用户名: 密码: 验证码:
地壳介质各向异性区域性特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震各向异性是地球的基本特征之一,而剪切波分裂则是分析地震各向异性的一个有效方法。剪切波分裂是指,当剪切波在各向异性介质中传播时,会分裂成两列波,速度较快的为快剪切波,速度较慢的为慢剪切波,两列剪切波的偏振方向近似相互垂直。快剪切波偏振方向与慢剪切波时间延迟是描述地震各向异性的两个主要参数。
     本研究主要是从两个主要方面研究了剪切波分裂的特性。
     1)首都圈地区与福建地区地壳介质各向异性特征研究
     剪切波分裂计算对观测资料质量要求较高,要求选择剪切波窗口内、高信噪比的波形资料。因此,在我国大陆区域数字化地震台网建成并运行前,有关我国大陆不同区域地壳介质各向异性的研究并不多见。随着20世纪末,大量区域地震台网的建成与运行,现已积累了大量地震波形资料,这为研究中国大陆区域地壳介质各向异性特征提供了条件。
     首都圈地区位于我国华北块体北部,包括太行隆起、燕山隆起与华北盆地三大地质构造单元,区内的张家口—蓬莱断裂带为该区重要的活动构造。福建地处欧亚板块东南缘,临近欧亚板块、太平洋板块、菲律宾海板块的交接部位,是地质活动较强烈的构造活动区。首都圈地区与福建地区应力环境均比较复杂,是学者们比较关注的热点地区。
     本研究分别根据首都圈地区地震台网资料(2002年1月~2005年8月)与福建地区区域地震台网资料(1999年1月-2003年12月),采用SAM分析方法(高原等,2004),分析区域地壳介质各向异性的空间分布特征,得到了一些有意义的结论。
     (1)首都圈地区各台站有效记录的平均快剪切波偏振方向为79.9°±44.3°,福建地区各台站有效记录的平均快剪切波偏振方向为109.4°±42.6°,前者与华北地区最大主压应力场方向一致,后者与福建地区最大主压应力场方向一致,这表明,快剪切波平均偏振方向与区域最大主压应力方向一致,是反应区域构造应力环境的有效方法之一。
     (2)位于不同构造分区内的台站,台站下方地壳介质各向异性特征有所不同。
     (3)局部应力环境对快剪切波优势偏振方向有明显作用:位于活动断层上或附近的台站,快剪切波优势偏振方向通常与活动断层走向一致;位于两组断裂交汇位置的台站,快剪切波偏振方向比较复杂,呈现出两个优势偏振方向。复杂的地质构造环境,会造成地壳介质地震各向异性特征的复杂化。
     2)冰岛2000年强震前剪切波分裂参数特征研究
     有关地壳介质各向异性随时间的分布特征,是地壳介质各向异性特征研究的一个重要方向。地壳介质各向异性随时间分布特征的研究,对观测资料要求更为苛刻,需要剪切波窗口内较为连续的小震资料。
     冰岛位于欧洲最西部,大洋中脊在此穿过,分别于冰岛的北部与南部出露。冰岛境内活山活动、小震活动比较频繁,这为研究地壳介质各向异性随时间的分布特征提供了大量资料。
     2000年6月发生在冰岛西南部转换断层上的一组M>6.0强震,是冰岛地区30年来最强的一组地震。这次强震前,记录到了大量小震资料。本研究根据SWAS方法,重新分析了冰岛2000年6月强震序列前近半年的小震资料,研究结果表明在强震序列发生前,台站SAU与BJA均能够观测到慢剪切波延迟时间随应力积累而增大的现象,以及在临震前慢剪切波延迟时间随裂隙闭合而突然下降的现象。
     综合冰岛地区其它地震、美国的几个震例、中国大陆的震例与中国台湾地区的集集地震的剪切波分裂分析,通过数据拟合,进一步证实了震级与慢剪切波时间延迟在地震前增加的持续时间、临震前下降的持续时间的对数,存在一个正比线性关系。
     根据对首都圈地区和福建地区地壳各向异性的研究结果,本研究进行了多种观测结果的综合讨论。
     综合区域地区地壳介质各向异性与地震活动性、小震精定位、小震震源机制解、上地幔介质各向异性、地震层析成像、GPS观测结果等其它地球物理现象,得到以下初步认识。
     震源机制解最大主压应力轴方向通常与地壳介质各向异性方向一致;快剪切波偏振方向分布较为复杂的地区,似乎与速度结构有一定的关联性;上地幔介质各向异性与地壳介质各向异性的关系能够反应区域浅部与深部介质动力学特征,并暗含区域动力机制信息;GPS观测结果显示地表速度运动特征,同地壳介质各向异性方向一样,可以验证区域介质应力环境的复杂空间分布特征;地震活动与小震精定位能够反应区域构造信息,与地壳介质各向异性方向的区域应力环境相对应。
     本研究比较全面地分析了地壳介质各向异性空间与时间分布特征,讨论了地壳介质各向异性特征与其它地球物理现象之间的关系,得到的一些结论对地震各向异性和应力特性等研究具有重要的参考意义。
Seismic anisotropy is one of the main specialties of the Earth, which can be well understoodby shear-wave splitting. In anisotropic rocks, shear-wave splits into two approximately orthogonalpolarizations that travel at different velocities and write characteristic easily-identifiable signaturesinto three component seismic wave trains. The wave at faster velocity is fast shear-wave, while thewave at slower velocity is slow shear-wave. The main parameters of shear-wave splitting arerespectively polarization of fast shear-wave, and time delay of slow shear-wave.
     The following two aspects are the main work on seismic anisotropy in crust in the thesis.
     A Seismic anisotropy in crust in Capital and Fujian areas
     The requirements of shear-wave splitting analysis are very strict, which means that the waveshould be within shear-wave window with high signal-noise ratio. Thus, seismic anisotropyresearch in regional areas is not so abundant before regional seismic networks are widely built inChina. Since the end of 20st century, many regional seismic networks are built, and a lot ofwaveform data are available, which are quite good for the development of research about seismicanisotropy.
