用户名: 密码: 验证码:
川滇地区强震孕育的深部动力环境研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
构造地震的成因是国内外地震学家致力于探索的重要问题。许多学者对此进行了大量的探索,归纳起来,可以认为地壳结构与介质显著不均匀的部位是利于应力集中增强和应变能积累而发生大震的场所(震源区)。强震的孕育过程是在区域构造应力场的作用下,周围区域的构造运动与震源区介质非弹性变形相互作用的结果,是现代地壳构造运动的产物和表现。因此区域构造应力场、地壳结构、介质物性等的研究,成为研究地震孕育发生过程的重要内容。
     本研究通过对川滇地区地壳上地幔相关介质物性参数研究,如区域P波速度结构、地震横波衰减的空间分布、尾波Q_c值空间分布等,获取川滇地区强震孕育的深部介质信息;通过区域构造应力场横向分块和纵向分层研究,如地壳S波分裂、中强地震震源机制解、GPS应变场和反映岩石形变历史的Pn各向异性以及反映上地幔各向异性的SKS分裂等,获取川滇地区各种物理参数所表征的深部动力学信息;通过构建动力学模型,以有限元数值模拟为工具,剖析不同圈层间的耦合关系,深化对地壳结构、介质物性以及应力应变场等的认识,进而揭示川滇地区强震孕育的深部动力学环境。
     根据川滇地区205个区域台站记录的近60000条地震初至P波走时资料,采用层析成像理论与伪弯曲射线追踪方法,反演了川滇地区地壳上地幔的三维P波速度结构。结合区域地质构造以及地球物理背景,分析和解释了三维速度结构图像反映的川滇地区不同深度的介质结构与构造特征。结果表明:1)川滇块体周缘大型活动断裂带附近的中下地壳内普遍存在低速层,其可作为调节断裂和块体运动的深部解耦层;2)根据对P波速度结构图像的分析,识别和推断出川滇地区若干与古板块边界有关的深部构造特征,以及主要活动断裂带的倾向与延伸深度;3)高山山地主要表现出速度负异常的特征,有的负异常可深达下地壳与上地幔,反映了新造山带的强烈构造隆升与相伴的重力均衡作用。
     通过震源与速度结构联合反演,利用2000年4月至2006年3月云南和四川区域地震台网给出的初至P波走时资料,确定了川滇地区的三维速度结构,同时获得了川滇地区6642次中小地震的重新定位结果。结果表明:1)川滇地区地震震源平均深度随震级增大而加深的特征明显,地震震级越大,震源深度越深,但震源下界不超过25km;2)在瑞丽-龙陵、丽江-小金河以及龙门山等断裂带以西地区,震源深度偏浅,大多在15km以上,15km深度以下地震稀少;3)川滇地区中小地震分布具有与强震相同的地壳深部介质背景,震源大多分布于正负异常过渡区的速度相对较高一侧,而其下方主要为低速异常分布。
     利用由149个台站记录的中国地震年报、四川和云南区域地震台网观测报告的5897个近震的27530条横波振幅与周期资料,反演得到川滇地区及周边(大致为南北地震带及邻近地区)的地壳衰减Q_0值(频率为1Hz时的Q值)空间分布图像。结果表明:川滇及周边地区的地壳横波衰减Q_0值在200~600范围内变化,平均值为400,横向变化显著。在川西-滇西北-保山地区、云贵交界-昆明-思茅地区以及海原-祁连、汾渭和东昆仑等活动块体边界带的Q_0值明显较低,这些地区地震和构造活动相对活跃;而构造相对稳定的四川盆地、马尔康块体、桂西滇东断块以及鄂尔多斯等地区的Q_0值则明显较高。
     利用云南地区22个区域数字地震台站记录到的,自1999年下半年至2003年年底的5668个地震的数字波形资料,采用Sato单次散射模型,计算了各台站周围50公里内的1371条地震记录的尾波Q_c。依据Q_0和η的不同,将得到的Q_c进行分类。其分类结果显示云南地区的介质结构具有区域性分布特征,而且可以从地质构造、地震活动,以及大地热流分布等方面对其予以初步解释。总体来说,在构造复杂、活动强烈的滇中块体及其周边变形带上的Q_c值显著小于构造活动一般的其它区域;就地震活动性而言,高Q_c值的地方,通常没有地震发生或者仅仅发生较低震级的地震,而低Q_c值的地方则有较大地震发生;此外,云南地区的Q_c值的分布与大地热流分布也有负的对应关系,即高热流区域的Q_c值低,低热流区域的Q_c值高。
     利用云南及邻区遥测台网记录到的6361条近震数据,采用互相关系数法计算16个台站共64条S波分裂事件,同时收集了8个序列的S波分裂研究结果,初步给出了云南及邻区横波分裂的分布特征;应用哈佛大学给出的43个中强震震源机制解,利用其P轴方位角平均结果,给出了云南及邻区3个主要分区地壳应力场的最大主压应力方位;根据“中国地壳运动观测网络”基本网1999~2004年的观测资料,按观测点给出了云南及邻区的主应变率分布;此外,还搜集到云南及邻区的SKS分裂结果和Pn波各向异性资料。通过研究发现:1)云南及邻近地区不同分区(滇中块体、滇西南、滇西北)具有不同的地震动力学特征(同类动力学参量方位存在差别、不同动力学参量之间耦合程度不同);2)各类地震动力学参量所反映的力学行为随深度而变化,具有明显的分层特性;3)由各分区地震动力学参量之间的耦合程度,似可显示出块体的分类特征(地壳型块体和岩石圈型块体);4)由于各块体间存在横向与纵向的动力作用差异,导致块体边界及其附近地区成为强震孕育和发生的最主要场所。
     在前人工作基础上,基于多学科的新研究成果,综合考虑活动地块构造、三维波速结构、大地测量、地震活动性等多种因素,建立了川滇地区的三维动力学模型。利用GPS观测资料,确定川滇地区有限元模型的边界位移速率,结合SKS各向异性资料确定上地幔顶部物质流动方式,模拟给出川滇地区地壳运动速度场图像,确定边界约束与底部拖曳力在川滇地区运动学及动力学研究中所起的作用。研究结果表明:川滇地区整体绕喜玛拉雅东构造结旋转的GPS速度场特征主要受区域的边界动力作用控制,川滇地区中上地壳的应力场(震源机制解)分布特征同样受其区域的边界动力作用控制;川滇地区上地幔对地壳运动可能存在拖曳作用,且在北纬26°以南地区存在向西拖曳的可能性较大;在考虑川滇地区介质特性具有粘弹性时,滇中块体及其周边(100.9°-103.4°E,22.9°-27.6°N)地壳出现上下层应力场解耦现象,区域内其他块体则上下耦合较强,表明川滇地区下地壳物质的流变强度在横向分区上存在差异可能是导致纵向应力场出现横向分区差异的主要原因。
     通过以上较系统的研究,可以得到的总体认识是:地壳介质在结构、物性和动力作用等方面的非均匀性,特别是下地壳、上地幔介质的流变特性,和上地幔顶部对于地壳拖曳的深部动力作用等因素,是川滇地区强震孕育发生最为重要的深部动力学环境。
The mechanism of tectonic earthquake formation is an important issue inseismology. A mass of studies have been carried out, and the conclusion may bedrawn as that the markedly heterogeneous of the crustal structure and medium maycause the stress concentration and strain accumulated which may be the places oflarge earthquakes occurrence (epicenter areas). The seismogenic process is the resultof reciprocity between the crustal movement of circumjacent regions and inelasticdeformation of epicenter areas, under the control of regional tectonic stress field. Andit is the result and representation of the crustal movement. So, studies on the regionaltectonic stress fields, crustal structures and material types are important contents ofthe research on the seismogenic process.
     In this research, we try to get the underground medium information by studyingthe physical characteristics of the lithosphere and upper mantle, such as the regionalP-wave velocity structure, spatial distribution of S-wave attenuation, spatialdistribution of Qc value of coda wave. And we try to get the underground dynamicsinformation by studying the regional stress field which is partitioned in horizontalorientation and detached at vertical direction, as the crustal S-wave splitting, theseismic mechanism of middle and large earthquakes, the strain field of GPS, theanisotropy of Pn-wave, the upper mantle SKS splitting, and so on. Then, with thedynamic models, the coupling extent of different spheres has been analyzed, and thecognition of lithosphere structure, physical characteristics of medium, stress and strainfield has been increased, and the dynamic environment of seismogenic progress hasbeen made certain further.
