用户名: 密码: 验证码:
西藏班公湖MOR型和SSZ型两套蛇绿岩的厘定及大地构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
班公湖-怒江缝合带位于西藏北部,西起西藏阿里地区的班公湖,经改则、东巧到丁青,转向东南沿怒江延伸到缅甸,在我国境内长达2000多公里,是青藏高原地质构造的一条非常重要的分界线,班公湖蛇绿岩位于该带的最西端,是东、西特提斯蛇绿岩带的连接点。
     班公湖蛇绿岩主要由地幔橄榄岩和熔岩组成。通过野外5条剖面的初步调查和详细的室内岩石学、矿物学和地球化学的研究,在班公湖地区厘定出MOR型和SSZ型两套蛇绿岩。MOR型蛇绿岩主要由角砾状低Cr#尖晶石相含Cpx中等蛇纹石化的方辉橄榄岩和角砾状具有P-MORB地球化学特性的玄武岩组成;SSZ型蛇绿岩由块状高Cr#尖晶石相强烈蛇纹石化的方辉橄榄岩和具有弧后盆地熔岩地球化学特性的枕状熔岩、岩脉以及玻安岩系火山岩组成。
     MOR型蛇绿岩的角砾状方辉橄榄岩中尖晶石的Cr#为20~25(平均23,<60)和HREE的配分模式与深海橄榄岩一致,指示角砾状方辉橄榄岩形成于洋中脊环境;SSZ型蛇绿岩的地幔橄榄岩为熔融程度更高的块状方辉橄榄岩,比MOR型蛇绿岩的地幔橄榄岩更亏损REE,副矿物尖晶石的Cr#介于69~74(>60),指示其形成于俯冲带上。
     MOR型蛇绿岩的熔岩为角砾状玄武岩,具有高TiO2特点(1.30~1.71wt%),富集LREE、活动元素和部分不活动元素,亏损部分高场强元素,较岛弧拉斑玄武岩,富集不活动元素,比弧后盆地熔岩的Nb和Ta含量高,具有典型的P-MORB特点,与大西洋45oN中脊的玄武岩相似。估算为原始地幔岩经过约10%~15%部分熔融的产物。
     SSZ型蛇绿岩的熔岩为枕状熔岩、岩脉以及玻安岩系火山岩。与MOR蛇绿岩的角砾状熔岩相比,枕状熔岩的MgO和Ni、Cr含量低、V高,LREE弱亏损,具N-MORB特点,高场强元素和部分不活动元素的配分特点与弧后盆地的熔岩较为一致,岩脉显示与枕状熔岩具有较为相似的源区亏损的特点,估算为原始地幔岩经过20%~30%部分熔融的产物,LREE为轻度富集型到平坦型,REE总量低于N-MORB,显示从岛弧向弧后盆地转化的特点,认为形成于俯冲带上岛弧和弧后盆地环境。玻安岩系火山岩具有高SiO2和MgO,低TiO2特点,U字型REE配分模式,富集大离子亲石元素,估算为经过10%~15%部分熔融残留的地幔橄榄岩作为源区再度发生30%~40%部分熔融的产物。根据产于弧后盆地硅质岩中的放射虫时代推测班公湖SSZ型蛇绿岩最晚形成于晚侏罗世。
     根据洋-陆俯冲作用下俯冲板片“回推”(Rollback)的机制,初步探讨了SSZ型蛇绿岩熔岩的形成过程,认为大洋岩石圈俯冲的早期,在近海沟处由于俯冲板片诱发的“拐角流”(Corner-flow)导致弧前盆地扩张,形成班公湖玻安质洋壳,随着俯冲作用的继续进行,地幔楔中地幔的“喷入”(Extrusive)作用,致使俯冲板片发生“回推”并伴随地幔楔的地幔对流,导致弧后扩张和弧-沟系统后退,不同亏损程度的地幔楔橄榄岩再次发生部分熔融形成弧后盆地火山岩。
     通过班公湖蛇绿岩成因类型和形成时代的研究以及与西特提斯典型蛇绿岩的对比,进一步证明班公湖蛇绿岩是新特提斯蛇绿岩的一部分,认为班公湖-怒江蛇绿岩带代表的是冈瓦纳古陆内部的一条缝合带,而不是冈瓦纳古陆与劳亚大陆之间的分界线,即班公湖-怒江缝合带不是冈瓦纳古陆的北界。
The Bangong-Nujiang ophiolite zone, located on the Northern Tibet, extends eastward from the Bangong Lake in the Ngari, Tibet via Gerze, Dongqiao to Dengqen, and then southward entering Burma along the Nujiang River. It is over 2000 km in total length and serves as an important boundary between two different terranes in tectonics in Tibet plateau. The Bangong Lake ophiolite is located in the westmost part of the zone, and acts as a key“linker”between west and east Tethys ophiolitic belts.
     The Bangong Lake ophiolitic massif is represented by two tectonically distinct ophiolitic units: (1) the mantle peridotite unit, mainly including the brecciform Cpx-bearing and the massive Cpx-free harzburgite; and (2) the lava unit, including basaltic lavas (mainly composed of the brecciform basalts, pillow lavas, and massive lavas) and basaltic dykes and isotropic gabbroic dykes. MOR- and SSZ- type ophiolites are recognized in the Bangong Lake by the field work and the detailed study of petrology, mineralogy and geochemistry. MOR-type ophiolite is mainly composed of the brecciform Cpx-bearing harzburgite and brecciform basalts, while SSZ-type ophiolite is chiefly composed of the massive Cpx-free harzburgite and the pillow lavas, basaltic dykes and boninite series volcanic rocks.
