间Galerkin离散方法只对自伴随的算子方程有效。
     对于第一个问题,本文通过在有限增量微积分(FIC)的理论框架下重建质量守恒方程,并理性地引入一个辅助变量来避免空间高阶导数的计算,提出了压力稳定型分步算法(PS-FSA),有效消除了压力场的虚假数值振荡。与经典的分步算法(C-FSA)相比,该算法具有更好的压力稳定性。此外,本文还采用这种压力稳定机制改善了经典的特征线基分裂算法(CBS)的压力稳定性。PS-FSA算法具体的推导过程以及它的数值验证将在第四章中给出。
     对于第二个问题,本文发展了基于ALE描述的广义特征线Galerkin(CG)方法,有效处理了对流占优问题控制方程的空间离散。而且,与经典的CG方法相比,该方法能使用更大的时间步长。实际上,经典的CG方法以及经典的Crank-Nicolson(CN)方法能分别作为两个特例而被纳入到本文所提出的广义CG方法的框架中。此外,本文方法还将经典CG方法由欧拉描述下推广到ALE描述下,以便于和前述ALE自由面追踪技术相结合。应指出的是,若将参考系固定于空间不动,ALE描述可退化为欧拉描述,即相对于经典CG方法来说,本文方法更具一般性。将所发展的广义CG方法和分步算法以及第四章给出的压力稳定技术相结合,本文还提出了一个迭代型压力稳定的广义CBS算法,并将其应用于非等温非牛顿流的数值模拟中。该算法具体的推导过程以及它的数值验证将在第六章中给出。
     此外,本文还提出了一个有限元与无网格离散区域剖分的自适应算法,可自动地将整个计算域划分成分别应用有限元法(FE)、无网格法(MF)以及它们的耦合插值进行空间离散的三个子域。基于该自适应算法以及连续掺混法(CBM),本文提出了有限元与无网格的自适应耦合空间离散方法,并将其应用于注塑成型的数值模拟中。所发展的自适应耦合方法可在充分结合有限元法与无网格法各自优点的同时避免它们各自的缺点。该方法具体的实现细节以及展现它相对于传统有限元法和无网格法优势的数值验证将在第五章中给出。
     为了论文的完整性,本文第二章还简单介绍了伽辽金型无网格法的基本概念和它所面临的问题以及相应的处理方法。实现本文算法的计算机程序及其数据结构的说明放在第七章。第八章总结全文并展望进一步的研究内容。
Injection molding is one of the most important industrial processes for the manufacturingof plastic products. Examples of such products are cassette tape boxes, computer keyboardsand so on. In the production process, molten polymer is injected with high velocity into anempty mold. Once the cavity is filled up and the polymer material is sufficiently solidified,the mold opens momentarily to eject the plastic component and the cycle repeats.
     Due to the constant demand for developing efficient analysis tools to replace the costlyand time-consuming experimental trial-and-error approach, numerical simulation of injectionmolding process has attracted increasing interest over the past years. However, there are stillmany aspects that require further research. For example, the free surface tracking and thenumerical solution for initial and boundary value problems of the governing equations withacceptable levels of overall performance in stability, efficiency, accuracy and robustness arestill open subjects. The present thesis is an effort towards these objectives.
     Accurately tracking the moving free surface plays an important role in the simulation ofinjection molding process. At present, the available strategies to tackle this problem can bemainly classified into Lagrangian, Eulerian and Arbitrary Lagrangian-Eulerian(ALE)methods depending on the configurations to which continuum mechanics formulations arereferred. Owing to the superiority of the ALE method which combines the respectiveadvantages of both Lagrangian and Eulerian methods by means of defining the mesh motionindependent of the material motion, a free surface tracking and mesh generation model basedon the ALE method is presented in Chapter 3 which can accurately determine locations ofadvancing free surfaces and meanwhile to minimize the distortion of the computational mesh.In this model, the real-time mesh generation of the domain with variable mass of the filledpolymer melts is simplified as a polygon's triangulation in the filled zone near the movingfront, that saves CPU time significantly. In addition, a local Laplacian smoothing technique isintroduced to improve the mesh quality and several strategies are proposed to cope with thecontact problems between the moving free surfaces and the boundaries of the mold cavity.
     Another critical ingredient to achieve the simulation is the robust numerical solutionscheme for initial and boundary value problems of the governing equations. It is well knownthat numerical modeling of incompressible flows with the classical Galerkin method maysuffer from numerical instabilities due to two main sources. The first attributes to the mixedcharacter of the governing equations which restricts the choice of interpolation spaces for thevelocity and pressure (u-p) fields. The incompatible interpolations, for example, the equallow order u-p interpolations, that violate the LBB condition may induce spurious spatialoscillations in the resulting pressure field. The second is associated with the convective character of the equations which induces oscillations particularly in the convection dominatedcases, as the standard Galerkin method is only valid for self-adjoint operator equations.
     As for the first problem, the contribution of the present thesis is that a Pressure StabilizedFractional Step Algorithm (PS-FSA) is developed which can effectively remove the spuriouspressure oscillations and has better pressure stability than that of the Classical Fractional StepAlgorithm (C-FSA). The proposed PS-FSA is based on re-writing the mass balance equationin the framework of the Finite Increment Calculus (FIC) theory and introducing an additionalvariable into the algorithm in a logical way to avoid the calculation of high order spatialderivatives. In addition, such pressure stabilization mechanism is also extended to theclassical Characteristic Based Split (CBS) algorithm to enhance its pressure stability. Thedetailed derivation of PS-FSA and its numerical validations are presented in Chapter 4.
     As for the second problem, the contribution of the present thesis is that a generalizedversion of the Characteristic Galerkin (CG) method in ALE framework is developed whichcan effectively cope with the convection dominated problem and can use larger time step sizethan that of the classical CG method. In fact, the classical CG and the classicalCrank-Nicolson (CN) methods can be classified as two special cases of this generalized CGmethod respectively. In addition, the generation is also exhibited by the fact that the ALEdescription employed for the derivation of the proposed method can reduce to the Euleriandescription used in the classical CG method if the reference coordinates are fixed in space.Due to this generation, it is convenient to combine the proposed CG method with the ALEfree surface tracking techniques mentioned above. By combining the proposed generalizedCG method with the fractional step algorithm and the pressure stabilization techniquedeveloped in Chapter 4, an iterative pressure-stabilized generalized CBS algorithm is formedand used for non-isothermal non-Newtonian fluid flows. The detailed derivation of thealgorithm and its numerical validations are presented in Chapter 6.
     Another important contribution of the present thesis is that a self-adaptive domainpartition algorithm is proposed which can automatically partition the whole computationaldomain into three sub-domains where the finite element (FE), meshfree (MF) and theircoupled approximations are employed respectively. Based on this adaptive procedure and theContinuous Blending Method (CBM), an adaptive coupled FE and MF method is alsoproposed for the simulation of injection molding process, which can adequately exploit therespective strong points of FE and MF methods and meanwhile avoid their respective weakpoints. The details of this method and the numerical results to demonstrate its superiority overthe independent FE and MF methods are presented in Chapter 5.
     For the purpose of self-completeness, the fundamental concepts and issues of themeshfree method with Galerkin weak form are summarized in Chapter 2. The computer program and data structures to implement the algorithms presented in this thesis for thenumerical simulation of injection molding process are provided in Chapter 7. Conclusion andfuture developments are given in Chapter 8.
引文
[1] 丁浩.塑料工业实用手册.北京:化学工业出版社,2000.
    [2] 郭广思.注塑成型技术.北京:机械工业出版社,2002.
    [3] 李海梅,申长雨.注塑成型及模具设计实用技术.北京:化学工业出版社,2002.
    [4] 刘来英.注塑成型工艺.北京:机械工业出版社,2005.
    [5] 王兴天.注塑成型技术.北京:化学工业出版社,1989.
    [6] 张增红,熊小平.塑料注射成型.北京:化学工业出版社,2005.
    [7] 唐志玉.挤塑模设计.北京:化学工业出版社,1997.
    [8] 诺曼(美).吹塑成型技术.北京:中国轻工业出版社,2003.
    [9] 李泽青.塑料热成型.北京:化学工业出版社,2005.
    [10] 贾润礼,李宁等.塑料成型加工新技术.北京:国防工业出版社,2006.
    [11] 翟明.塑料注射成型充填过程的数值模拟、优化与控制:(博士学位论文).大连:大连理工大学,2001.