     We have selected about 60,000 arrival times recorded by 205 regional stations,with the seismic tomography theory and three dimensional ray tracing method, todetermine a detailed three-dimensional (3-D) P wave velocity structure of thelithosphere in southwest China. Then we figure out the medium structure and tectoniccharacteristics of different depth which are reflected by the 3-D P wave velocityimage in this area, associating with the previous geological features and geophysical data. The results suggest that, 1) low-velocity layers exist far and wide in the middleand deep crust under the large fault zones around the Sichuan-Yunnan block, whichcan be taken as the decoupling layer adjusting the faults and blocks movement; 2)some deep structures related with paleo-block boundaries, and the trends andextending depths of primary active faults, can be distinguished from the P wavevelocity image; 3) alpine mountainous regions present as negative anomalies, andsome negative anomalies even extending to the deep crust or the upper mantle, whichreflects the stong uplifting of the neotectonic orogens and the concomitant gravityisostasy.
     Using the P wave travel times recorded at Yunnan and Sichuan local networksdate from April, 2000 to March, 2006, we implemented a joint inversion ofearthquake location and velocity structure, and got the new locations of 6642 smalland medium earthquakes at Sichuan-Yunnan region. The results suggest, 1) there is anobvious relationship between the focal depth and the magnitude: the bigger theearthquake, the deeper the focal depth, but all the focal depths are shallower than25km; 2) there are few earthquakes at depth larger than 15km at regions west ofRuili-Longling, Lijiang-Xiaojin and Longmenshan faults; 3) small and mediumearthquakes have the similar seismogenic background as large earthquakes. At thetransition zone of high velocity and low velocity, most of the earthquakes happened atthe higher velocity side, and usually there is a low velocity zone below whereearthquakes happened.
     We have selected 27,530 M_L amplitude records from 5,897 events recorded by149 stations, as reported in the Annual Bulletin of Chinese Earthquakes (ABCE) andregional seismic network of Yunnan province and Sichuan province, and have usedtomographic imaging to estimate the lateral variations of the quality factor Q_0 (Q at1Hz) beneath the crust of Sichuan-Yunnan and its adjacent regions. Estimated Q_0values vary from 200 to 600 with an average of 400. Q_0 value is consistent withtectonic and topographic structure. Q_0 is low in the active tectonic regions with manyfaults, such as the Haiyuan-Qilian, Fenhe-Weihe, East Kunlun zones, Western Sichuan-Northwestern Yunnan-Baoshan area and Joint of Yunnan and Guizhou-Kunming -Simao area, and high in the stable regions, such as Sichuan Basin, Markem block,Western Guangxi-Eastern Yunnan block, Ordos Craton and Qinling-Dabie area.
     The coda-wave attenuation quality factor Q_c of the areas in Yunnan Provincewere estimated using the single-scattering attenuation model of Sato from 5668 localseimic events recorded by a regional network of 22 digital stations from the latterhalf of 1999 to 2003. The used events were in epicentrai distances up to 50 km.According to the variation of Q_0 and, we classified the quality factor Q_c to two types.The classified results showed that there was regional distributing characteristic inmedium structure of the areas in Yunnan Province, and this characteristic could beelementarily interpreted by geological structures, seismic activity and heat flow.Generally speaking, the quality factor Q_c of Dianzhong Block and its boundary areaare notably less than those of other regions, as the intensity of tectonic activity ofthese areas. According to seismic activity, there were large earthquakes in the areaswith lower Q_c, and there are few or only some little earthquakes at the areas withhigher Q_c. Besides, there is negative relation between quality factor Q_c and heat flowof the areas in Yunnan Province, namely higher heat flow corresponding to lower Q_cand lower heat flow corresponding to higher Q_c.