     The brecciform Cpx-bearing harzburgite of MOR-type ophiolite is light serpentinized. Spinel is low Cr# value ranging from 20 to 25 (23 in average, < 60) and HREE of whole rock is consistent with abyssal peridotite, indicating that the brecciform harzburgite formed in the mid-ocean ridge and thought as a residue after 10~15% partial melting of a primordial mantle source. While, the massive Cpx-free harzburgite of SSZ-type ophiolite is heavily serpentinized. Spinel is high Cr# value ranging from 69 to 74 (>60) consisting with that in the Izu-Bonin-Mariana (IBM) peridotite, indicating that the massive harzburgite formed in the Supra-Subduction Zone, and thought as a residue after 35~40% partial melting of a primordial mantle source.
     The lava unit can geochemically be subdivided into four groups of rocks: (1) the brecciform basalts with high-Ti showing clear P-MORB affinity; (2) the pillow basaltic lavas and andesitic basalts with high-Ti showing Back Arc Basin (BAB) basalts affinity similar to N-MORB; (3) the intrusive basaltic dykes and isotropic gabbroic dykes with high-Ti affinity, but showing clear Island Arc Tholeiite (IAT) affinity; (4) the massive basaltic andesite, andesitic lava breccia, and andesite porphyrite with boninite affinity showing very low abundance of TiO2 (0.23~0.39 wt.%) with respect to above three groups.
     These different magmatic groups are believed form in Mid-Ocean Ridge (MOR) and Supra-Subduction Zone (SSZ). The first group with P-MORB affinity was formed in the background like the Mid-Atlantic Ocean Ridge. It constitutes MOR-type ophiolite together with the brecciform Cpx-bearing harzburgite. The latter three groups were formed in the setting from forearc to back arc basin within the Supra-Subduction Zone. And these different lavas originated from fractional crystallization from different primitive magmas, which were generated, in turn, from partial melting of mantle sources progressively depleted by previous melt extraction. Group 1 have derived from partial melting (ca. 10~15%) of a primordial mantle source, while group 2 and 3 basalts, basaltic dykes, and isotropic gabbro may have derived from partial melting (ca. 25~30%) of a primordial mantle source. Finally, the group 4 boninite series volcanic rocks may have derived from partial melting (ca. 35~40%) of a mantle peridotite previously depleted by primary melt extraction of the group 1 primary melts. They constitute SSZ-type ophiolite together with the massive Cpx-free harzburgite. And the radiolarian in the ribbon-cherts associated with the pillow lavas formed in the back-arc basin has been designed to the Late Jurassic. This suggests that the Bangong Lake SSZ-type ophiolite formed at least in the Late Jurassic.
     This paper also preliminarily discussed the process of lavas within the SSZ-type ophiolite according as the mechanism of the subduction slab rollback during the ocean-continent subduction. The Bangong Lake boninite oceanic crust was formed in the forearc extension basin caused by the induced corner flow. The subduction slab rollback due to mantle extrusion associated with mantle wedge flow caused the arc-trench retreat and back-arc extension during the continuous subduction where the pillow lavas and basaltic dykes with back-arc affinity were formed by the partial melting of the different depleted mantle wedge peridotites.
     By contrast, the Bangong Lake ophiolite is similar with the west Tethys typical ophiolite in age and genetic setting. This gives strong evidence support that the Bangong Lake ophiolite is a part of the Neo-Tethys ophiolite. Thus, the Bangong Lake ophiolite zone serves rather as a suture in intra-Gondwana continent than between Gondwana and Laurasia continents. In other word, the Bangong-Nujiang ophiolite zone is not the northern edge of Gondwana continent.
引文
Allan J F and Gorton M P. 1992. Geochemistry of igneous rocks from Legs 127 and 128, sea of Japan. Proceedings of the Ocean Drilling Programs Scientific Reports, 127/128: 905~929.
    Arai S. 1994. Compositional variation of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotite. J. Volcanol. Therm. Res., 59: 279~293.
    Argand E. 1924. La tectonique de I’Asie, 13e Congr. Geol. Int., Vaillant-Carmanne, Liege, 171~372.
    Baker M B and Stolper E M. 1994. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta, 58: 2811~2827. Batanova V G and Sobolev A V. 2000. Compositional heterogeneity in subduction-related mantle peridotites, Troodos massif, Cyprus. Geology, 28(1): 55~58.
    Beccaluva L and Serri G. 1988. Boninitic and low-Ti Subduction-related lavas from intra-oceanic arc-back arc systems and low-Ti ophiolite: A reappraisal of their petrogenesis and original tectonic setting. Tectonophysics, 146: 291~315.
    Beccaluva L. 1982. Ophiolites and actualism, petrological constraints. Ofioliti, 7: 109~112.
    Beccaluva L, Girolama P D, Macciotta G, et al. 1983. Magma affinities and fractionation trends in ophiolites. Ofioliti, 8: 307~324.
    Bedard J H, Lauziere K, Tremblay A, et al. 1998. Evidence for forearc seafloor-spreading from the Betts Cove ophiolite, Newfoundland: Oceanic crust of boninitic affinity. Tectonophysics, 284: 233~245.
    Bender J F, Hodges F N, Bence A E. 1978. Petrogenesis of basalts from the Project FAMOUS area; experimental study from 0 to 15 kbars, Earth Planet. Sci. Lett, 41(3): 277~302.
    Benn K, Nicolas A, and Reuber I. 1988. Mantle-crust transition zone and origin of wehrlitic magmas: evidence from the Oman ophiolite. Tectonophysics, 151: 75~85.