     Capital area is in the north of North China, including three main geologic structures (TaihangUplift, Yanshan Uplift, and North China Basin). Furthermore, Zhangjiakou—Penglai fault is themain seismic structure in the area. As for Fujian area, it is in the southeast border area of Eurasiaplate, and is near the crossing area of Eurasia plate, Pacific plate, Philippine plate. The geologicstructures in the Capital area and the Fujian area are complicated, which are always the interestedresearch areas in China.
     With SAM technology (Gao et al., 2004), the seismic waveform data in Capital area (Jan.2002-Aug. 2005) and in Fujian area (Jan. 1999~Dec. 2003) are analyzed. Seismic anisotropy incrust in the Capital and Fujian areas are obtained, and some meaningful conclusions are available.
     (1) The average polarization of all the records in Capital area is 79.9°±44.3°, whichcorresponds to the direction of maximum horizontal principal compressive stress in North China.Similarly, the average polarization of all the records in Fujian area is 109.4°±42.6°, which isrelated to the direction of maximum horizontal principal compressive stress in South China. Theresults show that the average of polarization of fast shear-wave parallels to the maximumhorizontal principal compressive stress, and is an effective tool to depict the regional stress field.
     (2) At different local structure areas, the seismic anisotropy specialties in crust are different.
     (3) Locally complicated stress structures influence on the polarizations of fast shear-waves.For example, the predominant polarization is usually related to the strike of the fault, if the stationlocates on (or near) an active fault; Polarizations are very complicated, or multi-predominant polarizations are shown, if the station locates in the crossing area between two faults.
     B The specialties of shear-wave splitting before M>6.0 in 2000 in Iceland
     The temporal change of seismic anisotropy in crust is an important research item. However,the requirement of the research is much stricter, which needs the successive small events recordswithin shear-wave window.
     Iceland, in the west border of the Europe, is passed through by Mid-Atlantic Ridge runningonshore in Southwest and North Central Iceland. Both the seismic and volcanic activities arefrequent in Iceland, which provides a lot of waveform data.
     In Jun. 2000, a series of M>6.0 earthquakes occurred in the transform fault in SouthwestIceland, which is the strongest event since recent 30 years. With SWAS technology, theshear-wave splitting parameters of nearly 6 months' small earthquakes before the main shock areobtained. The results show that the time delays of station SAU and BJA show some interestingphenomenon before the main shock. The time delays of slow shear-wave increase with the stressaccumulation before the main shock, while they decrease quickly with the stress relaxationimminently before the main shock.
     Integrating other events in Iceland, several events in USA, events in Chinese mainland, andChi-Chi event in Taiwan, the relation between seismic magnitude and the duration of time delayincreasing, and the relation between seismic magnitude and the duration of time delay decreasingare calculated. It is found that the relations all show linear direct proportion.
     Considering seismic anisotropy in crust, seismic activity, small earthquakes relocation, smallearthquakes focal mechanism, seismic anisotropy in upper mantle, seismic tomography, GPS andso on, some preliminary conclusions are available.
     The principal stress direction is related to the polarization of seismic anisotropy in crust;Multi-predominant polarizations (or complicated polarizations) seem to be connected to thevelocity structure; The relation between seismic anisotropy in crust and in upper mantle can showthe geodynamic specialties of shallow and deep structure, and can hint information aboutgeodynamic mechanism; GPS results show the movement velocity of surface, which can testifythe complicated stress field, just like seismic anisotropy in crust can do; Seismic activity andseismic relocation can show the regional structure information, which just correspond to thestructure information shown by seismic anisotropy in crust.
     Both the spatial and temporal changes in seismic anisotropy in crust are discussed in thethesis. In addition, the relation between seismic anisotropy in crust and other geophysicalphenomenon are discussed too. Some meaningful conclusions are obtained for the research aboutseismic anisotropy and stress specialties.
引文
陈晨,2005.福建地区地震活动空间分布及活动断裂特点研究,地震,25(3):102-108
    陈园田,何丹明,陈新泽,徐宝,李光明,1999.福建地区构造应力场的初步研究——Ⅰ.晚侏罗纪—中更新世,台湾海峡,18(3):291~296
    丁国瑜,1991.中国岩石圈动力学概论,北京:地震出版社
    丁祥焕,陈玉仁,黄钦若,陈国昌,1989.福建地震构造,见:马杏垣主编.中国岩石圈动力学地图集,中国地图出版社,北京pp39
    丁学仁,吴长江,1999.福建及其沿海地区中强以上地震的震源机制研究,地壳形变与地震,19(1):95~97
    段永红,张先康,方盛明,2002.华北地区上部地壳结构的三维有限差分层析成像,地球物理学报,45(3):362~369
    范文,彭建兵,杜东菊,1998.福建沿海地区地震与深部构造关系的研究,地学工程进展,15(1):41~45
    高原,2000.破裂临界状态下大理岩的剪切波分裂特征,中国地震,16(3):197~202.
    高原,滕吉文,2005.中国大陆地壳与上地幔地震各向异性研究,地球物理学进展,20(1):180~185
    高原,郑斯华,孙勇,1995.唐山地区地壳裂隙各向异性,地震学报,17(3):283~293
    高原,郑斯华,王培德,1996.海南省东方地区1992年小震群剪切波分裂研究,地球物理学报,39(2):221~232
    高原,郑斯华,周蕙兰,1999a唐山地区快剪切波偏振图像及其变化,地球物理学报,42(2):228~232
    高原,李世愚,周蕙兰,刘晓红,刘绮亮,1999b.大理岩的剪切波分裂对应力变化响应的实验研究,地球物理学报,42(6):778~784.