    [12] 李德群.国外注射模CAD/CAE/CAM发展概况.模具工业,1994,163(9):47-53.
    [13] 申长雨,陈静波,刘春太.注射模充模过程CAE技术Ⅱ——工程应用.模具工业,2001,241(3):51-56.
    [14] 申长雨,陈静波,刘春太.注射模充模过程CAE技术Ⅰ——理论与算法.模具工业,2001,240(2):51-56.
    [15] 申长雨.塑料注射模具计算机辅助工程.郑州:河南科技出版社,1997.
    [16] Bernhardt EC ed. Processingofthermoplastic materials. New York: Reinhold, 1959.
    [17] Klein J, Marshell DI. Computer programs for plastics engineers. New York: Reinhold, 1968.
    [18] Stevenson JF, Galskoy A. Injection molding in disk-shaped cavities. Polym.Eng.Sci., 1977, 17(9): 706-710.
    [19] Kamal MR, Kenig S. The injection molding of thermoplastics. Part Ⅰ: Theoretical model. Polym.Eng.Sci., 1972, 12(4): 294-301.
    [20] Kamal MR, Kenig S. The injection molding of thermoplastics. Part Ⅱ: Experimental test of the model. Polym.Eng.Sci., 1972, 12(4): 302-308.
    [21] William G, Lord HA. Mold-filling studies for the injection molding of thermoplastic materials. Polym.Eng.Sci., 1975, 15: 553-595.
    [22] Broyer E, Gutfinger C, Tadmor Z. A theoretical model for the cavity filling process in injection molding. Transaction of the society of theology, 1975, 19: 423-444.
    [23] Krueger WL, Tadmor Z. Injection molding into a rectangular cavity with inserts. Polym.Eng.Sci., 1980, 20(6): 426-431.
    [24] Hieber CA, Shen SF. A finite-element/finite difference simulation of the injection-molding filling process. J.Non-Newtonian Fluid Mech., 1980, 7(1): 1-32.
    [25] Babuska I. The finite element method with lagrange multipliers. Numer. Math., 1973, 20: 179-192.
    [26] Brezzi F. On the existence uniqueness and approximation of saddle point problems arising from lagrange multiplers. RAIRO Ser. Anal. Numer., 1974, 8: 129-151.
    [27] LadyzhenskayaOA. The mathematicaltheory of viscous incompressible flows. London: Gordon and Breach, 1969.
    [28] Zienkiewicz OC, Taylor RL. The finite element method. Oxford: Butterworth Heinemann, 2000.
    [29] Codina R. A finite element model for incompressible flow problems: (Doctor Dissertation). Barcelona: University of Politecnica de Catalunya, 1992.
    [30] Han XianHong, Li XiKui. An iterative stabilized cnbs-cg scheme for incompressible non-isothermal non-newtonian fluid flow. Int. J. Heat and Mass transfer, 2007, 50: 847-856.
    [31] Li XiKui, Han XianHong. An iterative stabilized fractional step algorithm for numerical solution of incompressible n-s equations. Int. J. Numer. Methods Fluids, 2005, 49: 395-416.
    [32] 段庆林,李锡夔.不可压缩Stokes流动的PSPG无网格法.计算力学学报,己接受.
    [33] Huerta A, Vidal Y, Villon P. Pseudo-divergence-free element free galerkin method for incompressible fluid flow. Comput. Methods Appl. Mech. Engrg, 2004, 193: 1119-1136.
    [34] Hughes TJR, Franca LP, Balestra M. A new finite element formulation for computational fluid dynamics: V. Circumventing the babuska-brezzi condition: A stable petrov-galerkin formulation of the stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Engrg., 1986, 59: 85-99.
    [35] Tezduyar TE, Mittal S, Ray SE et al.. Incompressible flow computations with stablilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput. Methods Appl. Mech. Engrg., 1992, 95: 221-242.
    [36] Onate E. A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. Comput. Methods Appl. Mech. Engrg., 2000, 182: 355-370.
    [37] Onate E, RojekJ, Taylor RL, et al.. Finite calculus formulation for incompressible solids using linear triangles and tetrahedra. Int. J. Numer. Methods Engrg., 2004, 59: 1473-1500.
    [38] Hughes TJR. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Computer Methods in Applied Mechanics and Engineering, 1995, 127: 387-401.
    [39] Hughes TJR, FeijooGR, Mazzei L, et al.. The variational multiscale method—a paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering, 1998, 166: 3-24.
    [40] Hughes TJR, Scovazzi G, Bochev PB, et al.. A multiscale discontinuous galerkin method with the computational structure of a continuous galerkin method. Computer Methods in Applied Mechanics and Engineering, 2006, 195: 2761-2787.
    
    [41] Hughes TJR, Stewart JR. A space-time formulation for multiscale phenomena. Journal of Computational and Applied Mathematics, 1996, 74: 217-229.
    [42] Hughes TJR, Wells GN. Conservation properties for the galerkin and stabilised forms of the advection - diffusion and incompressible navier - stokes equations. Computer Methods in Applied Mechanics and Engineering, 2005, 194: 1141-1159.
    [43] Codina R. Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Computer Methods in Applied Mechanics and Engineering, 2000, 190: 1579-1599.
    [44] Codina R. Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Computer Methods in Applied Mechanics and Engineering, 2002, 191: 4295-4321.
    [45] Codina R. Analysis of a stabilized finite element approximation of the oseen equations using orthogonal subscales. Applied Numerical Mathematics, 2007, In press.
    [46] Codina R, Principe J, GuaschO, et al.. Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Computer Methods in Applied Mechanics and Engineering, 2007, 196: 2413-2430.
    [47] Codina R, Soto O. Approximation of the incompressible navier - stokes equations using orthogonal subscale stabilization and pressure segregation on anisotropic finite element meshes. Computer Methods inAppiied Mechanics and Engineering, 2004, 193: 1403-1419.
    [48] Brezzi F, Douglas J. Stabilized mixed methods for the Stokes problem. Numer. Math., 1988, 53: 225-235.
    [49] Douglas J, Wang J. An absolutely stabilized finite element method for the Stokes problem. Math. Comput, 1989, 52: 495-508.
    [50] Baiocchi C, Brezzi F, Franca LP. Virtual bubbles and the Galerkin/Least-Squares method. Comput. Methods Appl. Mech. Engrg., 1993, 105: 125-142.
    [51] Franca LP, Farhat C. On the limitations of bubble functions. Comput. Methods Appl. Mech. Engrg., 1994, 117: 225-230.
    [52] Franca LP, Farhat C. Bubble funcitons prompt unusual stabilized finite element methods. Comput. Methods Appl. Mech. Engrg., 1995, 123: 299-308.
    [53] Franca LP , Russo A . Approximation of the stokes problem by residual-free macro bubbles. East-West J. Numer. Anal, 1996, 4: 265-278.
    [54] Franca LP, Russo A. Deriving upwinding mass lumping and selective reduced integration by residual-free bubbles. Appl. Math. Lett., 1996, 9: 83-88.
    [55] Franca LP, Russo A. Mass lumping emanating from residual-free bubbles. Comput. Methods Appl. Mech. Engrg., 1997, 142: 353-360.
    [56] Franca LP, Russo A. Unlocking with residual-free bubbles. Comput. Methods Appl. Mech. Engrg., 1997, 142: 361-364.
    [57] Russo A. A posteriori error estimators via bubble functions. Math. Models methods Appl. Sci., 1996, 6: 33-41.
    [58] Barbosa HJC, Hughes TJR. The finite element method with lagrange multipliers on the boundary: Circumventing the babuka-brezzi condition. Computer Methods in Applied Mechanics and Engineering, 1991, 85: 109-128.
    [59] Barbosa HJC, Hughes TJR. Circumventing the babuska-brezzi condition in mixed finite element approximations of elliptic variational inequalities. Computer Methods in Applied Mechanics and Engineering, 1992, 97: 193-210.
    [60] Franca LP, Hughes TJR. Convergence analyses of Galerkin Least-Squares methods for symmetric advective-diffusive forms of the stokes and incompressible navier-stokes equations. Computer Methods in Applied Mechanics and Engineering, 1993, 105: 285-298.
    [61] Masud A, Hughes TJR. A space-time Galerkin/Least-Squares finite element formulation of the navier-stokes equations for moving domain problems. Computer Methods in Applied Mechanics and Engineering, 1997, 146: 91-126.