    Bloomer S H, Taylor B, Macleod C J, et al. 1995. Early arc volcanism and the ophiolite problem: a perspective from drilling in the western Pacific. In: Taylor eds. Active Margins and Marginal Basins of the Western Pacific. Washington D C: Am. Geophy. Union, 1~30.
    Boudier F and Nicolas A. 1985. Harzburgite and lherzolite subtypes in ophiolitic and oceanic environments. Earth Planet. Sci. Lett., 76(1-2): 84~92.
    Bridges J C, Prichard H M, and Meireles C A. 1995. Podiform chromitite-bearing ultrabasic rocks from the Braganca massif, northern Portugal: fragments of island arc mantle? Geology Magazine, 132: 39~49.
    Bullard E C, Everett J E, and Smith A G. 1965. The fit of the continents around the Atlantic. Royal Soc. London Phil. Trans. Ser. A258: 41~51.
    Cameron W E. 1989. Contrasting boninite-tholeiite associations from New Caledonia. In: Boninites and Related Rocks (ed. Crawford A J). London: Unwyn Hyman: 314~338.
    Casey J F. 1997. Composition of major- and trace-element geochemistry of abyssal peridotites and mafic plutonic rocks with basalts from the MARK region of the Mid-Atlantic Ridge. In: Proceeding of the Ocean Drilling Program, Scientific Results (eds. Karson J A, Cannat M, Miller D J, and Elthon D), 153: 181~241.
    Cliff R A. 1985. Isotopic dating in metamorphic belts, Geo. Soc. Lond, 142: 97~110.
    Clift P D. 1995. Volcaniclastic sedimentation and volcanism during the rifting of western Pacific backarc basins. In: Active margins and marginal basins of the western Pacific (eds. Taylor B and Natland J). 67~96.
    Coleman R G and Keith T E. 1971. A chemical study of serpentinization-Burro Mountain, California. J. Petrol., 12: 311~328.
    Coleman R G. 1977. Ophiolites, Printed by Springer Verlag Berlin Heidelberg in Germany.
    Colin G M and Robert H. 2001. Tectonic setting of Eocene boninite magmatism in the Izu-Bonin-Mariana forearc. Earth Planet. Sci. Lett., 186: 215~230.
    Cortesogno L, Gaggero L, Jaho E, Marroni M, et al. 1998. The gabbroic complex of the western ophiolitic belt, Northern Albania: an example of multilayered sequence in an intermediate-spreading oceanic ridge. Ofioliti, 23/2, 49~64.
    Costa S and Caby R. 2001. Evolution of the Ligurian Tethys in the Western Alps: Rare-earth element geochemistry and Sm-Nd and U-Pb geochronology of the Montgenèvre Ophiolite. Chem. Geol., 175(3-4): 449~466.
    Crawford A J, Falloon T J, and Green D H. 1989. Classification, progress and tectonics setting of Boninites. In: Crawford A J. ed. Boninites and Related Rocks. London: Unwyn Hyman, 1~49.
    Defant M J, Xu J F, Kepezhinskas P, et al. 2002. Adakites: some variations on a theme. Acta Petrologica Sinica, 18: 129~142.
    Dewey J F and Bird J. 1971. Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. J. Geophys. Res., 76: 3179~3206.
    Dick H J B and Bullen T. 1984. Chrominium spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol., 86: 54~76.
    Dick H J B, Fisher R L, and Bryan W B. 1984, Mineralogical variability of the uppermost mantle along mid-ocean ridges. Earth Planet. Sci. Lett., 69: 88~106.
    Dick H J B. 1977. Partial melting in the Josephine peridotite 1, the effect on mineral composition and its consequence for geobarmetry and geothermometry. American Journal of Science, 277: 801~832.
    Dilek Y and Robinson P T. 2003. Ophiolite in Earth history: Introduction. In: Ophiolite in Earth history (eds. Dilek Y and Robinson P T), 1~8.
    Dimo-Lahitte A, Monie P, and Vergely P. 2001. Metamorphic soles from the Albanian Ophiolites: petrology, 40Ar/39Ar geochronology and geodynamic evolution. Tectonics, 20: 78~96.
    Dobretsov N L and Kepezhinscas V V. 1981. Three types of ultrabasic magmas and their bearing on the problem of ophiolites. Ofioliti. 6(2-3): 221~236.
    Dobretsov N L, Berzin N A, and Buslov M M. 1995. Opening and tectonic evolution of the Paleo-Asian Ocean. International geological review, 37: 335~360.
    Drummond M S, Defant M J, and Kepezhinskas P K. 1996. Petrogenesis of slab derived trondhjemite -tonalite-dacite/adakite magmas. Trans. R. Soc. Edingburgh Earth Sci., 87: 205~215.
    Elthon D, Casey J F, and Komor S. 1982 Mineral chemistry of ultramafic cumulates from the North Arm Mountain massif of the Bay of Islands Ophiolite; evidence for high-pressure crystal fractionation of oceanic basalts. J. Geophys. Res. B 87(10): 8717~8734.
    Elthon D, Stewart M, and Ross D K. 1992. Composition trends of minerals in oceanic cumulates. J. Geophys. Res. 97: 15189~15199.
    Engel C G and Fisher R L. 1975. Granitic to ultramafic rock complexes of the Indian Ocean ridge system, western Indian Ocean. Geological Society of American Bulletin, 86(11): 1553~1578.