     We collect 6 361 waveform data to calculate the shear wave splitting parametersfrom a regional seismic network of 22 digital stations in Yunnan and its adjacent areafrom July 1999 to June 2005. By using the cross-correlation method, 64 splittingevents of 16 stations are processed. We also collect the splitting results of 8earthquake sequences to present the characteristics of shear wave splitting in Yunnanand its adjacent areas. The orientations of maximum principal compressive stress of 3sub-regions in this area are derived from the CMT focal mechanism solutions of 43moderate-strong earthquakes provided by Harvard University by the P axisazimuth-averaging method. The principal strain rate at each observatory is deducedfrom the observations of Crustal Movement Observation Network of China during theperiod from 1999 to 2004. In addition, the data of Pn anisotropy and SKS splitting ofYunnan and its adjacent areas are also collected. We have discovered from this studythat the continental lithosphere, as a main seismogenic environment for strong earthquake, can be divided into blocks laterally; the mechanical behavior oflithosphere varies with depth and can be divided into different layers in the verticalorientation; the information of crustal deformation obtained from GPS might beaffected by the type of blocks, since there are different types of active blocks inYunnan and its adjacent areas; the shear wave splitting in this region might be affectedmainly by the upper crust or even the surface tectonics.
     Considering previous work of different people, and the new results of differentresearch, as active faulting, three dimensional velocity structure, geodesy, seismicity,we give a new three-dimensional dynamic model of Sichuan-Yunnan and its adjacentregions. From GPS data, we define the velocity of the finite element model's edge.From SKS's anisotropy data, we determine the flow pattern of the upper mantle'smaterial. We give out the crustal movement pattern and the stress field of differentlayers in Sichuan-Yunnan and its adjacent regions, and then we make certain how theboundary's condition and the force at the upper mantle effect in the research ofkinematics and dynamics in Sichuan-Yunnan and its adjacent regions. The resultsshow, 1) the phenomena that the material of Sichuan-Yunnan and its adjacent areasflows clockwise around Himalaya's east tectonic node is related to the specialboundary condition, and the stress field (seismic mechanism) in middle and uppercrust is also related to the special boundary condition; 2) there may exist drag force atthe upper mantle effect on the crust, and the orientation may be west at south of26°north latitude; 3) when we changed the lower crust from elastic material toviscoelastic material, the stress field of different crustal layers decoupling come forthin the Dianzhong block and its neighbor area (100.9°-103.4°E, 22.9°-27.6°N),but this phenomena can not be found in other areas. This shows that the differencebetween plane division in vertical stress field may be mainly caused by the flow traitdifference in landscape orientation of the lower crust.
     With the upwards systemic studies, we can get a whole cognition as that, themost important dynamic environment of seismogenic progress in Sichuan-Yunnan andits adjacent regions is the lithosphere asymmetry at the structure, physicalcharacteristics, dynamical operation, and so on, especially the flow trait of lower crust and the drag force of upper mantle acting on the crust.
引文
Aki. K. 1969. Analysis of the seismic coda of local earthquakes as scatter waves, J. Geophys. Res., 74: 615-631
    