    [62] Shakib F, Hughes TJR. A new finite element formulation for computational fluid dynamics: Ix. Fourier analysis of space-time Galerkin/Least-Squares algorithms. Computer Methods in Applied Mechanics and Engineering, 1991, 87: 35-58.
    [63] Hughes TJR, Franca LP, Hulbert GM. A new finite element formulation for computational fluid dynamics: Viii. The Galerkin/Least-Squares method for advective-diffusive equations. Computer Methods in Applied Mechanics and Engineering, 1989, 73: 173-189.
    [64] Chorin AJ. Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 1968, 22: 742-762.
    [65] Chorin AJ . On the convergence of discrete approximation to the Navier-Stokes equations. Mathematics of Computation, 1969, 23: 341-353.
    [66] Temam R. Sur 1' approximation de la solution des equations de Navier-Stokes par la methode des pas fractionnaries ⅱ. Archives for Rational Mechanics and Analysis, 1969, 33: 377-385.
    [67] Comini G, Guidice SD. Finite element solution of incompressible navier-stokes equations. Numerical HeatTransfer, Part A,, 1972, 5: 463-478.
    [68] Donea J, Giuliani S, Laval H, et al.. Finite element solution of the unsteady Navier-Stokes equations by a fractional step method. Comput. Methods Appl. Mech. Engrg., 1982, 30: 53-73.
    [69] Guermond JL, Quartapelle L. On stability and convergence of projection methods based on pressure poisson equation. Int. J. Numer. Methods Fluids, 1998, 26: 1039-1053.
    [70] Codina R. Pressure stability in fractional step finite element methods for incompressible flows. J. Comput. Phys., 2001, 170: 112-140.
    [71] Codina R, Blasco J. A finite element formulation for the stokes problem allowing equal velocity-pressure interpolation. Comput. MethodsAppl. Mech. Engrg., 1997, 143: 373-391.
    [72] Codina R, Blasco J. Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection. Comput. MethodsAppl. Mech. Engrg., 2000, 182: 277-300.
    [73] Codina R, Blasco J, Buscaglia G.C. et al.. Implementation of a stabilized finite element formulation for the incompressible Navier-Stokes equations based on a pressure gradient projection. Int. J. Numer. Methods Fluids, 2001, 37: 419-444.
    [74] Zienkiewicz OC, Heinrich JC. An upwind finite element scheme for two-dimensional convective transport equations. Int. J. Num. Meth. Engrg., 1977,
    [75] Brook AN, Hughes TJR. Streamline Upwind Petrov Galerkin formulation for convection dominated flows with particular emphasis on the incompressible navier stokes equation. Computer methods in Appl. Mechanics and Engng., 1982, 32: 199-259.
    [76] Hughes TJR. Recent progress in the development and understanding of SUPG methods with special reference to the compressible euler and navier-stokes equations.. Int. J. Numer. Methods Fluids, 1987, 7: 1261-1275.
    [77] Yu CC, Heinrich JC. Petrov-Galerkin method for multidimensional, time dependent convective diffusion equation. Int. J. Num. Meth. Engrg., 1987, 24: 2201-2215.
    [78] Uchiyama T, Minemura K. Finite element method for gas-liquid two-phase flow based on an incompressible two-fluid model. Comput. Model. Sim. Eng., 1997, 2: 23-37.
    [79] Uchiyama T. Petrov-Galerkin finite element method for gas-liquid two-phase flow based on an incompressible two-fluid model. Nuclear Engineering and Design, 1999. 193: 145-157.
    [80] Hossain MA, Barber ME. Optimized Getrov/Galerkin model for advective/dispersive transport. Applied Mathematics and Computation, 2000, 115: 1-10.
    [81] Liu F, Bhatia SK. Application of Petrov-Galerkin methods to transient boundary value problems in chemical engineering: Adsorption with steep. Chemical Engineering Science, 2001,56: 3727-3735.
    [82] Akin JE, Tezduyar TE. Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements. Comput. Methods Appl. Mech. Engrg., 2004, 193: 1909-1922.
    [83] Tezduyar TE. Computation of moving boundaries and interfaces and stabilization parameters. Int. J. Numer. Methods Fluids, 2003, 43: 555-575.
    [84] Tezduyar TE, Osawa Y. Finite element stabilization parameters computed from element matrices and vectors. Comput. Methods Appl. Mech. Engrg., 2000, 190: 411-430.
    [85] Tezduyar TE, Sathe S. Stabilization parameters in SUPG and PSPG formulations. Journal of Computational andApplied Mechanics, 2003, 4: 71-88.
    [86] Donea J. A Taylor-Galerkin method for convective transport problems. Int. J. Numer. Methods Engrg., 1984, 20: 101-119.
    [87] Laval H, Quartapelle L. A fractional-step Taylor-Galerkin method for unsteady incompressible flows. Int. J.Numer. Meth. Fluids, 1990, 11: 501-513.
    [88] Hossain MA, Yonge DR. Linear finite element modeling of contaminant transport in groundwater. J. Env. Eng.ASCE, 1997, 123(11): 1126-1135.
    [89] Zienkiewicz OC, Zhu JZ, Liu YC et al.. The mathematics of finite elements and applications. London: Academic Press, 1988.
    [90] Venutelli M. A third-order Taylor-Galerkin models for the simulation of two-dimensional unsteady free surface flows. Applied Mathematical Modeling, 1998, 22: 641-656.
    [91] Pironneau O. On the transport-diffusion algorithm and its application to the Navier-Stokes equations. NumerischeMathematik, 1982, 38: 309-332.
    [92] Douglas J, Russel T. Numerical methods for convection dominated problems based on combining the method of characteristics with finite elements or finite difference procedures. SIAM Journal on NumericalAnalysis, 1982, 19: 871-885.
    [93] Lohner R, Morgan K, Zienkiewicz OC. The solution of non-linear hyperbolic equations system by the finite element method. Int. J. Numer. Methods Fluids, 1984, 4: 1043-1063.
    [94] Zienkiewicz OC, Codina R. A general algorithm for compressible and incompressible flow-part ⅰ. The split, characteristic based scheme. Int. J. Numer. Methods Fluids, 1995, 20: 869-885.
    [95] 李锡夔.饱和—非饱和土壤中污染物运移过程的数值模拟.力学学报,1998,30(3):321-332.
    [96] Li Xikui, Wu Wenhua. Characteristic Galerkin method for convection-diffusion equations and implicit algorithm using precise integration. Acta Mechanica Sinica, 1999, 15(4): 371-382.
    [97] Li XiKui, Wu Wenhua, Zienkiewicz OC. Implicit characteristic Galerkin method for convection-diffusion equations. Int. J. for Numerical Methods in Engrg., 2000, 47: 1689-1708.
    [98] Zhong Wanxie, Zhu Jianping, Zhong Xiangxiang. A precise time integration algorithm for nonlinear system..in Proceedings of the 3rdWCCM, 1994, Tokyo, 12-17.
    [99] 钟万勰.应用力学对偶体系.北京:科学出版社,2002.
    [100] Li Xikui, Wu Wenhua, Cescotto S. Contaminant transport with non-equilibrium process in unsaturated soils and implicit characteristic Galerkin scheme. Int. J for Numerical and Analytical in Geomechanics, 2000, 24: 219-243.
    [101] 李锡夔,武文华.非饱和土中溶混污染物运移模型及特征线有限元法.岩土工程学报,1999,21:427-437.
    [102] 刘儒勋,王志峰.数值模拟方法和运动界面追踪.合肥:中国科学技术大学出版社,2001.
    [103] Floryan JM, Rasmussen H. Numerical methods for viscous flows with moving boundaries. APPl. Mech. Review, 1989, 42(12): 323-341.
    [104] Harlow FH, Welch JE. Numerical study of large-amplitude free-surface motions. Phys. Fluids, 1966, 9: 842-851.
    [105] Welch JE, Harlow FH, Shannon JP et al.. The MAC method: A computing technique for solving viscous incompressible transient fluid-flow problems involving free surfaces. Los Alamos Scientific Laboratory Report LA-3425, 1966.
    [106] Tadmor Z, Klein I. Engineering principle ofplasticating extrusion. New York: Wiley-Interscience, 1970.
    [107] Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free surface boundaries. Journal ofComputationalPhysics, 1981, 39: 210-225.