    Evesen N M, Halmilton P J, and O’Nions R K. 1978. Rare earth abundances in chondritic meteorites. Geochim Cosmochim Acta, 42: 1199~1212.
    Falloon T J, Malahoff A, Zonenshain L P, et al. 1992. Petrology and geochemistry of back arc basin basalts from Lau Basin spreading ridges at 15°, 18° and 19°S. Mineral Petrol, 47: 1~35.
    Flower M F J, Russo R M, Tamaki K, et al. 2001. Mantle contamination and the Izu-Bonin-Mariana (IBM) 'high-tide mark': Evidence for mantle extrusion caused by Tethyan closure. Active Subduction and Collision in Southeast Asia (eds. Lallemand S and Le Pichon X). Tectonophysics, 333: 9~34.
    Flower M F J. 2003. Ophiolites, historical contingency, and the Wilson Cycle. The Ophiolite Concept and the Evolution of Geological Thought (eds. Dilek Y and Newcomb S). Geological Society of America Special Paper , 373: 111~135.
    Gaetani G A and Grove T L. 1998. The influence of water on melting of mantle peridotite. Contrib. Mineral. Petrol. 131: 323~346.
    Gass I G. 1968. Is the Troodos Massif of Cyprus a fragment of Mesozoic oceanic floor? Nature, 220, 39~42.
    Girardeau J, Marcoux J, Allegre C J, et al. 1984. Tectonic environment and geodynamic significance of the Neo-Cimmerian Dongqiao Ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 307: 27~31.
    Gopel C, Allegre C J, and Xu R. 1984. Lead isotope study of the Xigaze ophiolite (Tibet): the problem of the relationship between magmatism (gabbros, dolerites, lavas) and tectonites (harzburgites). Earth and Planetary Science Letters, 69: 301~310.
    Hamlyn P R and Bonatti E. 1980. Petrology of mantle-derived ultramafics from the Owen Fracture Zone, northwest Indian Ocean: implications for the nature of the oceanic upper mantle. Earth Planet. Sci. Lett., 48: 65~79.
    Hawkins J W, Bloomer S H, Evans C A, et al. 1984. Evolution of intra- oceanic arc-trench system. Tectonophysics, 102: 175~ 205.
    Hawkins J W. 1995. Evolution of the Lau Basin-insights from ODP Leg 135. Am Geophys Union Geophys Monogr, 60: 301~325.
    Hebert R, Huot F, Wang C S, et al. 2003. Yarlung-Zangbo ophiolites, southern Tibet revisited: geodynamics implications from the mineral record. In: Ophiolites in Earth history (eds. Dilek Y & Robinson P T). Geological Society, London, Special Publications, 165~190.
    Hickey R and Frey F A. 1982. Geochemical characteristics of boninite series volcanics: Implications for their source. Geochim Cosmochim Acta, 46: 2099~2115.
    Hoeck V, Koller F, Meisel T, et al. 2002. The Jurassic south Albania ophiolite: MOR- vs. SSZ-type ophiolites. Lithos, 73: 143~164.
    Ishii T, Robinson P T, Maekawa H, et al. 1992. Proto-ophiolite: Peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, ODP Leg 125. 29th Inter. Geol. Cong. Abstract, 1, Kyoto, Japan, 134.
    Ishikawa T, Nagaishi K, and Umino S. 2002. Boninitic volcanism in the Oman ophiolite: Implications for thermal condition during transition from spreading ridge to arc. Geology, 30: 899~902.
    Jaques A J and Green D H. 1980. Anhydrous melting of peridotite at 0-15 kb pressure and the genesis of tholeiitic basalts. Contrib. Mineral. Petrol., 73: 287~310.
    Jaraslow G E, Hirth G, and Dick H J B. 1996. Abyssal peridotite mylonites: implications for grain-size sensitive flow and strain localization in the oceanic lithosphere. Tectonophysics, 256: 17~37.
    Kelemen P B, Dick H J B, and Quick J E. 1992. Formation of harzburgite by pervasive melt/ rock reaction in the upper mantle. Nature, 358(6388): 635~641.
    Kelemen P B, Shimizu N, and Salters V J M. 1995. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature, 375: 747~753.
    Kidd and Cann. 1974. Chilling statistics indicate an ocean-floor spreading origin for the Troodos complex, Cyprus. Earth Planet. Sci. Lett., 24(1):151~155.
    Kiyoaki Niida. 1997. Mineralogy of MARK peridotites: replacement through magma channeling examined from Hole 920D, MARK area. In: Proceeding of the Ocean Drilling Program, Scientific Results (eds. Karson J A, Cannat M, Miller D J, and Elthon D), 153: 265~275.
    Komor S C, Grove T L, and Hebert R. 1990. Abyssal peridotites from ODP Hole 670A (21°10′N, 45°02′W): Residues of mantle melting exposed by non-constructive axial divergence. In: Proceedings of the Ocean Drilling Program Scientific Results (eds. Detrick R, Honnorez J, Bryan W B, et al.), 106/109: 85~101.
    Kuroda N, Shiraki K, and Urano H. 1978. Boninite as a possible calc-alkalic primary magma. In: International geodynamics conference "Western Pacific" and "Magma genesis" Tokyo (Sci. Counc. Jpn. Tokyo, Japan), 280~281.
    Lachize M, Lorand J P and Juteau T. 1996. Calk-alkaline differentiation trend in the plutonic sequence of the Wadi Haymiliyah. section, Haylayn massif, Semail ophiolite, Oman, Lithos 38:. 207~232.
    Le Pichon X and Angelier J. 1981. The Aegean Sea. Philosophical Transactions of the Royal Society. London, 300: 357~372.