    Aki. K. and B. Chout. 1975. Origin of coda waves: source, attenuation and scattering effects,J Geophys. Res., 80: 3322-3342
    
    Aki K, Lee W H K. 1976. Determination of three-dimensional velocity anomalies under a seismic array using P arrival times from local earthquakes. 1. A homogeneous initial model [J].J. Geophys. Res., 81: 4 381 -4 399
    
    Aki K, Richards, PG. Quantitative Seismology, Vol. 2. San Francisco: Freeman, 1980
    
    Andson D L, Ben-Menabem A, Archambeau C B. 1965. Attenuation of seismic energy in up mantle. J. Geophys. Res., 70: 1441-1448
    
    Brune J N. 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res., 75: 4997-5009
    
    Canas J A, B J Mitchell. 1978. Lateral variation of surface-wave anelastic attenuation across the Pacific. Bull. Seism. Soc. Am., 68: 1637-1650
    
    Cochran E S, Vidale J E, Li Y-G 2003. Near-fault anisotropy following the Hector Mine earthquake, J. geophys. Res., 108(B9): 2436-2447
    
    Cong L L, Hu J F, Fu Z, et al. 2003. Distribution of Lg coda Q in the Chinese continent and its adjacent regions. Science in China Series D, 46(6): 530-539
    
    Crampin, S. 1990. The scattering of shear waves in the crust. Pure Appl. Geophys., 132,67-91
    
    Crosson R S. 1976. Crustal structure modeling of earthquake data,l, Simultaneous least squares estimation of hypocenter and velocity parameters[J]. J. Geophys. Res., 81: 3 036-3 046
    
    Davis J C. 1986. Statistics and Data Analysis in Geology. Hobo ken N J: John Wil.ey, 649
    
    Dewey J F. 1972. Plate tectonics. Scientific American, 226: 55-68
    
    Dogan Seber, Brian J Mitchell. 1992. Attenuation of surface waves across the Arabian Peninsula. Tectonophysics. 204: 137-150
    
    Dominguez, T., C. J. Rebollar, and H. Fabriol. 1997. Attenuation of coda waves at the Cerro Prieto Geothermal Field, Baja California, Mexico, Bull. Seism. Soc. Am., 87, no. 5: 1368-1374
    
    Dziewonski A M, J Steim. 1982. Dispersion and attenuation of mantle waves from waveform inversion. Geophys. J. R. Astr. Soc, 70: 503-527
    Flesh L M, Haines A J, Holt W E. 2001. Dynamics of India-Eurasia collision zone. J Geophys Res. 106(B8): 16435-16460
    
    Fremont M J, Malone S D. 1987. High precision Relative locations of earthquakes at Mount St. Helens, Washington[J]. J. Geophys. Res. 92: 10 223-10 236
    
    Fuchs K. 1997. Synopsis SFB 108-stress and stress release in the lithosphere. Tectonophysics, 275 (1-3): 1 --13.
    
    Gao. L. S., R. B. Shi, Z. X. Hua, R. X.Li. 1986. Q-factor as the function of frequency around different station within Beijing Seismic Network. Acta Seismol. Sinica., 9: 354-366
    
    Gao. L. S.1992. Physical meaning of the coda envelopes, in Volcanic seismology, P. Gasparini, R. Scarpa, And K. Aki (Editors), I.A.V.C.E.I. Proceedings in Volcanology. Springer-Verlag. New York, 3: 391-403
    
    Geiger L. 1912. Probability method for the determination of earthquake epicenters from arrival time only[J]. Bull. St. Louis. Univ., 8: 60-71
    
    Gomberg J S, Shedlock K M, Roecker S W. 1990. The effect of S-wave arrival times on the accuracy of hypocenter estimation[J]. Bull. Seism. Soc. Am. 80: 1 605-1 628
    
    Got J L, Frechet J, Klein F W. 1994. Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea[J]. J. Geophys. Res. 99: 15 375-15 386
    
    Haberland C, Rietbrock A. 2001. Attenuation tomography in the western central 15 Andes: A detailed insight into the structure of a magmatic arc. J. Geophys. Res., 106: 11,151-11,167,2001
    
    Hearn T M, Beghoul N, Barazangi M. 1991. Tomography of the western United States from regional arrival times. J. Geophys. Res., 96, 16369-16381.
    
    Hearn T M, Ni J. 1994. Pn velocities beneath continental collision zones, theTurkish - Iranian plateau, Geophys. J. Int., 117: 273-293
    
    Hearn T M. 1996. Anisotropic Pn Tomography in the western United States. J. Geophys. Res., 101, 8403-8414.
    
    Hellweg. M, P. Spudich, J. B. Fletch, and L. M. Baker .1995. Stability of coda Q in the region of the Parkfield, Califrnia: view from the U. S. Geological Survey Parkfield Dense Seismograph Array. J. Geophys. Res., 100: 2089-2102
    
    Holt W E, Li M, Haines A J. 1995. Earthquake strain rates and instantaneous relative motions within central and eastern Asia. Geophys J Int, 122: 569-593
    
    Huang J, Zhao D, Zheng S. 2002. Lithosphere structure and its relationship to seismic and volcanic activity in southwest China . J. Geophys Res., 107(B10), doi:10.1029/2000JB000137
    Huang J, Zhao D. 2004. Crustal heterogeneity and seismotectonics of the region around Beijing, China, Tectonophysics, 385:159-180.
    