    高原,梁维,丁香,薛艳,蔡明军,刘希强,苏有锦,彭立国,2004.云南2001年施甸地震的剪切波分裂参数变化特征,地震学报,26(6):576~582
    高原,刘希强,梁维,郝平,2004.剪切波分裂系统分析方法(SAM)软件系统,中国地震,20(1):101~107
    洪星,杨贵,2005.福建数字地震台网对泉州地震的监测能力,地震地磁观测与研究,26(2):89~96
    黄金莉,赵大鹏,2005.首都圈地区地壳三维P波速度细结构与强震孕育的深部构造环境,科学通报,50(4):348~355
    嘉世旭,齐诚,王夫运,陈棋福,张先康,陈顒,2005.首都圈地壳网格化三维结构,地球物理学报,48(6):1316~1324
    江在森,张希,陈兵,薛富平,2000.华北地区近期地壳水平运动与应力应变场特征,地球物理学报,43(5):657~665
    孔祥儒,刘士杰,张建国,李宗舜,牛青坡,1991.福建东部地区大地电磁测深研究,地球物理学报,34(6):724~735
    赖院根,刘启元,陈九辉,郭飙,李顺成,2002.新疆伽师强震群区的横波分裂与应力场特征,地球物理学报,45(1):83~92
    赖院根,刘启元,陈九辉,刘洁,李顺成,郭飙,黄志斌,2006.首都圈地区横波分裂与地壳应力场特征,地球物理学报,49(1):189~196
    兰从欣,邢成起,苗春兰,岳晓媛,郭心,袁学明,2005a.近年首都圈地区中小地震震源 机制解及其特征分析,华北地震科学,23(4):21~25
    兰从欣,岳晓媛,李菊珍,丁晗,2005b.北京地区小震活跃与首都圈地区中等地震活动关系研究,地震地磁观测与研究,26(3):35~40
    雷军,王培德,姚陈,陈运泰,1997.云南剑川近场横波特征及其与构造的关系,地球物理学报,40(6):791~801
    李宏,安其美,谢富仁.2005.福建沿海边缘陆域的原地应力测量研究,地震学报,27(5):508~514
    李英康,崔作舟,1994.分离纵波和横波的偏振旋转法,地球物理学报,37(增刊):372~382
    林纪曾,蒋维强,李幼铭,梁尚鸿,1991.粤东、闽南沿海小震震源参数的研究,地震学报,13(4):420~429
    刘希强,1992.剪切波分裂中的快、慢波识别方法,西北地震学报,14(4):17~24
    马文涛,徐锡伟,于贵华,张兰凤,2004.首都圈地区的地震活动性与断裂的关系,地震地质,26(2):293~304
    马杏垣,吴正文,谭应佳等,1979.华北地台基底构造,地质学报,53(4):293~304
    马杏垣等译,石耀林等校,2000.地震九讲,地震出版社,北京,pp100
    聂童春,朱根灵,2004.政和—大埔深(大)断裂带中段地质构造特征及其演化探讨,福建地质,23(4):186~194
    牛之俊,王敏,孙汉荣,孙建中,游新兆,甘卫军,薛贵江,郝晋新,辛少华,王永清,王永祥,李柏.2005.中国大陆现今地壳运动速度场的最新观测结果,科学通报,50(8):839~840
    齐诚,赵大鹏,陈颙,陈棋福,王宝善,2006.首都圈地区地壳P波和S波三维速度结构及其与大地震的关系,地球物理学报,49(3):805~815
    钱晓东,李白基,秦嘉政,2002.2000年云南姚安M_s6.5地震余震序列S波分裂研究,中国地震,18(2):157~165
    石玉涛,高原,吴晶,罗艳,苏有锦,2006.云南地区地壳介质各向异性——快剪切波偏振特性,地震学报,28(6):574~585
    史粦华,2005.福建及邻区现今地壳运动与形变,大地测量与地球动力学,25(3):69~74
    唐方头,2003.华北地块近期构造变形和强震活动特征研究,博士论文,中国地震局地质研究所,1~152
    唐群署,李丽红,2006.核幔边界D”区的地震学研究进展,地学前缘,13(2):213~223
    滕吉文,张中杰,胡家富,王光杰,2001.中国东南大陆及陆缘地带的瑞利波频散与剪切波三维速度结构,地球物理学报,44(5):663~677
    汪一鹏,邓起东,朱世龙,1989.华北地区岩石圈动力学特征,见:马杏垣主编,中国岩石圈动力学图集,中国地图出版社,北京,pp59
    王夫运,张先康,陈棋福,陈颙,赵金仁,杨卓欣潘素珍,2005.北京地区上地壳三维细结构层析成像,地球物理学报,48(2):359~366
    韦德光,揭育金,黄廷淦,1997.福建省区域地质构造特征,中国区域地质,16(2):162~170
    吴晶,高原,陈运泰,黄金莉,2007.首都圈西北部地区地壳介质地震各向异性特征初步研究,地球物理学报,50(1):209~220
    吴绍祖,丁学仁,李祖宁,傅再杨,许振栋,2005.福建地区现今地壳运动变化特征研究,华南地震,25(3):87~94
    徐锡伟,吴为民,张先康,马胜利,马文涛,于贵华,顾梦林,江娃利,2002.首都圈地区地壳最新构造变动与地震,科学出版社,北京
    许忠淮,2001.东亚地区现今构造应力图的编制,地震学报,23(5):492~501
    杨国华,韩月萍,王敏,2003.近10年华北地壳水平运动的若干特征,中国地震,19(4):324~333
    杨国华,谢觉民,韩月萍,2001.华北主要构造单元及边界带现今水平形变与运动机制,地球物理学报,44(5):645~653
    姚陈,王培德,陈运泰,1992.卢龙地区S波偏振与上地壳裂隙各向异性,地球物理学报,35(3):305~315.
    张国民,马宏生,王辉,李丽,2004.中国大陆活动地块与强震活动关系,中国科学(D辑),34(7):591~599
    张文佑等,1980.华北断块区的形成与发展,科学出版社,北京
    张中杰,2002.地震各向异性研究进展,地球物理学进展,17:281~293
    郑斯华,高原,1994.中国大陆岩石层的方位各向异性.地震学报,15(2):131-140.