    Leybourne M I, Van W N, and Ayres L D. 1999. Partial melting of a refractory subducted slab in a Paleoproterozoic island arc; implications for global chemical cycles. Geology, 27: 731~734.
    Malpas J, Xenophontos C, and Williams D. 1992. The Ayia Varvara formation of SW Cypus—A product of Complex collisional tectonics. Tectonophysics, 212: 193~211.
    Malpas J and Robinson P T. 1997. Oceanic lithosphere—1. The origin and evolution of oceanic lithosphere. Geoscience Canada, 24: 100~107.
    Malpas J, Zhou M F, Robinson P T, et al. 2003. Geochemical and geochronological constraints on the origin and emplacement of the Yarlung Zangbo ophiolites, southern Tibet. In: Ophiolites in Earth history (eds. Dilek Y & Robinson P T). Geological Society, London, Special Publications, 191~205.
    Manika K, Shallo M, and Gega D. 1997. The plutonic sequence of the Shebenik ophiolite complex, Albania: evidence for dual magmatism. In: From rifting to drifting in present-day and fossil ocean basins (eds. Messiga B & Tribuzio R). International ophiolite syposium: Bologna, Italy. Pitagora Editrice, Ofioliti, 22(special Issue), 93~99.
    Martin F J Flower. 2003. Ophiolites, historical contingency, and Wilson cycle. Ophiolite concept and the evolution of geological thought (eds. Dilek Y & Newcomb S) Colorado, Geological Society of American Special Paper, 373: 111~135.
    McDonough W F and Sun S S. 1995. The composition of the Earth. Chem. Geol., 120: 223~253.
    MeGetchin T R, et al. 1981. Basaltic volcanism on the terrestrial planets. By members of the basaltic volcanism Study Project, New York. 1286.
    Meijer A, Anthony E, and Reagen M. 1980. Petrology of volcanic rocks from the fore-arc sites. Init Rep DSDP, 60: 709~724.
    Melcher F, Meisel T, Puhl J, et al. 2002. Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: constrains from geochemistry. Lithos, 65: 69~112.
    Miyashiro A. 1975. Classification, characteristics and origin of ophiolites. J. Geol., 83: 249~281.
    Moores E M and Vine F J. 1971. The Troodos massif, Cyprus and other ophiolites as oceanic crust: evaluations and implications. Philos. Trans. R. Soc., A268: 433~466.
    Moores E M. 1982. Origin and emplacement of ophiolites. Rev. Geophys. Space Phys. 20: 735~760.
    Moores E M and Jackson. 1974. Ophiolites and oceanic crust. Nature, 250: 136~139. Murton B J. 1989. Tectonic controls on boninite genesis. In: Magmatism in the Ocean
    Basins (eds. Sauders A D & Norry M J). Geol Soc London Spec Publ, 42: 347~377.
    Nicolas A, Boudier F, and Ildefonse B. 1994. Evidence from the Oman ophiolite for active mantle upwelling beneath a fast-spreading ridge, Nature, 370, 51~53.
    Nicolas A and Boudier F. 1995. Mapping oceanic ridge segments in Oman ophiolites. J. Geophys. Res., 100: 6179~ 6197.
    Nicolas A, Boudier F, and Ildefonse B. 1996. Variable crustal thickness in the Oman ophiolite: Implication for oceanic crust. J. Geophys. Res., 101(8): 17941~17950.
    Nicolas A, Boudier F, and Meshi A. 1999. Slow spreading accretion and mantle denudation in the Mirdita Ophiolite (Albania). J. Geophys. Res. B, 104: 15155~15167.
    Niu Yaoling and Roger H. 1997. Spreading-rate dependence of the extent of mantle melting beneath ocean ridges. Nature, 385: 326~329.
    Ozawa K and Shimizu N. 1995. Open-system melting in the upper mantle: constrains from the Hayachine-Miyamori ophiolite, northeastern Japan. J. Geophys. Res., 100: 22315~22335.
    Pallister J S. 1984. Parent magmas of the Semail ophiolite, Oman. In: Ophiolites and Oceanic Lithosphere (eds. Gass I G, Lippard S J, and Shelton A W). Geol. Soc. Lond. Spec. Pub. 13, Blackwell, 63~70.
    Parkinson I J and Pearce A J. 1998. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. J. Petrol., 39(9): 1577~1618.
    Parkinson I J, Pearce J A, Thirlwall M F, et al. 1992. Trace element geochemistry from the Izu-Bonin-Mariana forearc, Leg 125. In: Proceedings of the Ocean Drilling Program Scientific Results (eds. Fryer P, Pearce J A, Stokking L B, et al.), 125, College Station, TX: Ocean Drilling Program, 487~506.
    Parlak O, Hock V, and Delaloye M. 2002. The supra-subduction zone Pozanti-Karsanti ophiolite, southern Turkey: evidence for high-pressure crystal fractionation of ultramafic cumulates. Lithos, 65: 205~224.
    Pearce J A, Alabaster T, Shelton A W, et al. 1981. Oman ophiolite as a Cretaceous arc basin complex evidence and implication. Phil. Trans. R. Soc. Lond. A300: 299~317.
    Pearce J A, Lippard S J, and Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Marginal basin geology (eds. Kokelaar B P and Howells M F). Geological Society of London Special Publication 16: London, Blackwell Scientific Publications, 77~94.
    Pearce J A, and Deng W M. 1988. The ophiolites of Tibet Geotraves, Lhasa to Golmud(1985) and Lhasa to Kathmandu (1986). In: The Geological evolution of Tibet (eds. Chang C F, Shackleton R M, Dewey J F & Jin J X). The royal Society, London, 215~238.