    [108] Hirt CW, Nichols BD. A computational method for free surface hydrodynamics. J. Pressure Vesgles Tech., 1981, 103: 136-140.
    [109] Thompson E. Use of pseudo-concentrations to follow creeping viscous flows during transient analysis. International Journal for Numerical Methods in Fluids, 1986, 6: 749-761.
    [110] Osher S, Fedkiw R. Level set methods: An overview and some recent results. Journal of Computational Physics, 2001, 169: 463-502.
    [111] Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations. Journal of Computational Physics, 1988, 79: 12-49.
    [112] Sethian JA. Level set methods and fast marching methods. Cambridge.. Cambridge Univ. Press, 1999.
    [113] Sethian JA. Evolution, implementation, and application of level set and fast marching methods for advancing fronts. Journal of Computational Physics, 2001, 169: 503-555.
    [114] Sussman M. A parallelized, adaptive algorithm for multiphase flows in general geometries. Computers and Structures, 2005, 83: 435-444.
    [115] Sussman M, Almgren AS, Bell JB et al.. An adaptive level set approach for incompressible two-phase flows. J. Comput. Phys., 1999, 148: 81-124.
    [116] Sussman M, Fatemi E, Smerrka Pet al.. An improved level set method for incompressible two-phase flows. Computers and Fluids, 1998, 27: 663-680.
    [117] Sussman M, Puckett EG. A coupled level set and volume of fluid method for computing 3d and axisymmetric incompressibte two-phase flows. J. Comput. Phys., 2000, 162: 301-337.
    [118] Quecedo M, Pastor M. Application of the level set method to the finite element solution of two-phase flows. International Journal for Numerical Methods in Engineering, 2001, 50: 645-663.
    [119] Lin CL, Haegyun L, Taehun L et al.. A level set characteristic galerkin finite element method for free surface flows. International Journal for Numerical Methods in Fluids, 2005, 49: 521-547.
    [120] Bach P, Hassager O. An algorithm for the use of the lagrangian specification in newtonian fluid mechanics and applications to free-surface flow. Journal of Fluid Mechanics, 1985, 152: 173-190.
    [121] Ramaswamy B, KawaharaM. Lagrangian finite element analysis applied to viscous free surface fluid flow. International Journal for Numerical Methods in Fluids, 1987, 7: 953-984.
    [122] MuttinF, CoupezT, Bellet M et al.. Lagrangian finite element analysis of time-dependent viscous free-surface flow using an automatic remeshing technique: Application to metal casting flow. International Journal for Numerical Methods in Engineering, 1993, 36: 2001-2015.
    [123] Feng YT, Peric D. A time adaptive space-time finite element method for incompressible flows with free surfaces: Computational issues. Comput. Methods Appl. Mech. Engrg., 2000, 190: 499-518.
    [124] Noh WF . Cel: A time-dependent two-space-dimensional coupled Eulerian-Lagrangian code. Methods in Computational Physics, 1964, 3: 117-179.
    [125] HirtCW, AmsdenAA, Cook JL. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics, 1974, 14: 227-253.
    [126] TJR Hughes, Liu WK, Zimmerman TK. Lagrangian-Eulerian finite element formulation for viscous flows. Computer Methods in Applied Mechanics and Engineering, 1981, 29: 329-349.
    [127] BelytschkoT, Flanagan DP, Kennedy JM. Finite element methods with user-controlled meshes for fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering, 1982, 33: 669-688.
    [128] Huerta A, Liu WK. Viscous flows for large free surface motion. Computer Methods in Applied Mechanics and Engineering, 1988, 69: 277-324.
    [129] Braess H, Wriggers P. Arbitrary Lagrangian-Eulerian finite element analysis of free surface flow. Computer Methods in Applied Mechanics and Engineering, 2000, 190: 95-109.
    [130] Hsu MH, Chen CH, Teng WH. An arbitrary Lagrangian-Eulerian finite difference method for computations of free surface flows. Journal of Hydraulic Research, 2002, 39: 1-11.
    [131] Iida M. Numerical analysis of self-induced free surface flow oscillation by fluid dynamics computer code splashale. Nuclear Engineering Design, 2000, 200: 127-138.
    [132] Navti SE, Ravindran K, Taylor C et al.. Finite element modelling of surface tension effects using a Lagrangian-Eulerian kinematic description. Computer Methods in Applied Mechanics and Engineering, 1997, 147: 41-60.
    [133] Nithiarasu P. An arbitrary Lagrangian-Eulerian (ALE) formulation for free surface flows using the characteristic-based split (CBS) scheme. International Journal for Numerical Methods in Fluids, 2005, 48: 1415-1428.
    [134] Rabier S, Medale M. Computaiton of free surface flows with a projection FEM in a moving framework. Computer Methods in Applied Mechanics and Engineering, 2003, 192: 4703-4721.
    [135] Ramaswamy B, Kawahara M. Arbitrary Lagrangian-Eulerian finite elment method for unsteady, convective incompressible viscous free surface fluid flow. International Journal for Numerical Methods in Fluids, 1987, 7: 1053-1075.
    [136] Souli M, Zolesio JP. Arbitrary Lagrangian-Eulerian and free surface methods in fluid mechanics. Computer Methods in Applied Mechanics and Engineering, 2001, 191: 451 -466.
    [137] Sung J, Choi HG, Yoo JY. Time accurate computation of unsteady free surface flows using an ALE-segregated equal order FEM. Computer Methods in Applied Mechanics and Engineering, 2000, 190: 1425-1440.
    [138] Ushijima S. Three dimensional arbitrary Lagrangian-Eulerian numerical predictiion method for non-linear free surface oscillation. International Journal for Numerical Methods in Fluids, 1998, 26: 605-623.
    [139] Zhou JG, Stansby PK. An arbitrary Lagrangian-Eulerian sigma (ALEs) model with non-hydrostatic pressure for shallow water flows. Computer Methods in Applied Mechanics and Engineering, 1999, 178: 199-214.
    [140] LiszkaT, OrkiszJ. Finite differece method for arbitrary irregular meshes in non-linear problems of applied mechanics. In: IV SMiRt, San Francisco, 1977,
    [141] Perrone N, Kao R. A general finite difference method for arbitrary meshes. Comput. Struct., 1975, 5: 45-58.
    [142] Lucy LB. A numerical approach to the testing of the fission hypothesis. The Astron. J., 1977, 8(12): 1013-1024.
    [143] Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon. Not. Roy. Astrou. Soc., 1977, 18: 375-389.
    [144] Swegle JW, Hicks DL, Attaway SW. Smoothed particle hydrodynamics stability analysis. J. Comput. Phys., 1995, 116: 123-134.
    
    [145] DykaCT. Addressing tension instability in SPH methods. Technical Report NRL/MR/6384, 1994,
    [146] Chen JK, Beraun JE, Jih CJ. An improvement for tensile instability in smoothed particle hydrodynamics. Comput. Mech. , 1999, 23: 279-287.
    [147] Monaghan JJ, Gingold GA. Shock simulation by the particle method SPH. J. Comput. Phys., 1933, 52: 374-389.
    [148] Gingold RA, Monaghan JJ. Kernel estimates as a basis for general particle methods in hydrodynamics. J. Comput. Phys., 1982, 46: 429-453.
    
    [149] Monaghan JJ. Particle method for hydrodynamics. Comput. Phys. Rep., 1985, 3: 71-124.
    [150] Swegle JW, Attaway SW. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations. Comput. Mech., 1995, 17: 151-168.
    [151] Johnson GR, Beissel SR, Stryk RA. A generalized particle algorithm for high velocity impact computations. Comput. Mech., 2000, 25: 245-256.
    [152] Johnson GR, Stryk RA, Beissel SR. Sph for high velocity impact computations. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 347-373.
    [153] Libersky LD, PetschekAG. High strain lagrangian hydrodynamics: A three dimensional sph code for dynamic material response. J. Comput. Phys., 1993, 109: 67-75.
    [154] Randles PW, Libersky LD. Smoothed particle hydrodynamics: Some recent improvements and applications. Computer Methods inApplied Mechanics and Engineering, 1996, 139: 375-408.
    [155] 张锁春.光滑质点流体动力学(SPH)方法(综述).计算物理,1996,13(4):385-397.
    [156] 贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用.计算物理,1997,14(2):155-166.
    [157] Nayroles B, Touzot G, Villon P. Generalizing the finite element method: Diffuse approximation and diffuse elements. Comput. Mech., 1992, 10. 307-318.