    郑治真,刘元壮,1994.提取慢S波初至的自适应方法及S波分裂在地震趋势估计中的应用研究,中国地震,10(增刊):1~8
    中国地震局分析预报中心,2002.首都圈台网技术报告,首都圈防震减灾示范区系统工程项目单项工程验收材料(编号SSD-0-1)
    周硕愚,帅平,郭逢英,陈光湟,邓干金,周昕,陈园田,2000a.中国福建及其边缘海域现时地壳运动定量研究——GPS、断层形变和水准等测量与震源机制结果的综合分析,地震学报,22(1):66~72
    周硕愚,吴云,秦小军,帅平,施顺英,邓干金,周昕,2000b.基于多种GPS数据研究福建及其邻近海域1994~1997年地壳水平运动,地球物理学报,43(4):471~479
    朱艾斓,徐锡伟,胡平,周永胜,陈桂华,甘卫军,2005a.首都圈地区b值随震源深度的变化:对地震成核的意义,科学通报,50(8):788~792
    朱艾斓,徐锡伟,胡平,周永胜,林元武,陈桂华,甘卫军,2005b.首都圈地区小震重新定位及其在地震构造研究中的应用,地质论评,51(3):268~274
    庄灿涛,1999.首都圈数字地震遥测台网的技术构成,地震地磁观测与研究,20(5):23~28
    Anderson D L., 1961. Elastic wave propagation in layered anisotropic media, J Geophys Res, 66: 2953~2963
    Ando M., Ishikawa Y., Wada H., 1980. S-wave anisotropy in the upper mantle under a volcanic area in Japan, Nature, 286: 43~46
    Aster R C., Shearer P M., Berger J., 1990. Quantitative measurements of shear wave polarizations at the Anza seismic network, southern California: implications for shear wave splitting and earthquake prediction, J Geophys Res, 95: 12449~12473
    Aster R C., Shearer P M., Berger J., 1991. Comments on 'Quantitative measurements of shear-wave polarization at the Anza seismic network, Southern California: implications for shear-wave splitting and earthquake prediction' by Aster R C., Shearer P M., Berger J.,-Reply, J Geophys Res, 96: 6415~6419
    Ayele A., Smart G., Kendall J M., 2004. Insights into rifting from shear wave splitting and receiver functions: an example from Ethiopia, Geophys J Int, 157: 354~362
    Balfour N J., Savage M K., Townend J., 2005. Stress and crustal anisotropy in Marlborough, New Zealand: evidence for low fault strength and structure-controlled anisotropy, Geophys J Int, 163: 1073~1086
    Ben-Zion Y., Peng Z., Okaya D., Seeber L., Armbruster J G., Ozer N., Michael A J., Bails S., Aktar M., 2003. A shallow fault-zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey, Geophys J Int, 152: 699~717
    Bernard P., 1987. Du caractere complexe et agressif des source sismiques (in French), PhD Thesis, University of Paris, p6
    Bernard P., Zollo A., 1989. Inversion of near-source S polarization for parameters of double-couple point sources, Bull Seism Soc Am, 79:1779~1809
    Bianco F., Scarfi L., Del Pezzo E., Patane D., 2006. Shear wave splitting changes associated with the 2001 volcanic eruption on Mt Etna, Geophys J Int, 167:959:967
    Bjarnason I T., Menke W., Flovenz O G., Caress D., 1993. Tomographic image of the Mid-atlantic plate boundary in southwestern Iceland, J Geophys Res, 98:6607~6622
    Bjarnason I T., Silver P G., Rumpker G., Solomon S C., 2002. Shear wave splitting across the Iceland hot spot: Results from the ICEMELT experiment, J Geophys Res, 107: NO. B12, 2382, doi: 10.1029/2001JB000916
    Brisbourne A., Stuart G., Kendall J M., 1999. Anisotropic structure of the Hikurangi subduction zone, New Zealand—integrated interpretation of surface-wave and body-wave observations, Geophys J Int, 137:214~230
    Chen W P., Brudzinski M R., 2003. Seismic anisotropy in the mantle transition zone beneath Fiji-Tonga, Geophys Res Lett, 30:1682
    Chen W P., Ozalaybey S., 1998. Correlation between seismic anisotropy and Bouguer gravity anomalies in Tibet and its implications for lithospheric structures, Geophys J Int, 135: 93~101
    Coehran E S., Vidale J E., Li Y G., 2003. Near-fault anisotropy following the Hector Mine earthquake, J Geophys Res, 108(B9): 2436, doi:10.1029/2002JB002352
    Crampin S., 1975. Distinctive particle motion of surface waves as a diagnostic of anisotropic layering, Geophys J R astron Soc, 40:177~186
    Crampin S., 1978. Seismic wave propagation through a cracked solid: polarization as a possible dilatancy diagnostic, Geophys J R astron Soc, 53:467~496
    Crampin S., 1981. A review of wave motion in anisotropic and cracked elastic-media, Wave Motion, 3:343~391
    Crampin S., 1984. Effective anisotropic elastic-constants for wave propagation through cracked solids, Geophys J R astron Soc, 76:135~145
    Crampin S., 1990. The scattering of shear waves in the crust, PureApp. Geophys, 132:67~91
    Crampin S., 1993. Arguments for EDA, Can J Expl Geophys, 29:18~30
    Crampin S., 1994. The fracture criticality of crustal rocks, Geophys J Int, 118:428~438
    Crampin S., 1999a. Stress-forecasting earthquakes, Seism Res Lett, 70:291~293
    Crampin S., 1999b. Calculable fluid-rock interactions, J Geol Soc Lond, 156:501~514
    Crampin S., 2001. Developing stress-monitoring sites using cross-hole seismology to stress-forecast the times and magnitudes of future earthquakes, Tectonophysics, 338:233~245
    Crampin S., 2003. The new geophysics: Shear-wave splitting provides a window into the crack-critical rock mass, The Leading Edge, 22:536~549
    Crampin S., 2004. The new geophysics: implications for hydrocarbon recovery and possible contamination of time-lapse seismics, First Break, 22:73~82
    Crampin S., 2006. The new geophysics: a new understanding of fluid-rock deformation, in Eurock2006: Multiphysics coupling and long term behaviour in rock mechanics, eds. Van Cotthem A., Charlier R., Thimus J F., Tshibangu J P., Taylor, Francis, London, 539~544