    Humphreys E, Clayton R W. 1988. Adaptation of back projection tomography to seismic travel time problems[J]. J. Geophys. Res. 93: 1 073 - 1 085
    
    Inoue H, Fukao Y, Tanabe K, et al. 1990. Whole mantle P-wave travel time tomography [J]. Phys. Earth Planet Inter., 59: 294-328
    
    Ito A. 1985. High resolution relative hypocenters of similar earthquakes by cross-spectral analysis method[J]. J. Phys. Earth 33: 279-294
    
    Jin Y, Mcnutt, M K, Zhu, YS. 1994. Evidence from gravity and topography data for folding ofTibet. Nature, 371: 660-674
    
    Jin, A. and k. Aki. 1988. Spatial and Temporal correlation between coda Q and seismicity in China, Bull. Seism. Soc. Am., 87, no. 5: 1368-1374
    
    Kayal J R, Zhao D, Mishra O P, et al. 2002. The 2001 Bhuj earthquake: Tomographic evidence for fluids at the hypocenter and its implications for rupture nucleation, Geophys Res. Lett., 29, 10.1029/2002GL015177.
    
    King R W, Shen F, Burchllel B C , et al. 1997. Geodeticmeasurement of crustalmotionin southwest China. Geology, 25: 179-182
    
    Kissling E, Ellsworth W L, Eberhard-Phillips D, et al. 1994. Initial reference models in local earthquake tomography [J]. J. Geophys. Res. 99: 19 635- 19 646
    
    Lees J M, Crosson R S. 1989. Tomographic inversion for three-dimensional velocity structure at mount St. Helens using earthquake data. J. Geophys. Res, 94: 5716-5729
    
    Lutter W. J., Nowack R. L. 1990. Inversion for crustal structure using reflections from the PASSCAL Ouachita experiment. J. Geophys. Res., 95: 4 621-4 631
    
    Maceira, M., S. Taylor, C. Ammon, X. Yang, And A. Velasco. 2005. High resolution Rayleigh wave slowness tomography of central Asia, J. Geophys. Res., 110, B06314, doi: 10.1030/ 2004JB003430
    
    Mardia K V, Jupp P E.2000. Directional Statistics. Hoboken N J: John Wiley, 429.
    
    Michael A J. 1988. Effects of three-dimensional velocity structure on the seismicity of the 1984 Morgan Hill, California, aftershock sequence[J]. Bull. Seism. Soc. Am. 78: 1 199-1 221
    
    Mishra, O. P., Zhao, D. 2003. Crack density, saturation rate and porosity at the 2001 Bhuj, India, earthquake hypocenter: A fluid driven earthquake? Earth Planet. Sci. Lett., 212:393-405.
    
    Mitchell B J. 1995. Anelastic structure and evolution of continentalcrust and upper mantle from seismic surface wave attenuation. Rev of Geophysics, 33(4): 441 - 462
    Mitchell B, Pan Y, Xie J, et al. 1997. Lg coda Q variation across Eurasia and its relation to crustal evolution, J. Geophys. Res., 102: 22767-2279
    
    Okada T, Matsuzawa T, Matsumoto S, et al. 1994. Shear wave splitting observed in the southwestern part of Fukushima prefecture, northeastern Japan [J] . J. phys. Earth., 42: 303-319
    
    Paige C C, Saunders M A. 1982. LSQR, An algorithm for sparse linear equations and sparse linear system. ACM Trans. Math. Software., 8: 43-71
    
    Pavlis G L, Booker J R. 1980. The mixed discrete-continuous inverse problem: application to the simultaneous determination of earthquake hypocenters and velocity structure[J]. J. Geophys. Res., 85: 4 801 -4 810.
    
    Pavlis G L. 1986. Appraising earthquake hypocenter location errors: a complete, practical approach for single-event locations[J]. Bull. Seism. Soc. Am. 76, 1699- 171
    
    Pei S P, Zhao J M, Rowe C A, et al. 2006. M_L Amplitude Tomography in North China. Bull.Seismo.Soc.Am., 96 (4A): 1560-1566, doi: 10.1785/0120060021
    
    Peng Z, Ben-Zion Y. 2004. Systematic analysis of crustal anisotropy along the Karadere-D¨uzce branch of the North Anatolian fault [J] . Geophys. J. Int., 159: 253-274.
    
    Peng Z, Ben-Zion Y. 2005. Spatiotemporal variations of crustal anisotropy from similar events in aftershocks of the 1999 M 7.4 Izmit and M 7.1 D'uzce, Turkey, earthquake sequences [J] . Geophys. J. Int., 160, 1-17
    
    Poupinet G, Ellsworth W L, Frechet J. 1984. Monitoring velocity variations in the crust using earthquake doublets: an application to the Calaveras fault, California[J]. J. Geophys. Res. 89, 5719-5731
    
    Pulli. J. J.1984. Attenuation of coda waves in New England. Bull. Seism. Soc. Am., 74: 1149-1166
    
    Rapine R, Ni J, Hearn T. 1997. Regional wave-propagation in China and its surrounding regions. Bull. Seismo. Soc. Am., 87: 1622-1636
    
    Romanowicz B. 1987. Multiplied coupling due to lateral heterogeneity: asymptotic effects on the amplitude and frequency of the Earths normal modes. Geophys. J. R.Astron. Soc, 90:75-100
    
    Romanowicz B. 1990. The upper mantle degree 2: Constraints and inferences from Global mantle wave attenuation measurements. J. G Res., 95: 11,051-11,071
    
    Romanowicz B. 1994. On the measurement of anelstic attenuation using Amplitudes of low-frequency surface waves. Physics of the Earth and Planetary Interior, 82: 179-191
    
    Romanowicz B. 1995. A global tomographic model of shear attenuation in the upper Mantle. J. G. Res., 100: 12,375-12,394
    
    Sanders C O. 1993. Local earthquake tomography: attenuation theory and results, inSeismic Tomography: Theory and Practice. Edited by H. Iyer and K. Hirahara, Chapman and Hall, New York, 676-694
    
    Sato. H. 1977. Energy propagation including scattering effects: single isotropic scattering approximation,J Geophys. Earth., 25: 27-41
    
    Shih X R, Meyer R P. 1990. Observation of shear wave splitting from nature events: South Moat of Long Valley caldera, California, June 29 to August 12, 1982, J. geophys. Res.,95: 11179-11196.
    