    [158] Lancaster P, Salkauskas K. Surfaces generated by moving least spuares methods. Math. Comput., 1981, 37: 14-158.
    [159] Belytschko T, Lu YY, Gu L. Element free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37: 229-256.
    [160] Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 49-74.
    [161] Chen JS, Wu CT, Yoon S et al.. A stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering, 2001, 50: 435-466.
    [162] Chen JS, Yoon S, Wu CT. Non-linear version of stabilized conforming nodal integration for galerkin mesh-free methods. International Journal for Numerical Methods in Engineering, 2002, 53: 2587-2615.
    [163] Smolinski P, Palmer T. Procedures for multi-time step integration of element-free G alerkin methods for diffusionproblems. Comput. Struct., 2000, 77: 171-183.
    [164] Chung HJ, Belytschko T. An error estimate in the EFG method. Comput. Mech., 1998, 21: 91-100.
    [165] Gavete L, Falcon S, Ruiz A. An error indicator for the element free Galerkin method. Eur. J. Mech. A/Solids, 2001, 20: 327-341.
    [166] Gavete L, Gavete ML, Alonso B et al.. A posteriori error approximation in FFG method. International Journal for Numerical Methods in Engineeriug, 2003, 58(15): 2239-2263.
    [167] Krysl P, Belytschko T. Element-free Galerkin method convergence of the continuous and discontinuous shape functions. Computer Methods in Applied Mechanics and Engineering, 1997, 148: 257-277.
    [168] Lee SH, Boon YC. An improved crack analysis technique by element-free Galerkin method with auxiliary supports. International Journal for Numerical Methods in Engineering, 2003, 56: 1291-1314.
    [169] Kanok NW, Barry W, Saran YK. On elimination of shear locking in the element-free Galerkin method. International Journal for Numerical Methods in Engineering, 2001, 52: 705-725.
    [170] 杨玉英,李晶.无网格galerkin方法中权函数的研究.塑性工程学报,2005,12(4):4-9.
    [171] Lee CK, Zhou CE. On error estimation and adaptive refinement for element free Galerkin method: Part Ⅰ: Stress recovery and a posteriori error estimation. Comput. Struct., 2004, 82: 413-428.
    [172] Lee CK, Zhou CE. On error estimation and adaptive refinement for element free Galerkin method: Part II: Adaptive refinement. Comput. Struct., 2004, 82: 429-443.
    
    [173]赵光明,宋顺成.无网格边界条件实现方法的研究进展.科技通报,2005,21(6):644—650.
    [174] Zhu T, Atluri SN. A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput. Mech., 1998, 21: 211-222.
    [175] Zhang X, Liu X, Lu MW et al.. Imposition of essential boundary conditions by displacement constraint equations in meshless methods. Commun. Numer. Meth. Engng., 2001, 17: 165-178.
    [176] Wagner GJ, Liu WK. Hierarchical enrichment for bridging scales and mesh-free boundary conditions. Int. J. Numer. Methods Engrg., 2001, 50: 507-524.
    [177] Wagner GJ, Liu WK. Application of essential boundary conditions in mesh-free methods: A corrected collocation method. Int. J. Numer. Methods Engrg., 2000, 47: 1367-1379.
    [178] SoniaFM, Antonio H. Imposing essential boundary conditions in mesh-free methods. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 1257-1275.
    [179] Krongauz Y , Belytschko T. Enforcement of essential boundary conditions in meshless approximations using finite elements. Comput. Methods Appl. Mech. Engrg., 1996, 131: 133-145.
    [180] Han WM, Wagner GJ, Liu WK. Covergence analysis of a hierarchical enrichment of dirichlet boundary conditions in a mesh-free method. Int. J. Numer. Methods Engrg., 2002, 53: 1323-1336.
    [181] Gunther FC, Liu WK. Implementation of boundary conditions for meshless methods. Comput. Methods Appl. Mech. Engrg., 1998, 163: 205-230.
    [182] Chen JS, Wang HP. New boundary condition treatments in meshfree computation of contact problems. Comput. Methods Appl. Mech. Engrg., 2000, 187: 441-468.
    [183] Belytschko T, Krongauz Y, Fleming M et al.. Smoothing and accelerated computations in the element free Galerkin method. Journal of Computational and Applied Mathematics, 1996, 74: 111-126.
    [184] Belytschko T, Fleming M. Smoothing, enrichment and contact in the element-free Galerkin method. Computers and Structures, 1999, 71: 173-195.
    [185] Liu WK, Jun S, Zhang YF. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 1995, 20: 1081-1106.
    [186] Liu WK, Chen Y, Jun S. Overview and applications of the reproducing kernel particle methods. Archives of Computational Methods in Engineering, State of the art review, 1996, 3(1): 3-80.
    [187] Liu Wk, Chen Y, Chang CT. Advances in multiple scale kernel particle methods. Comput. Mech., 1996, 18: 73-111.
    [188] Liu WK , Chen Y , Aziz UR . Generalized multiple scale reproducing kernel particle methods. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 91-157.
    [189] Liu WK, Chen Y. Wavelet and multiple scale reproducing kernel method. International Journal for Numerical Methods in Fluids, 1995, 21: 901-931.
    [190] Jun S, Liu WK, Belytschko T. Explicit reproducing kernel particle methods for large deformation problems. International Journal for Numerical Methods in Engineering, 1998, 41: 137-166.
    [191] Chen JS, Yoon S, Wang HP. An improved reproducing kernel particle method for nearly incomprssible finite elasticity. Computer Methods in Applied Mechanics and Engineering, 2000, 181: 117-145.
    [192] Chen JS, Pan C, Wu CT. Large deformation analysis of rubber based on a reproducing kernel particle method. Comput. Mech., 1997.. 19: 211-227.
    [193] Li S, Hao W, Liu WK. Numerical simulations of large deformation of thin shell structures using meshfree methods. Comput. Mech., 2000, 25: 102-116.
    [194] Chen JS, Pan C, Wu CT. Reproducing kernel particle methods for large deformation analysis of non-linear structures. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 195-227.
    [195] Chen JS, Wang HP, Yoon S. Some recent improvements in meshfree methods for incompressible finite elasticity boundary value problems with contact. Comput. Mech., 2000, 25: 137-156.
    [196] Liu WK, Jun S, Li SF. Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering, 1995, 38: 1655-1679.
    [197] Uras RA, Chang CT, Chen Y. Multiresolution reproducing kernel particle methods in acoustics. J. Comput. Acoust, 1997, 5: 71-94.
    [198] Wagner GJ, LiuWK. Turbulence simulation and multiple scale subgrid models. Comput. Mech., 2000, 25: 117-136.
    [199] Liu WK, Jun S. Multiresolution reproducing kernel particle method for computational fluid dynamics. International Journal for Numerical Methods in Fluids, 1997, 24: 1391-1415.
    [200] Gunther F, Liu WK, Diachin D. Multi-scale meshfree parallel computations for viscous, compressible flows. Computer Methods in Applied Mechanics and Engineering, 2000, 190: 279-303.
    [201] Atluru NR. A reproducing kernel particle method for meshless anaylsis of microelectromechanical systems. Comput. Mech., 1999, 23: 324-338.
    [2021 Chen JS, Roque CMOL, Pan C. Analysis of metal forming process based on meshless method. Journal of Materials Processing Technology, 1998, 80: 642-646.
    [203] Chen JS, Pan C, Roqne CMOL. A Lagrangian reproducing kernel particle method for metal forming analysis. Comput. Mech., 1998, 22: 289-307.
    [204] SambridgeM, BraunJ, Mcqueen M. Geophysical parameterization and interpolation of irregular data using natural neighbours. Geophysical Journal International, 1995, 122: 837-857.
    [205] Sibson R. A vector identity for the dirichlet tesselations. Mathematical Proceedings of the Cambridge Philosophical Society, 1980, 87: 151-155.
    [206] Sukumar N, Moran B, Belytschko T. The natural elements method in solid mechanics. International Journal for Numerical Methods in Engineering, 1998, 43: 839-887.
    [207] Sukumar N, Moran B, Semenov AY et al.. NaturalNeighbour Galerkin methods. International Journal for Numerical Methods in Engineering, 2001, 50: 1-27.
    [208] Onate E, Idelsohn S, Zienkiewicz OC. A finite point method in computational mechanics: Applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering, 1996, 39: 3839-3866.