    Crampin S., Booth D C., 1985. Shear-wave polarization near the North Anatolian Fault, Ⅱ. Interpretation in terms of crack-induced anisotropy, Geophys J R astron Soc, 83: 75-92
    Crampin S., Chastin S., 2003. A review of shear-wave splitting in the crack-critical crust, Geophys J Int, 155: 221-240
    Crampin S., Evans R., Ucer B S., 1985. Analysis of records of local earthquakes: the Turkish Dilatancy Projects (TDP1 and TDP2), Geophys JR astron Soc, 83: 1-16
    Crampin S., Gao Y., 2005. Comment on "Systematic analysis of shear-wave splitting in the aftershock zone of the 1999 Chi-Chi, Taiwan, earthquake: shallow crustal anisotropy and lack of precursory changes" by Liu T., Ben-Zion Y.: Temporal variations confirmed, Bull Seism Soc Am, 95: 354-360
    Crampin S., Gao Y, 2006. A review of techniques for measuring shear-wave splitting above small earthquakes, Phys Earth Planet Interi, 159: 1-14
    Crampin S., King D W., 1977. Evidence for anisotropy in the upper mantle beneath Eurasia from generalized higher mode surface waves, Geophys J R astron Soc, 49: 59-85
    Crampin S., Peacock S., 2005. A review of shear-wave splitting in the compliant crack-critical anisotropic Earth, Wave Motion, 41: 59-77
    Crampin S., Zatsepin S V., 1997. Changes of strain before earthquakes: the possibility of routine monitoring of both long-term and short-term precursors, J Phys Earth, 45: 1-26
    Crampin S., Evans R., Ucer B S., Doyle M., Davis J P., Yegorkina G V., Miller A., 1980. Observations of dilatancy-induced polarization anomalies and earthquake prediction, Nature, 286: 874-877
    Crampin S., McGonigle R., Ando M., 1986. Extensive-dialtancy anisotropy beneath Mount Hood, Oregon, and the effect of aspect ration on seismic velocities through aligned cracks, J Geophys Res, 91: 12 703-12 710
    Crampin S., Booth D C, Evans R., Peacock S., Fletcher J B., 1990. Changes in shear wave splitting at Anza near the time of the North Palm Springs Earthquake, J Geophys Res, 95: 11 197-11212
    Crampin S., Booth D C, Evans R., Peacock S., Fletcher J B., 1991. Comment on 'quantitative measurements of shear wave polarizations at the Anza Seismic Network, Southern California: implications for shear wave splitting and earthquake prediction' by Aster R C, Shearer P M., Berger J., J Geophys Res, 96: 6 403-6 414
    Crampin S., Volti T., Stefansson R., 1999. A successfully stress-forecast earthquake, Geophys J Int, 138: F1-F5
    Crampin S., Volti T, Jackson P., 2000. Developing a stress-monitoring site (SMS) near Husavik for stress-forecasting the times and magnitudes of future large earthquakes, Europ Comm Res Dir Gen, 136-149
    Crampin S., Volti T., Chastin S., Gudmundsson A., Stefansson R., 2002. Indication of high pore-fluid pressures in a seismically-active fault zone, Geophys J Int, 151: F1-F5
    Crampin S., Peacock S., Gao Y, Chastin S., 2004a. The scatter of time-delays in shear-wave splitting above small earthquakes, Geophys J Int, 156: 39-44
    Crampin S., Volti T, Stefansson R., 2004b. Response to 'A statistical evaluation of a 'stress-forecast' earthquake' by Seher T, Main I G, Geophys J Int, 157: 194-199
    Creager K C, 1999. Large-scale variations in inner core anisotropy, J Geophys Res, 104: 23 127-23 139
    Darbyshire F A., Bjarnason I T., White R S., Flovenz O G, 1998. Crustal structure above Iceland mantle plume imaged by the ICEMELT refraction profile, Geophys J Int, 135: 1131-1149
    Debayle E. , Kennett B L N., 2000. Anisotropy in the Australian upper mantle from Love and Rayleigh waveform inversion, Earth Planet Sci Lett, 184: 339-351
    Deuss A., Woodhouse J. H., Paulssen H., Trampert J., 2000. The observation of inner core shear waves, Geophys J Int, 142: 67-73
    Duclos M., Savage M K., Tommasi A., Gledhill K R., 2005. Mantle tectonics beneath New Zealand inferred from SKS splitting and petrophysics, Geophys J Int, 163: 760-774
    Earle P S., Shearer P M., 1994. Characterization of global seismograms using an automatic picking algorithm, Bull Seism Soc Am, 84: 366-376
    Elkibbi M., Rial J A., 2005. The Geysers geothermal field: results from shear-wave splitting analysis in a fractured reservoir, Geophys J Int, 162: 1 024-1 035
    Evans R., Beamish D., Crampin S., Ucer B S., 1987. The Turkish Dilatancy Project (TDP3): multidisciplinary studies of a potential earthquake source region, Geophys J R astron Soc, 91:265-286
    Evans M S., Kendall J M., Willemann R J., 2006. Automated SKS splitting and upper-mantle anisotropy beneath Canadian seismic stations, Geophys J Int, 165: 931-942
    Farra V., Vinnik L P., Romanowicz B., Kosarev G L., Kind R., 1991. Inversion of teleseismic S particle motion for azimuthal anisotropy in the upper mantle: a feasibility study, Geophys J Int, 106:421-431
    Fukao Y., 1984. Evidence from core-reflected shear waves for anisotropy in the Earth's mantle, Nature, 309: 695-698
    Gao Y., Crampin S., 2003. Temporal variation of shear-wave splitting in field and laboratory in China, J Appl Geophys, 54: 279-287