    Singh. S. and R. B.1983. Herrmann, Regionalizarion of crustal coda Q in the continental United States. J. Geophys. Res., 88: 527-538
    
    Smith G P, Ekstrom G 1996. Improve teleseismic event location using a three-dimensional earth model[J]. Bull. Seism. Soc. Am. 86: 788-796
    
    Spence W. 1980. Relative epicenter determination using P-wave arrival-time differences[J]. Bull. Seism. Soc. Am. 70: 171 - 183
    
    Spencer C, Gubbins D. 1980. Travel time inversion for simultaneous earthquake location and velocity structure determination in laterally varying media[J]. Geophys. J. R. Astron. Soc, 63(1): 95 - 116
    
    Thurber C H. 1983. Earthquake locations and three-dimensional crustal structure in the Coyote late area, Central California [J]. J. Geophys. Res., 88: 8 226-8 236
    
    Thurber C. H., Atre S. R. 1993. Three-dimensional v_p/v_s variations along the Loma Prieta rupture zone. Bull. Seism. Soc. Am., 83: 717-736
    
    Tsujiura. M.1978. Spectral analysis of the coda waves from local earthquakes, Bull. Earthquake Res. Inst. Tokyo Univ., 53: 1-48
    
    Um J, Thurber C H. 1987. A fast algorithm for two-point seismic tracing. Bull. Seismol. Soc. Am., 11: 972-986.
    
    Waldhauser F, Ellsworth W L. 2000. A double-difference earthquake location algorithm: Method and Application to the Northern Hayward fault[J]. Bull. Seis. Soc.Amer, 90(6): 1 353 - 1 368
    
    Wang C, W. Winston Chan, Walter D. Mooney. 2003. Three-dimensional velocity structure of crust and upper mantlein southwestern China and its tectonic implications. J. Geophys Res., 108 (B9) , 2442, doi: 10.1029/2002JB001973
    
    Wang Ren. 1983. A short note on the inversion of tectonic stress fields. Tectonophysics, 100: 405-411
    