    [209] Onate E, Perazzo F, Miquel J. A finite point method for elasticity problems. Comput. Struct., 2001, 79: 2151-2163.
    [210] Onate E, Idelsohn S. A mesh-free finite point method for advective-diffusive transport and fluid flow problems. Comput. Mech., 1998, 21: 283-292.
    [211] Melenk JM, Babuska I. The partition of unity finite element methods: Basic theory and application. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 263-288.
    [212] Babuska I, Melenk JM. The partition of unity methods. International Journal for Numerical Methods in Engineering, 1997, 40: 727-758.
    [213] Strouboulis T, Babuska I, Copps K. The design and analysis of the generalized finite element method. Computer Methods in Applied Mechanics and Engineering, 2000, 181: 43-69.
    [214] Duarte CA, Babuska I, Oden JT. Generalized finite element methods for three dimensional structural mechanics problems. Comput. Struct, 2000, 77: 215-232.
    [215] Duarte CA, Oden JT. Hp clouds: A h-p meshless method. Numerical Methods for Partial Differential Equations , 1996, 12: 673-705.
    [216] Duarte CA, Oden JT. An h-p adaptive method using clouds. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 237-262.
    [217] Atluri SN, Zhu T. A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech., 1998, 22: 117-127.
    [218] Atluri SN, Zhu T. The Meshless Local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Comput. Mech., 2000, 25: 169-179.
    [219] Atluri SN, Kim HG, Cho JY. A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG) and Local Boundary Integral Equation (LBIE) methods. Comput. Mech., 1999, 24: 348-372.
    [220] Atluri SN, Cho JY, Kim HG. Analysis of thin beams, using the Meshless Local Petrov-Galerkin method with generalized moving least squares interpolations. Comput. Mech., 1999, 24: 334-347.
    [221] Zhu T, Zhang J, Atluri SN. A meshless Local Boundary Integral Equation (LBIE) method for solving nonlinear problems. Comput. Mech., 1998, 22: 174-186.
    [222] Zhu T, Zhang J, Atluri SN. A Local Boundary Integral Equation (LBIE) method in computational mechanics and a meshless discretization approach. Comput. Mech., 1998, 21: 223-235.
    [223] Atluri SN, Sladek J, Sladek V. The Local Boundary Integral Equation (LBIE) and its meshless implementation for linear elasticity. Comput. Mech., 2000, 25: 180-198.
    [224] WendlandH. Meshless Galerkin method using radial basis functions. Math. Comput., 1999, 68: 1521-1531.
    [225] Zhang X, Song KZ, Lu MW. Meshless methods based on collocation with radial basis function. Comput. Mech., 2000, 26: 333-343.
    [226] Bonet J, Kulasegaram S. Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. International Journal for Numerical Methods in Engineering, 2000, 47: 1189-1214.
    [227] Zhang X, Liu XH, Song KZ. Least-square collocation meshless method. International Journal for Numerical Methods in Engineering, 2001, 51: 1089-1100.
    [228] 张雄,胡炜,潘小飞.加权最小二乘无网格法.力学学报,2003,35:425-431.
    [229] Wang JG, Liu GR. A point interpolation meshless method based on radial basis functions. International Journal for Numerical Methods in Engineering, 2002, 54: 1623-1648.
    [230] Liu GR, Gu YT. A point interpolation method for two-dimensional solids. International Journal for Numerical Methods in Engineering, 2001, 50: 937-951.
    [231] Idelsohn SR, Onate E, Calvo N et al.. The meshless finite element method. International Journal for Numerical Methods in Engineering, 2003, 58: 893-912.
    [232] Liu WK, Hart WM, Lu HS et al.. Reproducing kernel element method. Part ⅰ: Theoretical formulation. Computer Methods inApplied Mechanics and Engineering, 2004, 193: 933-951.
    [233] LiSF, Liu WK. Meshfree particle methods. Berlin.. Springer, 2004.
    [234] Griebel M, Marc A. Meshfree methods for partial differential equations ⅱ. Berlin: Springer, 2005.
    [235] 张雄,刘岩.无网格法.北京:清华大学出版社,2004.
    [236] 刘更,刘天祥,谢琴.无网格法及其应用.西安:西北工业大学出版社,2005.
    [237] Huerta A, Mendez SF. Enrichment and coupling of the finite element and meshless methods. Int. J. Numer. Methods Engrg., 2000, 48: 1615-1636.
    [1] 王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1996.
    [2] Sonia FM, Antonio H. Imposing essential boundary conditions in mesh-free methods. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 1257-1275.
    [3] Lancaster P, Salkauskas K. Surfaces generated by moving least spuares methods. Math. Comput., 1981, 37: 14-158.
    [4] Nayroles B, Touzot G, Villon P. Generalizing the finite element method: Diffuse approximation and diffuse elements. Comput. Mech., 1992, 10: 307-318.
    [5] Belytschko T, Lu YY, Gu L. Element free Galerkin methods. International Journal for Numerical Meth0dsin Engineering, 1994, 37: 229-256.
    [6] Belytschko T, Krongauz Y, Organ D et al.. Meshless methods: An overview and recent developments. Comput. MethodsAppl. Mech. Engrg., 1996, 139: 3-47.
    [7] 张雄,刘岩.无网格法.北京:清华大学出版社,2004.
    [8] Belytschko T, Fleming M. Smoothing, enrichment and contact in the element-free Galerkin method. Computers and Structures, 1999, 71: 173-195.
    [9] Belytschko T, Krongauz Y, Fleming M et al.. Smoothing and accelerated computations in the element free Galerkin method. Journal of Compatational and Applied Mathematics, 1996, 74: 111-126.
    [10] Zhu T, Atluri SN. A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput. Mech., 1998, 21: 211-222.
    [11] Zhang X, Liu X, Lu MW et al.. Imposition of essential boundary conditions by displacement constraint equations in meshless methods. Commun. Numer. Meth. Engng., 2001, 17: 165-178.
    [12] Wagner GJ, Liu WK. Application of essential boundary conditions in mesh-free methods: A corrected collocation method. Int. J. Numer. Methods Engrg., 2000, 47: 1367-1379.
    [13] Brezzi F. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIROAnal. Numer., 1974, R-2: 129-151.
    [14] Lu YY, Belytschko T, Gu L. A new implementation of the element free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 1994, 113: 397-414.
    [15] Belytschko T, Organ D, Krongauz Y. A coupled finite element-element free Galerkin method. Comput. Mech., 1995, 17: 186-195.
    [16] Krongauz Y, Belytschko T. Enforcement of essential boundary conditions in meshless approximations using finite elements. Comput. Methods Appl. Mech. Engrg., 1996, 131: 133-145.
    [17] Huerta A, Mendez SF, Liu WK. A comparison of two formulations to blend finite elements and mesh-free methods. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 1105-1117.
    [18] Huerta A, Mendez SF. Enrichment and coupling of the finite element and meshless methods. Int. J. Numer. Methods Engrg., 2000, 48: 1615-1636.
    [19] Liu WK, Uras RA, Chen Y. Enrichment of the finite element method with the reproducing kernel particle method. J. Appl. Mech.,ASME, 1997, 64: 861-870.
    [20] Wagner GJ, Liu WK. Hierarchical enrichment for bridging scales and mesh-free boundary conditions. Int. J. Numer. Methods Engrg., 2001, 50: 507-524.
    [21] Hegen D. Element-free Galerkin methods in combination with finite element approaches. Computer Methods in Applied Mechanics and Engineering, 1996, 135: 143-166.
    [22] Zienkiewicz O C, Taylor R L. The finite element method. Oxford, Butterworth Heinemann, 2000.
    [23] Dunavant DA. High degree efficient symmetrical Gaussian quadrature rules for the triangle. International Journal for Numerical Methods in Engineering, 1985, 21: 1129-1148.
    [24] Hammer PC, Marlows OP, Stroud AH. Numerical integration over simplexes and cones. Math. Tabls Aids Comp., 1956, 10: 130-137.
    [25] Isaacson E, Keller HB. Analysis of numerical methods. New York: John Wiley and Sons, 1966.
    [26] Dolbow J, Belytschko T. Numerical integration of the Galerkin weak form in meshfree methods. Comput. Mech., 1999, 23: 219-230.
    [27] Li XK, Duan QL. Meshfree iterative stabilizaed Taylor-Galerkin and characteristic-based split (CBS) algorithms for incompressible N-S equations. Comput. Methods Appl. Mech. Engrg., 2006, 195: 6125-6145.