    Gao Y., Crampin S., 2004. Observations of stress relaxation before earthquakes, Geophys J Int, 157:578-582
    Gao Y, Crampin S., 2006. A further stress-forecast earthquake (with hindsight), where migration of source earthquakes causes anomalies in shear-wave polarizations, Tectonophysics, doi:10.1016/j.tecto.2006.07.013 (in print)
    Gao Y, Wang P D., Zheng S H., Wang M, Chen Y T., Zhou H L., 1998. Temporal changes in shear-wave splitting at an isolated swarm of small earthquakes in 1992 near Dongfang, Hainan Island, Southern China, Geophys J Int, 135: 102-112
    Gao Y, Hao P., Crampin S., 2006. SWAS: A shear-wave analysis system for semi-automatic measurement of shear-wave splitting above small earthquakes, Phys Earth Planet Interi, 159:71-89
    Gerst A., Savage M K., 2004. Seismic anisotropy beneath Ruapehu volcano: a possible eruption forecasting tool, Science, 306: 1 543-1 547
    Graham G., Crampin S., 1993. Shear-wave splitting from regional earthquakes in Turkey, Can J Expl Geophys, 29: 371-379
    Gripp A G., Gordon R G., 1990. Current plate velocities relative to the hotspots incorporating the NUVEL-1 global plate motion model, Geophys Res Lett, 17: 1 109-1 112
    Hao P., Gao Y, Crampin S., 2007. An expert system for measuring shear-wave splitting above small earthquakes, Computers & Geosciences, accepted.
    Hess H H., 1964. Seismic anisotropy of the upper mantle, Nature, 203: 629-631
    Holt W E., 2000. Correlated crust and mantle strain fields in Tibet, Geology, 28: 67-70
    Huang J., Zhao D., 2006. High-resolution mantle tomography of China and surrounding regions, J Geophys Res, 111: B09305, doi:10.1029/2005JB004066
    Hudson J A., 1981. Wave speeds and attenuation of elastic waves in material containing cracks, Geophys J R astron Soc, 64: 133-150
    Ito G, Shen Y., Hirth G., Wolfe C J., 1999. Mantle flow, melting, and dehydration of the Iceland mantle plume, Earth Plane. Sci Lett, 165: 81-96
    
    Jensen H J., 1998. Self-organized criticality, Cambridge Univ. Press, Cambridge
    Karato S., 1998. Some remarks on the origin of seismic anisotropy in the D" layer, Earth Planets Space,50: 1 019-1 028
    Kendall J M., Silver P G, 1998. Investigating causes of D" anisotropy, in The Core-Mantle Boundary Region, American Geophysical Union Geodynamics Series 28, p97-118, eds Gurnis, M, Wysession, M. E., Knittle, E. & Buffett, B. A., American Geophysical Union, Washington, DC
    Kirkwood S C, Crampin S., 1981. Surface-wave propagation in an ocean basin with an anisotropic upper-mantle: numerical modeling, Geophys JR astron Soc, 64: 487-497
    Lay T., Williams Q., Garnero E J., Kellogg L., Wysession M E., 1998. Seismic wave anisotropy in the D" region and its implications, in The Core-Mantle Boundary Region, American Geophysical Union Geodynamics Series 28, 299-318, eds Gurnis M., Wysession M E., Knittle E., Buffett B A., American Geophysical Union, Washington, DC
    Levin V., Droznin D., Park J., Gordeev E., 2004. Detailed mapping of seismic anisotropy with local shear waves in southeastern Kamchatka, Geophys J Int, 158: 1 009-1 023
    Liu Y., Crampin S., Main I., 1997. Shear-wave anisotropy: spatial and temporal variations in time delays at Parkfield, Central California, Geophys J Int, 130: 771-785
    Liu Y., Teng T L., Ben-Zion Y., 2004. Systematic analysis of shear-wave splitting in the aftershock zone of the 1999 Chi-Chi earthquake: shallow crustal anisotropy and lack of precursory variations, Bull Seism Soc Am, 94: 2330-2347
    Liu Y., Teng T L., Ben-Zion Y., 2005. Reply to comment of Crampin and Gao on 'Systematic analysis of shear-wave splitting in the aftershock zone of the 1999 Chi-Chi, Taiwan, earthquake: shallow crustal anisotropy and lack of precursory variations', Bull Seism Soc Am, 95: 361-366
    Makeyeva L., Vinnik L P., Roecker S W., 1992. Shear-wave splitting and small-scale convection in the continental upper mantle, Nature, 358: 144-147
    Margheriti L., Ferulano M F, Bona M D., 2006. Seismic anisotropy and its relation with crust structure and stress field in the Reggio Emilia Region (Northern Italy), Geophys J Int, 167: 1 035-1 043
    Martynov V G, Vernon F L., Kilb D L., Roecker S W., 2004. Directional variations in travel-time residuals of teleseismic P waves in the crust and mantle beneath Northern Tien Shan, Bull Seism Soc Am, 94(2): 650-664
    McNamara D E., Owens T J., Silver P G, Wu F T., 1994. Shear wave anisotropy beneath the Tibetan Plateau, J Geophys Res, 99: 13 655-13 666
    Meade C, Silver P G, Kaneshima S., 1995. Laboratory and seismological observations of lower mantle isotropy, Geophys Res Lett, 22: 1 293-1 296
    Menke W., West M., Bransdottir B., Sparks D., 1998. Compressional and shear velocity structure of the lithosphere in northern Iceland, Bull Seism Soc Am, 88: 1 561-1 571
    Mizuno T., Yomogida K., Ito H., Kuwahara Y., 2001. Spatial distribution of shear wave anisotropy in the crust of the southern Hyogo region by borehole observations, Geophys J Int, 147: 528-542
    Montagner J P., 1998. Where can seismic anisotropy be detected in the Earth's mantle? Pure appl Geophys, 151: 223-256