    
    WANG S Z. 1993. Net-like earthquake distribution and plastic-flow network in central and eastern Asia[J]. Phys Earth Planet Inter, 11, 177-188.
    WANG S Z, Thomas M. Hearn, Shunping Pei, etal. 2007. S wave amplitude tomography of China. J. Geophys. Res., (Review)
    Wong, V., C. J. Rebollar, and L. Monguia. 2001. Attenuation of coda waves at the Tes Virgenes volcanic area, Baja California Sur, Mexico, Bull. Seism. Soc. Am., 91, no. 4:683~693
    Xie, J., R. Gok, J. Ni, and Y. Aoki. 2004. Lateral variations of crustal seismic attenuation along the INDEPTH profiles in Tibet from Lg Q inversion, J. Geophys. Res., 109, B10318, doi:10. 1030
    Zhao D, Hasegawa A, Horiuchi S. 1992. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan[J]. J. Geophys. Res., 97:19 909~ 19 928
    Zhao, D., Kanamori, H. and Wiens, D. 1997. State of stress before and after the 1994 Northridge earthquake, Geophys. Res. Lett., 24:519-522.
    ZHAO Da-peng. 1999. Seismic tomography and its applications to the imaging of subduction zones and earthquake fault zones. Recent Res Devel Geophysics, (2): 15~32
    ZHAO Da-peng, Kayal J R. 2000a. Impact of seismic tomography on earth sciences. Current Science, 79(9): 1 208~1 214
    ZHAO Da-peng. 2000b. Seismic structure and stress region of subduction gones[J]. Tectonophysics, 319: 223~224
    ZHAO Da-peng. 2001. Seismic structure and origion of hotspots and mantle plumes[J]. Earth and Planetary Science Letters, 192:251~265
    Zhao, D., Mishra, O and Sanda, R.2002. Influence of fluids and magma on earthquakes: seismological evidence. Phys. Earth Planet. Inter., 132:249~267
    Zhao J, X Zhang, Deng H, et al. 2003. Q Value Structure of the Upper Crust Along the Geoscience Transect from Baicheng to Da Qaidam. Chinese Journal of Geophysics, 46(5): 725~735
    “大陆强震机理与预测”项目结题报告(张国民,张培震等主编).2003.北京:中国地震局,1~99
    安美建,石耀林,李方全.用遗传有限单元反演法研究东亚部分地区现今构造应力场的力源和影响因素.地震学报,1998,20(3):225~231
    安艺敬一.1991.构造活动性的地球物理标志—尾波品质因素(魏淳译).世界地震译丛,000(003):68~87
    常利军,王椿镛,丁志峰.2006.云南及邻区SKS分裂研究.地球物理学报,49(1):212~224.
    陈化然,陈连旺,马宏生,等.2004.川滇地区应力场演化与强震间相互作用的三维有限元模拟.地震学报,26(6):567~575
    陈立德,赵维城,等编.1979.一九七六年龙陵地震.北京:地震出版社,1~119
    陈连旺.2004.构造应力场动态演化图像与强震活动关系的研究[博士论文].哈尔滨:中国地震局工程力学研究所,1~198
    陈培善,刘福田,李强,等.1990.云南地区速度结构的横向不均匀性[J].中国科学(B),(4):431~438
    程万正,刁桂苓,吕弋培.2003.川滇地块的震源力学机制、运动速率和活动方式.地震地质,25(1):71~87
    丛连理,胡家富,吴小平,等.2002.中国大陆及邻近地区Lg尾波的Q值分布.中国科学(D辑),32(8):617~624
    崔效锋,谢富仁.1999.利用震源机制解资料对中国西南及邻区进行应力分区的初步研究.地震学报,21(5):513~522
    邓起东,张培震,冉勇康,等.2002.中国活动构造基本特征.中国科学(D辑),32(12):1020~1030.
    邓起东,张培震,冉勇康,等.2003.中国活动构造与地震活动.地学前缘,10(特刊):66~73
    丁国瑜.活动亚板块、构造块体相对运动[A].见:丁国瑜主编.中国岩石圈动力学概论.北京:地震出版社,199l,142~153
    丁志峰.近震层析成像的理论及应用[J].国际地震动态,2000,(10):37~38
    傅容珊,黄建华,徐耀民,等.印度与欧亚板块碰撞的数值模拟和现代中国大陆形变.地震学报,2000,22(1):1—7
    傅容珊,郑勇,常筱华,等.地震层析成像板块构造及地幔演化动力学[J].地球物理学进展,2001,16(4):85~95
    傅淑芳.层析地震学[J].地球科学进展,1991,6(3):87~89
    高龙生.1994.我国有关尾波研究的进展.地球物理学报,37(增刊):242~250
    高星,王卫民,姚振兴.中国及邻近地区地壳结构.地球物理学报,2005,48(3):591~601
    高原,郑斯华.1994.唐山地区剪切波分裂研究(Ⅱ)—相关函数分析法.中国地震,10(9):22~32.
    高原,粱维,丁香,等.2004.云南2001年施甸地震的剪切波分裂参数变化特征.地震学报,26(6):576~582.
    国家地震局震害防御司.1995.中国历史强震目录.北京:地震出版社,1~633
    虢顺民,向宏发,徐锡伟,等.2000.滇西南龙陵一澜沧第四纪新生断裂特征和形成机制研究[J].地震地质,2(3):277~284
    何正勤,苏伟,叶太兰.2004.云南地区的短周期面波相速度层析成像研究.地震学报,26(6):583~590