    [28] Zhang X, Lu MW, Wegner JL. A 2-D meshless model for jointed rock structures. Int. J. Numer. Methods Engrg., 2000, 47: 1649-1661.
    [29] Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 49-74.
    [30] Chen JS, Wu CT, Yoon S et al.. A stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering, 2001, 50: 435-466.
    [31] Chen JS, Yoon S, Wu CT. Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering, 2002, 53: 2587-2615.
    [32] Zhou JX, Wen JB, Zhang HY et al.. A nodal integration and post-processing technique based on voronoi diagram for Galerkin meshless methods. Computer Methods in Applied Mechanics and Engineering, 2003, 192: 3831-3843.
    [33] Duflot M, Nguyen-Dang H. A truly meshless Galerkin method based on a moving least squares quadrature. Commun. Numer. Meth. Engng., 2002, 18: 441-449.
    [34] Kaljevic 1, Saigal S. An improved element free Galerkin formulation. International Journal for Numerical Methods in Engineering, 1997, 40: 2953-2974.
    [35] Aurenhammer F. Voronoi diagrams: A survey of a fundamental geometric data structure. ACM Trans. Math. Software, 1996, 23: 469-483.
    [36] Green PJ, Sibson RR. Computing Dirichlet tessellations in the plane. Comput. J., 1978, 21: 168-173.
    [37] Okabe A, Boots B, Sugihara K. Spatial tessellations: Concepts and applications of voronoi diagrams. Chichester: Wiley, 1992.
    [1] 王利霞.基于数值模拟的注塑成型工艺优化及制品质量控制研究:(博士学位论文).郑州:郑州大学,2004.
    [2] 韩先洪,李锡夔.成型充填过程的ALE有限元模拟.应用力学学报,2005,22(3):440-445.
    [3] Noh WF. CEL: A time-dependent two-space-dimensional coupled Eulerian-Lagrangian code. Methods in Computational Physics, 1964, 3: 117-179.
    [4] Hirt CW, Amsden AA, Cook JL. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics, 1974, 14: 227-253.
    [5] Hughes TJR, Liu WK, Zimmerman TK. Lagrangian-Eulerian finite element formulation for viscous flows. Computer Methods in Applied Mechanics and Engineering, 1981, 29: 329-349.
    [6] Belytschko T, Flanagan DP, Kennedy JM. Finite element methods with user-controlled meshes for fluid-structure interaction. Computer Methods inApplied Mechanics and Engineering, 1982, 33: 669-688.
    [7] Huerta A, Liu WK. Viscous flows for large free surface motion. Computer Methods in Applied Mechanics and Engineering, 1988, 69: 277-324.
    [8] Belytschko T, Liu WK, Moran B. Nonlinear finite element analysis for continua and structures. Chichester: John Wiley & sons, 2000.
    [9] Zienkiewicz O C, Taylor R L. The finite element method. Oxford: Butterworth Heinemann, 2000.
    [10] Babuska I. The finite element method with Lagrange multipliers. Numer. Math., 1973,20: 179-192.
    [11] Brezzi F. On the existence uniqueness and approximation of saddle point problems arising from Lagrange multiplers. RAIRO Ser. Anal. Numer., 1974, 8: 129-151.
    [12] Huerta A, VidalY, Villon P. Pseudo-divergence-free element free Galerkin method for incompressible fluid flow. Comput. Methods Appl. Mech. Engrg, 2004, 193: 1119-1136.
    [13] Li Xikui, Duan Qinglin. Meshfree iterative stabilizaed Taylor-Galerkin and characteristic-based split (CBS) algorithms for incompressible N-S equations. Comput. Methods Appl. Mech. Engrg., 2006, 195: 6125-6145.
    [14] Han XianHong, Li XiKui. An iterative stabilized CNBS-CG scheme for incompressible non-isothermal non-Newtonian fluid flow. Int. J. Heat and Mass transfer, 2007, 50: 847-856.
    [15] Li XiKui, Hart XianHong. An iterative stabilized fractional step algorithm for numerical solution of incompressible N-S equations. Int. J. Numer. Methods Fluids, 2005, 49: 395-416.
    [16] 段庆林,李锡夔.不可压缩Stokes流动的PSPG无网格法.计算力学学报,已录用.
    [17] FPT Baaijens. Mixed finite element methods for viscoelastic flow analysis: A review. J. Non-Newtonian Fluid Mech., 1998, 79: 361-385.
    [18] Duan QL, Li XK. An ALE based iterative CBS algorithm for non-isothermal non-Newtonian flow with adaptive coupled finite element and meshfree method. Comput. Methods Appl. Mech. Engrg. submitted.
    [19] 刘春太.基于数值模拟的注塑成型工艺优化和制品性能研究:(博士学位论文).郑州:郑州大学,2003.
    [20] 吴其晔,巫静安.高分子材料流变学导论.北京:化学工业出版社,1994.
    [21] Bell BC, Surana KS. p-version least squares finite element formulation for two-dimensional incompressible Newtonian and non-Newtonian non-isothermal fluid flow. Computers & Structures, 1995, 54: 83-96.
    [22] 段庆林,李锡夔.不可压缩非等温非牛顿流的基于广义特征线的分步算法.大连理工大学学报,已投出.
    [23] Douglas C, Roylance D. Finite element flow analysis. New York: North-Holland, 1982.
    [24] Crochet MJ, Davies AR, Walters K. Numerical simulation of non-Newtonian flow. Amsterdam: Elsevier, 1984.
    [25] 段庆林,李锡夔.成型充填过程的ALE有限元与无网格自适应耦合模拟.机械工程学报,已录用.
    [26] 韩先洪,李锡夔.充填过程的ALE自由面追踪及网格生成方法.大连理工大学学报,2005,45:633-639.
    [27] Nassehi V. Practical aspects of finite element modelling of polymer processing. Chichester: John Wiley and Sons, 2001.
    [28] Silliman WJ, Scriven LE. Separating flow near a static contact line: Slip at a wall and shape of a free surface. J. Comput. Phys., t980, 34: 287-313.
    [29] Braess H, Wriggers P. Arbitrary Lagrangian Eulerian finite element analysis of free surface flow. Computer Methods inApplied Mechanics and Engineering, 2000, 190: 95-109.
    [30] 周培德.计算几何—算法分析与设计.北京:清华大学出版社,2000.
    [31] Lo SH, Lee CK. Generation of gradation meshes by the background grid technique. Computer and Structure, 1994, 50: 21-32.
    [32] 宋超.非结构化自适应有限元网格生成的AFT方法:(博士学位论文).大连:大连理工大学,2004.
    [1] Babuska I. The finite element method with Lagrange multipliers. Numer. Math., 1973, 20: 179-192.
    [2] Brezzi F. On the existence uniqueness and approximation of saddle point problems arising from Lagrangemultiplers. RAIRO Ser. Anal. Numer., 1974, 8: 129-151.
    [3] Ladyzhenskaya OA. The mathematical theory of viscous incompressible flows. London: Gordon and Breach, 1969.
    [4] Zienkiewicz OC, Taylor RL. The finite element method. Oxford: Butterworth Heinemann, 2000.
    [5] Huerta A, Vidal Y, Villon P. Pseudo-divergence-free element free Galerkin method for incompressible fluid flow. Comput. MethodsAppl. Mech. Engrg, 2004, 193: 1119-1136.
    [6] 段庆林,李锡夔.不可压缩Stokes流动的PSPG无网格法.计算力学学报,已接受.
    [7] Hughes TJR, Franca LP, Balestra M. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Engrg., 1986, 59: 85-99.
    [8] Tezduyar TE, Mittal S, Ray SE et al.. Incompressible flow computations with stablilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput. Methods Appl. Mech. Engrg., 1992, 95: 221-242.
    [9] Chorin AJ. Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 1968, 22: 742-762.
    [10] Chorin AJ. On the convergence of discrete approximation to the Navier-Stokes equations. Mathematics of Computation, 1969, 23, 341-353.
    [11] Comini G, Guidice SD. Finite element solution of incompressible Navier-Stokes equations. Numerical Heat Transfer, PartA,, 1972, 5: 463-478.
    [12] Donea J, Giuliani S, Laval Het al.. Finite element solution of the unsteady Navier-Stokes equations by a fractional step method. Comput. Methods Appl. Mech. Engrg., 1982, 30: 53-73.