    Montagner J P., Kennett B L N., 1996. How to reconcile body-wave and normal-mode reference Earth models, Geophys J Int, 125: 229-248
    Moore M M., Garnero E J., Lay T., Williams Q., 2004. Shear wave splitting and waveform complexity for lowermost mantle structures with low-velocity lamellae and transverse isotropy, J Geophys Res, 109: B02319, doi: 10.1029/2003 JB002546
    Morelli A., Dziewonski A M., Woodhouse J H., 1986. Anisotropy of the inner core inferred from PKIKP travel times, Geophys Res Lett, 13: 1545-1548
    Moriya H., Tanaka K., Niitsuma H., 2006. Shear-wave splitting detected by using downhole triaxial seismic detector during dilation of artifical subsurface fracture, Geophys J Int, 164: 401-410
    Munson C G, Thurber C H., Li Y., Okubo P G, 1995. Crustal shear wave anisotropy in southern Hawaii: spatial and temporal analysis, J Geophys Res, 100(B10): 20 367-20 377
    Oreshin S., Vinnik L., Makeyeva L., Kosarev G, Kind R., Wentzel F, 2002. Combined analysis of SKS splitting and regional P traveltimes in Siberia, Geophys J Int, 151: 393-402
    Padhy S., Crampin S., 2006. High pore-fluid pressures at Bhuj, inferred from 90°-flips in shear-wave polarizations, Geophys J Int, 164: 370-376
    Peacock S., Crampin S., Booth D C, Fletcher J B., 1988. Shear-wave splitting in the Anza seismic gap, Southern California: temporal variations as possible precursors, J Geophys Res, 93: 3339-3356
    Peng Z., Ben-Zion Y., 2004. Systematic analysis of crustal anisotropy along the Karadere-Duzce branch of the North Anatolian fault, Geophys J Int, 159: 253-274
    Peng Z., Ben-Zion Y, 2005. Spatiotemporal variations of crustal anisotropy from similar events in aftershocks of the 1999 M7.4 Izmit and M7.1 Diizce, Turkey, earthquake sequences, Geophys J Int, 160: 1 027-1 043
    Piccinini D., Margheriti L., Chiaraluce L., Mocco M., 2006. Space and time variations of crustal anisotropy during the 1997 Umbria-Marche, central Italy, seismic sequence, Geophys J Int, 167: 1482-1490
    Pulliam J., Sen M. K., 1998. Seismic anisotropy in the core-mantle transition zone, Geophys J Int, 135:113-128
    Restivo A., Helffrich G, 2006. Core-mantle boundary structure investigated using SKS and SKKS polarization anomalies, Geophys J Int, 165: 288-302
    
    Ribe N. M., 1989. Seismic anisotropy and mantle flow, J Geophys Res, 94: 4 213-4 223
    Ribe N M., Christensen U R., Theissing J., 1995. The dynamics of plume-ridge interaction, 1, Ridge-centered plumes, Earth Planet Sci Lett, 134: 155-168
    Saiga A., Hiramatsu Y., Ooida T, Yamaoka K., 2003. Spatial variation in the crustal anisotropy and its temporal variation associated with a moderate-sized earthquake in the Tokai region, centra] Japan, Geophys J Int, 154: 695-705
    Savage M K., 1999. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Rev Geophys, 37(1): 65-106
    Savage M K., Peppin W A., Vetter U R., 1990. Shear wave anisotropy and stress direction in and near Long Valley caldera, California, 1979-1988, J Geophys Res, 95: 11 165-11 177
    Savage M K., Silver P G., 1993. Mantle deformation and tectonics: constraints from seismic anisotropy in western United States, Phys Earth Planet Interi, 78: 207-228
    Schilling J G., 1973. Iceland mantle plume: Geochemical study of Reykjanes Ridge, Nature, 242: 565-571
    Schilling J G., 1991. Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges, Nature, 352: 397-403
    Schmid C, Lee S., Giardini D., 2004. Delay times and shear wave splitting in the Mediterranean region, Geophys J Int, 159: 275-290
    Schulte-Pelkum V, Blackman D K., 2003. A synthesis of seismic P and S anisotropy, Geophys J Int, 154: 166-178
    Seeber L., Armbruster J G, Ozer N., Aktar M., Baris S., Okaya D., Ben-Zion Y., Field E., 2000. The 1999 Earthquake sequence along the North Anatolia Transform at the juncture between the two main ruptures, in The 1999 Izmit and Duzce Earthquakes: Preliminary Results, 209-223, eds. Barka A., Kozaci O., Akyuz S., Altunel E., Istanbul Technical University, Istanbul
    Seher T., Main I G, 2004. A statistical evaluation of a 'stress-forecast' earthquake, Geophys J Int, 157: 187-193
    Shieh C F., 1997. Estimation of shear-wave splitting time using orthogonal transformations, Geophysics, 62: 657-661
    Shih X R., Meyer R P., Schneider J F., 1989. An automated, analytical method to determine shear-wave splitting, Tectonophysics, 165: 271-278
    Silver P G, 1996. Seismic anisotropy beneath the continents: Probing the depths of geology, Annual Rev Earth Planet Sci, 24: 385-432
    Silver P G, Chan W W., 1991. Shear-wave splitting and subcontinental mantle deformation, J Geophys Res, 96: 16 429-16 454
    Silver P G, Gao S S., Liu H K., Kaapvaal Seismic Group, 2001. Mantle deformation beneath southern Africa, Geophys Res Lett, 28: 2 493-2 496
    Silver P G, Savage M K., 1994. The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers, Geophys J Int, 119: 949-963
    Snyder D., Bruneton M., 2007. Seismic anisotropy of the Slave craton, NW canda, from joint interpretation of SKS and Rayleigh waves, Geophys J Int, doi: 10.111/j.1365-246X.2006.03287.X