    Pearce J A and Parkinson I J. 1993. Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Magmatic Process and Plate Tectonics, Geological Society London, Special Publication. 76: 373~403.
    Pearce J A, van der Laan S R, Arculus R J, et al. 1992. Boninite and harzburgite from Leg 125 Bonin-Mariana forearc: a case study of magma genesis during the initial stages of subduction. In: Proceedings of the Ocean Drilling Program Scientific Results (eds. Fryer P, Pearce J A, Stokking L B, et al.), 125, College Station, TX: Ocean Drilling Program, 623~674.
    Pearce J A. 2003. Supra-subduction zone ophiolites: The search for modern analogues. Ophiolite concept and the evolution of geological thought (eds. Dilek Y and Newcomb S) Colorado, Geological Society of American Special Paper, 373: 269~293.
    Pearce J A and Wanming D. 1988. The ophiolites of the Tibetan Geotraverse, Lhasa to Golmud (1985) and Lhasa to Katmandu(1986). Philos. Trans. R. Soc. Lond., A 327, 215~238.
    Piercey S J, Murphy D C, Mortensen J K, et al. 2001. Boninitic magmatism in a continental margin setting, Yukon-Tanana Terrane, southeastern Yukon, Canada. Geology, 29: 731~734.
    Robertson A H F and Shallo M. 2000. Mesozoic-Tertiary tectonic evolution of Albania in its regional eastern Mediterranean context. Tectonophysics, 316: 197~214.
    Robertson A H F. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65: 1~67. Robinson P T, 1983.
    Robinson P T,白文吉, 杨经绥, 等. 1995. 内蒙古贺根山蛇绿岩岩石成因和地壳增生的地球化学制约. 岩石学报, 11(增): 112~124.
    Robinson P T, Zhou M F, Hu X F, et al. 1999. Geochemical constraints on the origin of the Hegenshan Ophiolite, Inner Mongolia, China. J. Asian Earth Sci. 17: 423~442.
    Rollinson H R. 1993. Using Geochemical Data: Evolution Presentation, Interpretation. Singapore: Longman Publishers (Pte) Ltd. 142~148.
    Saunders A D and Tarney L. 1984. Geochemical characteristics of basaltic volcanism within back-arc basins. In: Kokelaar B P, Howells M F, eds. Marginal Basin Geology. Spec Publ Geol Soc London, 16: 59~76.
    Schilling J G. 1975. Azores mantle blob: rare-earth evidence. Earth Planet. Sci. Lett., 25: 103~115.
    Sengor A M C, Altiner D, Cin A, et a1. 1988. Origin and assembly of the Tethys side orogenic collage at the expense of Gondwanaland. Audley Charles M G, Hallam Gondwana and Tethys. Oxford:Oxford Univ Press, 119~181.
    Sengor A M C. 1979. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature, 279: 590~593.
    Sengor A M C. 1984. The Cimmeride orogenic system and the tectonics of Eurasia. Geol Soc Amer Special Paper, 195: 1~82. Seno and Yamanaka,1998.
    Shervais J W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett., 59(1): 101~118.
    Smith A B and Xu Juntao. 1988. Paleontology of the 1985 Tibet geotraverse, Lhasa to Golmud. The Geological Evolution of Tibet. Phil Trans R Soc, A327: 53~106.
    Smith A B. 1988. Late Paleozoic biogeography of East Asia and pale ontological constraints on plate tectonic reconstructions.SHACKLETON R M,DEWEY J F,WINDLEY B F.Tectonic Evolution of the Himalayas and Tibet.Phil. Trans R Soc London, A326: 189~226.
    Smithies R H. 2002. Archean boninite-like rocks in an intracratonic set-ting. Earth Planet. Sci. Lett., 197: 19~34.
    Snow J E, Schmidt G, and Rampone E. 2000. Os isotopes and highly siderophile elements (HSE) in the Ligurian ophiolite, Italy. Earth and Planetary Science Letters, 175: 119~132.
    Sobolov A V and Danyushevsky L V. 1994. Petrology and geochemistry of boninites from the north termination of the Tonga trench: Constraints on the generation conditions of primary high-Ca boninite magmas. J. Petrol., 35: 1183~1211.
    Stern R J and Bloomer S H. 1992. Subduction zone infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic Califormia arcs. Geol Soc Am Bull, 104: 1621~1636.
    Stocklin J. 1974. Possible ancient continental margins in Iran. In: The geology of continental margins (eds. Burk C A and Drake C L), 873~887.
    Suess E. 1893. Are great ocean depths permanent? Nat. Sci., 2: 180~187.
    Suess E. 1901. Das Antlitz der Erde. Vol. 3/II, Tempsky, Wien.
    Sun S S. 1980. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Phil Trans R Soc, A297: 409~445.
    Sun S S, Nesbitt R W, and McCulloch M T. 1989. Geochemistry and petrogenesis of Archean and early Proterozoic siliceous high-magnesian basalts. In: Boninites and related rocks (ed. Crawford A J). London: Unwyn Hyman. 149~173.
    Umino S and Kushiro I. 1989. Experimental studies on boninite Petrogenesis. In: Boninites and related rocks (ed. Crawford A J). London: Unwyn Hyman. 89~109.