    [13] Temam R. Sur 1' approximation de la solution des eq uations de Navier-Stokes par la methode des pas fractionnaries ⅱ. Archives for Rational Mechanics and Analysis, 1969, 33: 377-385.
    [14] Onate E. A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. Comput. Methods Appl. Mech. Engrg., 2000, 182: 355-370.
    [15] Zienkiewicz OC, Codina R. A general algorithm for compressible and incompressible flow-part 1. The split, characteristic based scheme. Int. J. Numer. Methods Fluids, 1995, 20: 869-885.
    [16] Huerta A, MendezSF. Enrichment and coupling of the finite element and meshless methods. Int. J. Numer. Methods Engrg., 2000, 48: 1615-1636.
    [17] Li Xikui, Duan Qinglin. Meshfree iterative stabilizaed Taylor-Galerkin and characteristic-based split (CBS) algorithms for incompressible N-S equations. Comput. Methods Appl. Mech. Engrg., 2006, 195: 6125-6145.
    [18] Li XiKui, Han XianHong. An iterative stabilized fractional step algorithm for numerical solution of incompressible N-S equations. Int. J. Numer. Methods Fluids, 2005, 49: 395-416.
    [19] GuermondJL, Quartapelle L. On stability and convergence of projection methods based on pressure poisson equation. Int. J. Numer. Methods Fluids, 1998, 26: 1039-1053.
    [20] Codina R.. Pressure stability in fractional step finite element methods for incompressible flows. J. Comput. Phys., 2001, 170: 112-140.
    [21] Onate E. Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems- Comput. Methods Appl. Mech. Engrg., 1998, 151: 233-265.
    [22] Li Xikui, Han Xianhong, Pastor M. An iterative stabilized fractional step algorithm for finite elementanalysis in saturated soil dynamics. Comput. Methods Appl. Mech. Engrg., 2003, 192: 3845-3859.
    [23] Brook AN, Hughes TJR. Streamline upwind Petrov Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation. Computer methods in Appl. Mechanics and Engng., 1982, 32: 199-259.
    [24] Donea J. A Taylor-Galerkin method for convective transport problems. Int. J. Numer. Methods Engrg., 1984, 20: 101-119.
    [25] Ghia U, Ghia KN, Shin CT. High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys., 1982, 48: 387-411.
    [1] 张雄,刘岩.无网格法.北京:清华大学出版社,2004.
    [2] Huerta A, Mendez SF. Enrichment and coupling of the finite element and meshless methods. Int. J. Numer. Methods Engrg., 2000, 48: 1615-1636.
    [3] Belytschko T, Organ D, Krongauz Y. A coupled finite element-element free Galerkin method. Comput. Mech., 1995, 17: 186-195.
    [4] Krongauz Y, Belytschko T. Enforcement of essential boundary conditions in meshless approximations using finite elements. Comput. Methods Appl. Mech. Engrg., 1996, 131: 133-145.
    [5] Huerta A, Mendez SF, Liu WK. A comparison of two formulations to blend finite elements and mesh-free methods. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 1105-1117.
    [6] Liu WK, Uras RA, Chen Y. Enrichment of the finite element method with the reproducing kernel particle method. J. Appl. Mech.,ASME, 1997, 64: 861-870.
    [7] Wagner GJ, Liu WK. Hierarchical enrichment for bridging scales and mesh-free boundary conditions. Int. J. Numer. Methods Engrg., 2001, 50: 507-524.
    [8] Hegen D. Element-free Galerkin methods in combination with finite element approaches. Computer Methods in Applied Mechanics and Engineering, 1996, 135: 143-166.
    [9] Belytschko T, Fleming M. Smoothing, enrichment and contact in the element-free Galerkin method. Computers and Structures, 1999, 71: 173-195.
    [10] Belytschko T, Krongauz Y, Fleming M et al.. Smoothing and accelerated computations in the element free Galerkin method. Journal of Computational and Applied Mathematics, 1996, 74: 111-126.
    [11] Belytschko T, Krongauz Y, Organ D et al.. Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Engrg., 1996, 139: 3-47.
    [12] Belytschko T, Lu YY, Gu L. Element free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37: 229-256.
    [13] Li XK, Duan QL, Han XH et al.. Adaptive coupled arbitrary lagrangian-eulerian finite element and meshfree method for injection molding process. Int. J. Numer. Methods Engrg., accepted.
    [14] 宋超.非结构化自适应有限元网格生成的AFT方法:(博士学位论文).大连:大连理工大学,2004.
    [15] Nassehi V. Practical aspects of finite element medelling of polymer processing. Chichester: John Wiley and Sons, 2001.
    [16] Silliman WJ, Scriven LE. Separating flow near a static contact line: Slip at a wall and shape of a free surface. J. Comput. Phys., 1980, 34: 287-313.
    [1] Brook AN, Hughes TJR. Streamline upwind Petrov Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier Stokes equation. Computer methods in Appl. Mechanics and Engng., 1982, 32: 199-259.
    [2] Hughes TJR. Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations.. Int. J. Numer. Methods Fluids, 1987, 7: 1261-1275.
    [3] Donea J. A Taylor-Galerkin method for convective transport problems. Int. J. Numer. Methods Engrg., 1984, 20: 101-119.
    [4] Laval H, Quartapelle L. A fractional-step Taylor-Galerkin method for unsteady incompressible flows. Int. J.Numer. Meth. Fluids, 1990, 11: 501-513.
    [5] Pironneau O. On the transport-diffusion algorithm and its application to the Navier-Stokes equations. Numerische Mathematik, 1982, 38: 309-332.
    [6] Douglas J, Russel T. Numerical methods for convection dominated problems based on combining the method of characteristics with finite elements or finite difference procedures. SIAM Journal on Numerical Analysis, 1982, 19: 871-885.
    [7] Lohner R, Morgan K, Zienkiewicz OC. The solution of non-linear hyperbolic equations system by the finite element method. Int. J. Numer. Methods Fluids, 1984, 4: 1043-1063.
    [8] Zienkiewicz OC, Codina R. A general algorithm for compressible and incompressible flow-part Ⅰ. The split, characteristic based scheme. Int. J. Numer. Methods Fluids, 1995, 20: 869-885.
    [9] Duan QL, Li XK. An ALE based iterative CBS algorithm for non-isothermal non-Newtonian flow with adaptive coupled finite element and meshfree method. Comput. Methods Appl. Mech. Engrg. submitted.
    [10] 段庆林,李锡夔.不可压缩非等温非牛顿流的基于广义特征线的分步算法.大连理工大学学报,已投出.
    [11] Han XianHong, Li XiKui. An iterative stabilized CNBS-CG scheme for incompressible non-isothermal non-Newtonian fluid flow. Int. J. Heat and Mass transfer, 2007, 50: 847-856.
    [12] 吴其晔,巫静安.高分子材料流变学导论.北京:化学工业出版社,1994.
    [13] Li Xikui, Duan Qinglin. Meshfree iterative stabilizaed Taylor-Galerkin and characteristic-based split (CBS) algorithms for incompressible N-S equations. Comput. Methods Appl. Mech. Engrg., 2006, 195: 6125-6145.
    [14] Onate E.. A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. Comput. Methods Appl. Mech. Engrg., 2000, 182: 355-370.
    [15] Codina R.. Pressure stability in fractional step finite element methods for incompressible flows. J. Comput. Phys., 2001, 170: 112-140.
    [16] Bell BC, Surana KS. p-version least squares finite element formulation for two-dimensional incompressible Newtonian and non-Newtonian non-isothermal fluid flow. Computers & Structures, 1995, 54: 83-96.
    [17] Nassehi V. Practical aspects of finite element modelling of polymer processing. Chichester: John Wiley and Sons, 2001.
    [18] Silliman WJ, Scriven LE. Separating flow near a static contact line: Slip at a wall and shape of a free surface. J. Comput. Phys., 1980, 34: 287-313.
    [1] Huerta A, Mendez SF. Enrichment and coupling of the finite element and meshless methods. Int. J. Numer. MethodsEngrg., 2000, 48: 1615-1636.
    [2] FPT Baaijens. Mixed finite element methods for viscoelastic flow analysis: A review. J. Non-Newtonian Fluid Mech., 1998, 79: 361-385.
    [3] Nassehi V. Practical aspects of finite element modelling of polymer processing. Chichester: John Wiley and Sons, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700