    Song X., Helmberger D V., 1995. Depth dependence of anisotropy of Earth's inner core, J Geophys Res, 100: 9805-9816
    Stackhouse S., Brodholt J P., Price G D., Wookey J., Kendall J M., 2005. The effect of temperature on the acoustic anisotropy of the perovskite and post-perovskite polymorphs of MgSiO_3, Earth Planet Sci Lett, 230: 1-10
    Stefansson R., Bodvarsson R., Slunga R., Einarsson P., Jakobsdottir S., Bungum H., Gregersen S., Havskov J., Hjelme J., Korhonen H., 1993. Earthquake prediction research in the South Iceland Seismic Zone and the SIL Project, Bull Seism Soc Am, 83: 696-716
    Stefansson R., Guomundsson G B., Halldorsson P., 2000. The two large earthquakes in the South Iceland seismic zone on June 17 and 21, 2000, http://hraun.vedur.is/ja/skvrslur/Junel7and21 2000/index.html
    Su W J., Dziewonski A M., 1995. Inner core anisotropy in three dimensions, J Geophys Res, 100: 9 831-9 852
    Tadokoro K., Ando M., 2002. Evidence for rapid fault healing derived from temporal changes in S wave splitting, Geophys Res Lett, 29(4): 1 047, doi: 10.1029/2001GL013644
    Tanaka S., Hamaguchi H., 1997. Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP(BC)-PKP(DF) times, J Geophys Res, 102: 2 925-2 938
    Thomas C, Kendall J M, 2002. The lowermost mantle beneath northern Asia-II. Evidence for lower-mantle anisotropy, Geophys J Int, 151: 296-308
    Trampert J., Van Heijst H J., 2002. Global azimuthal anisotropy in the transition zone, Science, 296: 1 297-1 299
    Tsuchiya T, Tsuchiya J., Umemoto K., Wentzcovitch R M., 2004. Elasticity of post-perovskite MgSiO_3, Geophys Res Lett, 31: L14603, doi: 10.1029/2004GL020278
    Vidale J E., 1986. Complex polarization analysis of particle motion, Bull Seism Soc Am, 76: 1 393-1 405
    Vinnik L P., Farra V., Romanowwicz B., 1989a. Azimuthal anisotropy in the earth from observation of SKS at GEOSCOPE and NARS broadband stations, Bull Seism Soc Am, 79(5): 1542-1558
    Vinnik L P., Kind R., Makeyeva L I., Kosarev G L., 1989b. Azimuthal anisotropy in the lithosphere from observations of long-period S waves, Geophys J Int, 99: 549-559
    Vinnik L P., Green R. W E., Nicolaysen L O., 1995. Recent deformations of the deep continental root beneath Southern Africa, Nature, 375: 50-52
    Vogt PR., 1971. Asthenosphere motion recorded by the ocean floor south of Iceland, Earth Planet Sci Lett, 13:153-160
    Volti T, Crampin S., 2003a. A four-year study of shear-wave splitting in Iceland: 1. Background and preliminary analysis, in New insights into structural interpretation and modeling, ed. Nieuwland D. A., Geol Soc Lond Spec Publ, 212: 117-133
    Volti T, Crampin S., 2003b. A four-year study of shear-wave splitting in Iceland: 2. Temporal changes before earthquakes and volcanic eruptions, in New insights into structural interpretation and modeling, ed. Nieuwland D. A., Geol Soc Lond Spec Publ, 212: 135-149
    Volti T, Kaneda Y., Zatsepin S., Crampin S., 2005. An anomalous spatial pattern of shear-wave splitting observed in Ocean Bottom Seismic data above a subducting seamount in the Nankai Trough, Geophys J Int, 163: 252-264
    White R S., Bown J W., Smallwood J R., 1995. The temperature of the Iceland plume and origin of outward propagating V-shaped ridges, J Geol Soc London, 152: 1 039-1 045
    Wolfe C J., Bjarnason I T, VanDecar J C, Solomon S C, 1997. Seismic structure of the Iceland mantle plume, Nature, 385: 245-247
    Wolfe C J., Silver P G, 1998. Seismic anisotropy of oceanic upper mantle: Shear wave splitting methodologies and observations, J Geophys Res, 103: 749-771
    Woodhouse J H., Giardini D., Li X D., 1986. Evidence for inner core anisotropy from free oscillations, Geophys Res Lett, 13: 1 549-1 552
    Wookey J., Kendall J M., 2004. Evidence of mid-mantle anisotropy from shear wave splitting and the influence of shear-coupled P waves, J Geophys Res, 109, B07309, doi: 10.1029/2003 JB002871
    Wookey J., Kendall J M., Barruol G, 2002. Mid-mantle deformation inferred from seismic anisotropy, Nature, 415: 777-780
    Wookey J., Kendall J M., Rumpker G, 2005. Lowermost mantle anisotropy beneath the north Pacific from differential S-ScS splitting, Geophys J Int, 161: 829-838
    Wu J., Crampin S., Gao Y., Hao P., Volti T., Chen Y T., 2006. Smaller source earthquakes and improved measuring techniques allow the largest earthquakes in Iceland to be stress forecast (with hindsight), Geophys J Int, 166: 1 293-1 298
    Zatsepin S V., Crampin S., 1997. Modelling the compliance of crustal rock: I - response of shear-wave splitting to differential stress, Geophys J Int, 129: 477—494
    Zhao L., Zheng T., 2005. Using shear wave splitting measurements to investigate the upper mantle anisotropy beneath the North China Craton: Distinct variation from east to west, Geophys Res Lett, 32: L10309, doi: 10.1029/2005GL022585
    Zhao D., 2001. Seismic structure and origin of hotspots and mantle plumes, Earth Planet Sci lett, 192:251-265

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700