    Umino S. 1995. Geology of the Semail ophiolite, northern Oman Mountains: Chigaku Zasshi. J. Geography, 104: 321~349.
    van der Laan S R, Arculus J A, and Murton B J. 1992, Petrography, mineral chemistry, and phase relations of the basement Boninite series of site 786, Izu-Bonin
    forearc. In: Proceedings of the Ocean Drilling Program Scientific Results (eds. Fryer P, Pearce J A, and Stockling L B, et al.), 125, College Station, TX: Ocean Drilling Program, 171~201.
    van Keken P E, Kiefer B, and Peacock S M. 2002. High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochemistry Geophysics Geosystems (G3), no. 1056, 3(10, October).
    Vysotsky S V. 1992. Mineralogy and petrology of ophiolites from the North Primorye; evidences of high-pressure crystallization. In: 29th international geological congress; abstracts, 29: 134.
    Wang C S, Liu Z F, and Hebert R. 2000. The Yarlung-Zangbo paleo-ophiolite, southern Tibet: implications for the dynamic evolution of the Yarlung-Zangbo suture zone. Journal of Asian Earth Sciences, 18: 651~661.
    Winchester J A and Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol., 20: 325~343.
    Wood D A. 1980. The application of Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50: 11~33.
    Wyman D A. 1999. A 2.7 Ga depleted tholeiite suite: Evidence of plume-arc interaction in the Abitibi Greenstone Belt, Canada. Precambrian Research, 97: 27~42.
    Yang H Y, Lu J, and Wu H Q. 1997. Mineralogy and petrology of the ophiolite from the Namu Bridge in the north Qilian Mountains, northwest China. Journal of the Geological Society Of China, 40: 499~526.
    Yang J S, Chai Y C, and Feng B G. 1991. Plume-type mid-ocean ridge basalt in the Bangong Lake ophiolite: geochemistry evidence. In: Geology of the Himalayas (eds.
    Li G C, Zhou W Q, and Nicolas A). Beijing: Geological Publishing House, 447~491.
    Yang J S, Robinson P T, Jiang C F, et al. 1996. Ophiolites of Kunlun mountains, China and their tectonic implications. Tectonophysics, 258: 215~231.
    Zhang Q, Wang Y, Zhou G Q, et al. 2003. Ophiolites in China: their distribution, ages and tectonic settings. In: Ophiolites in Earth History (eds. Dilek Y and
    Robinson P T). Geological Society, London, Special Publications, 218: 541~566.
    Zhou M F, Robinson P T, Malpas J, et al. 1996. The Podiform chromitites in the Luobusa ophiolite (Southern Tibet): implications for mantle-melt interaction and chromite segregation. Journal of petrology, 37: 3~21.
    Zhou M F, Malpas J, Robinson P T, et al. 1997. The dynamothermal aureole of the Dongqiao ophiolite, northern Tibet. Canadian Journal of Earth Sciences, 34, 59~65.
    白文吉, Robinson P T, 杨经绥, 等. 1995. 西准噶尔不同时代蛇绿岩及其构造演化. 岩石学报, 11(增): 62~72.
    鲍佩声, 肖序常, 王军, 等. 1999. 西藏中北部双湖地区蓝片岩带及其构造涵义. 地质学报, 73(4): 302~314.
    包志伟, 陈森煌, 张桢堂. 1994. 内蒙古贺根山地区蛇绿岩稀土元素和 Sm-Nd 同位素研究. 地球化学, 23(4): 339~349.
    常承法, 郑锡阔. 1973. 中国西藏南部珠穆朗玛峰地区构造特征及青藏高原东西向诸山系形成的探讨. 地质科学, 2: 1~12.
    常承法. 1978. 喜马拉雅地质发展史、构造带的划分和隆起原因探讨. 见: 国际交流地质学术论文集(1)-区域构造、地质力学, 地质出版社, 198~211.
    陈根文, 夏斌, 钟志洪, 等. 2003. 西藏得几蛇绿岩体中玻安岩的地球化学特征及其地质意义. 矿物学报, 23 (1): 91~96.
    陈亮, 孙勇, 柳晓明, 等. 1999.青海德尔尼蛇绿岩的地球化学特征及其大地构造意义. 岩石学报, 16(1): 106~110.
    范影年. 1985. 中国西藏石炭-二叠纪皱纹珊瑚的地理区系. 青藏高原地质文集编委会, 青藏高原地质文集(16): 地层古生物 . 北京: 地质出版社, 87~106.
    冯益民, 何世平. 1995. 北祁连蛇绿岩地质地球化学特征. 岩石学报, 11 (增刊): 125~146.
    高俊, 张立飞. 1998. 西天山高压变质岩的形成环境. 新疆地质, 16(4): 343~352.
    郭铁鹰,梁定益,张宜智,等. 1991. 西藏阿里地质. 北京: 地质出版社.
    韩松, 贾秀琴, 黄忠祥, 等. 1996. 云南金沙江蛇绿岩的地球化学特征及其成因的初步研究. 岩石矿物学杂志, 15: 203~212.
    黄志勋, 马召军, 刘协章. 2000. 用现代地层学方法判别冈瓦纳大陆的北界. 沉积与特提斯地质, 20(4): 1~19.
    李才, 程立人, 胡克, 等. 1995. 西藏龙木错-双湖古特提斯缝合带研究. 北京: 地质出版社, 1~131.
    李锦轶. 1991. 试论新疆东准噶尔早古生代岩石圈板块构造. 中国地质科学院院报, 23: 1~12.
    李锦轶. 1995. 新疆东准噶尔蛇绿岩的基本特征和侵位历史. 岩石学报, 11(增): 73~84.
    李兴振, 潘桂棠, 罗建宁. 1990. 论三江地区冈瓦纳和劳亚大陆的分界. 青藏高原地质文
    集编委会, 青藏高原地质文集(20): “三江”论文专辑. 北京: 地质出版社, 217~233.
    梁定益, 聂泽同, 宋志敏. 1994. 早二叠世冈瓦纳北缘构造古地理环境和杂砾岩成因剖析. 特提斯地质, 18: 61~73.
    梁定益. 2004. 青藏高原首批 1: 25 万区域地质调查地层工作若干进展点评, 地质通报,23(1): 24~26.
    莫宣学, 沈上越, 朱勤文, 等. 1998. 三江中南段火山岩-蛇绿岩与成矿. 北京, 地质出版社.
    潘桂棠, 郑海祥, 徐耀荣, 等. 1983. 初论班公湖-怒江结合带. 青藏高原地质文集编委会. 青藏高原地质文集(12): “三江”构造地质. 北京: 地质出版社, 229~242.
    潘桂棠, 朱弟成, 王立全, 等. 2004. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据. 地学前缘, 11(4): 371~382.
    邱瑞照, 周肃, 邓晋福, 等. 2004. 西藏班公湖-怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定—兼论班公湖-怒江蛇绿岩带形成时代. 中国地质, 31(3): 262~268.
    任纪舜, 肖黎薇. 2004. 1:25 万地质填图进一步揭开了青藏高原大地构造的神秘面纱. 地质通报, 23(1): 1~11.
    史仁灯, 杨经绥, 吴才来, 等. 2004a. 北祁连玉石沟蛇绿岩形成于晚震旦世的SHRIMP年龄证据. 地质学报, 78(5): 649~657.
    史仁灯, 杨经绥, 许志琴, 等. 2004b. 西藏班公湖蛇绿混杂岩中玻安岩系火山岩的发现及构造意义. 科学通报, 49(12): 1179~1184.
    宋述光. 1997. 北祁连俯冲杂岩的构造演化. 地球科学进展, 12: 340~350.
    汤耀庆, 高俊, 赵明, 等. 1995. 西南天山蛇绿岩和蓝片岩. 北京, 地质出版社.
    王乃文. 1984. 中国冈瓦纳研究的兴起与板块构造有关的几个关键古生物地理问题. 中国地质科学院院报,第 10 号: 103~115.
    王荃, 刘雪亚. 1976. 我国西部的古海洋地壳及其大地构造意义. 地质科学, (1): 42~55.
    王希斌, 鲍佩声, 邓万明, 等. 1987. 喜马拉雅岩石圈构造演化-西藏蛇绿岩(3)-岩石矿物地球化学, 6: 138~214.
    王希斌, 鲍佩声, 戎合, 1995. 中国蛇绿岩中变质橄榄岩的稀土元素地球化学, 岩石学报, 11(增刊): 24~41.
    夏林圻, 夏祖春, 徐学义. 1996. 北祁连山海相火山岩岩石成因. 北京, 地质出版社.
    肖序常, 陈国铭, 朱志直. 1978. 祁连山古蛇绿岩的地质构造意义. 地质学报, 54(1): 287~295.
    肖序常. 1995. 从扩张速率试论蛇绿岩的类型划分. 岩石学报, 11(增): 10~23.
    肖序常, 汤耀庆, 冯益明, 等. 1992. 新疆北部及其邻区大地构造. 北京, 地质出版社.
    许荣华, Harris N, Lewis C, 等. 1990. 青藏高原地质演化, 科学出版社, 北京.
    杨经绥, 柴耀楚. 1992. 昆仑蛇绿岩带的主要特征. 见: 昆仑开合构造(姜春发等著). 北京, 地质出版社.101~153.
    杨经绥, 王希斌, 史仁灯, 等. 2004. 青藏高原北部东昆仑南缘德尔尼蛇绿岩: 一个被肢解了的古特提斯洋壳. 中国地质, 31(3): 226~239.
    尹集祥. 1997. 青藏高原及邻区冈瓦纳相地层地质学. 北京:科学出版社.
    袁超, 孙敏, 李继亮, 等. 2003. 西昆仑库地蛇绿岩的构造背景: 来自玻安岩系岩石的新证据. 地球化学, 3: 43~48.
    张国伟, 李曙光. 1994. 秦岭造山带的蛇绿岩. 地学研究, 26: 13~24.
    张旗, 周云生, 李达周. 1982. 西藏日喀则-白朗地区蛇绿岩中的席状岩墙群. 见: 中国科学院抵制研究所(主编): 岩石学研究, 1: 65~80. 北京, 地质出版社.
    张旗, 李达周, 张魁武. 1985a. 云南省云县铜厂街蛇绿混杂岩的初步研究. 岩石学报, 1(3): 1~14.
    张旗, 杨瑞英. 1985b. 西藏丁青蛇绿岩中玻镁安山岩类的深成岩及其地质意义. 科学通报, 16: 1243~1245.
    张旗, 陈雨, 周德进, 等. 1998. 北祁连肃南县大岔大坂玻安岩的地球化学特征和成因. 中国科学(D), 28(1): 30~34.
    郑来林, 廖光宇, 耿全如, 等. 2004. 墨脱县幅幅地质调查新成果及主要进展, 地质通报, 23(5-6): 458~462.
    钟大赉, 吴根耀, 季建清, 等. 1998. 滇东南发现蛇绿岩. 科学通报, 43: 1365~1370.
    朱宝清, 王来生, 王连晓. 1987. 西准噶尔西南地区古生代蛇绿岩. 中国地质科学院中国地质科学院西安地质矿产研究所所刊, 17: 3~64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700