    何正勤,叶太兰,苏伟.2004.云南及邻区地壳中上部横波速度结构研究.地球物理学报,47(5):838~844
    洪学海,朱介寿,曹家敏等.2003.中国大陆地壳上地幔S波品质因子三维层析成像.地球物理学报,46(5):642~651
    胡鸿翔,陆涵行,王椿镛,等.1986.滇西地区地壳结构的爆破地震研究.地球物理学报,30:133~144
    胡家富,苏有锦,朱雄关,等.2003.云南的地壳S波速度与泊松比结构及其意义.中国科学(D辑),33(8):714~722
    胡家富,丛连理,苏有锦等.2003.云南及周边地区Lg尾波Q值的分布特征.地球物理学报,46(6):1157~1164
    胡圣标,何丽娟,汪集旸.2001.中国大陆地区大地热流数据汇编(第三版).地球物理学报,44(5):611~626
    华卫,刘杰,陈章立,等.2006.2003年云南大姚6.2级、6.1级地震余震序列S波分裂研究.地震学报,28(4):357~371
    黄才中,葛焕称.1995.中国东部的尾波衰减特征和Q_c值估计.地震学报,17(2):196~202
    黄金莉,赵大鹏,郑斯华等.2001.川滇活动构造区地震层析成像.地球物理学报,44(增刊):127~135
    黄金莉,宋晓东,汪素云.2003.川滇地区上地幔顶部Pn速度细结构.中国科学(D辑),33(增刊):144~150.
    姜葵(主编).1993.1988年云南澜沧-耿马地震.昆明:云南大学出版社,1~387
    江在森,马宗晋,张希,等.2003.GPS初步结果揭示的中国大陆水平应变场与构造变形.地球物理学报,46(3):352~358.
    金安蜀,刘福田,孙永智.1980.北京地区地壳和上地幔的三维P波速度结构.地球物理学报,23(2):172-182
    阚荣举,张四昌,晏风桐,等.1977.我国西南地区现代构造应力场与现代构造活动特征的探讨[J].地球物理学报,20(2):96~109
    赖院根,刘启元,陈九辉,等.2006.首都圈地区横波分裂与地壳应力场特征.地球物理学报,49(1):189~196.
    雷建设,周慧兰.2002.中国西南及邻区上地幔P波三维速度结构.地震学报,24(2):126~134
    雷军,王培德,姚陈,等.1997.云南剑川近场横波特征及其与构造的关系.地球物理学报,40(6):791~801.
    李白基.1996.云南禄劝地震余震分裂S波的变化.地震学报,18(2):224~230.
    李白基,秦嘉政,谢庆茵,等.2000b.云南武定1995年地震余震尾波Q_c.地震地 磁观测与研究,21(2):1~6
    李白基,秦嘉政,钱晓东.2002.1995年武定6.5级地震余震的S波分裂.地震研究,25(2):108~114.
    李百基,秦嘉政,等.2004.云南姚安地区的尾波衰减.地震学报,26(1):47~51
    李光品,徐果明,高尔根等.中国东部地壳、上地幔横波品质因子的三维层析成像.地震学报,2000,22(1):73~81
    李鸿吉,秦建业.1994.缅甸弧及其周围地区的震源机制和现代应力场.地震学报,16(4):463~471
    李坪.1975.云南川西地区地震地质基本特征的探讨[J].地质科学,(4):308~326
    李铁明,邓志辉,吕弋培.2003.川滇地区现今地壳形变及其与强震时空分布的相关性研究.中国地震,19(2):132~147
    廖宗延,陈跃昆.2005.兰坪—思茅盆地原型的性质及演化.同济大学学报(自然科学版),33(11):1527~1531
    刘福田.1984.震源位置和速度结构的联合反演(1)——理论和方法[J].地球物理学报,27(2):167~175
    刘福田,曲克信,吴华,等.1986.华北地区的地震层析成像.地球物理学报,29(5):442~449
    刘福田,李强,吴华,等.1989.用于速度图像重建的层析成像法[J].地球物理学报,32(1):46~61
    刘建华,刘福田,吴华,等.1989.中国南北带地壳和上地幔的三维速度结构[J].地球物理学报,32(2):143~151
    刘福田.1991.三维速度结构的研究现状和展望[J].地球物理学报,34(6):788~795
    刘福田,刘建华.2000.滇西特提期造山带下扬子地块的俯冲板片.科学通报,45(1):79~84
    刘建华,刘福田,阎晓蔚等.2004.华北地区Lg尾波衰减研究—Lg尾波Q的测量.地球物理学报,47(5):822~832
    刘建华,刘福田,阎晓蔚等.2004.华北地区Lg尾波衰减研究—Lg尾波Q_0地震成像.地球物理学报,47(6):1044~1052
    刘建中.1992.缅甸弧的俯冲作用及川滇断块的地震地质特征.中国地震,8(1):68~75
    刘杰,郑斯华,黄玉龙.2003.利用遗传算法反演非弹性衰减系数、震源参数和场地响应.地震学报,25(2):211~218
    刘祖荫,皇甫岗,金志林,主编.1999.一九七零年通海地震.北京:地震出版社,1~257
    楼海,王椿镛,皇甫岗,等.2002.云南腾冲火山区上部地壳三维地震速度层析成像.地震学报,24(3):243~251
    吕江宁,沈正康,王敏.2003.川滇地区现代地壳运动速度场和活动块体模型研究.地震地质,543~554
    罗艳,黄忠贤,彭艳菊,等.2004.中国大陆及邻区SKS波分裂研究.地球物理学报,47(5):812~821
    罗志立.2000.从华南板块构造演化探讨中国南方碳酸盐岩含油气远景.海相油气地质,5(3-4):1~19
    马丽芳,主编.2001.中国地质图集.北京:地质出版社
    马杏垣,主编.1989.中国岩石圈动力学图集.北京:地图出版社
    马宗晋,傅征祥,张郢珍,等.1982.1966-1976年中国九大地震.北京:地震出版社,1~216
    宁杰远,臧绍先,王曙光,等.2003.底部水平拖曳作用下岩石圈的层间耦合.中国科学(D辑),33(增刊):33~44.
    齐诚,赵大鹏,陈颐,等.2006.首都圈地区地壳P波和S波三维速度结构及其与大地震的关系.地球物理学报,49(3):805~815
    乔学军,王琪,杜瑞林.2004.川滇地区活动地块现今地壳形变特征.地球物理学报,47(5):805-811
    秦嘉政,阚荣举.1985.禄劝地震余震序列尾波衰减特征[J].地震研究,增刊:29~35
    秦嘉政,阚荣举.1986.用近震尾波估算昆明及其周围地区的Q值及地震矩.地球物理学报,29(2):145~155
    秦嘉政,阚荣举.1987.1985年云南禄劝地震尾波Q值的某些研究[J].地震学报,9(3):239~252
    秦嘉政,李白基.1988.云南地区尾波衰减及其与地震前兆的关系[J].地震研究,11(2):337~344
    秦嘉政.1992.澜沧~耿马地震后尾波衰减的区域特征.地震学报,14(1):71~82
    秦嘉政,刘祖荫,龙晓帆.1995.滇西实验场两次中强地震前后尾波衰减的区域特征分析.中国地震,11(3):212~221
    秦嘉政,皇甫岗,李强,等.2000.腾冲火山及邻区速度结构的三维层析成像[J].地震研究,23(2):157~163
    任金卫.2004.中国大陆壳幔运动耦合作用分析.地震地质,26(4):566~575.
    申重阳,王琪,吴云,等.2002.川滇菱形块体主要边界运动模型的GPS数据反演分析.地球物理学报,45(3):352~361
    沈正康,王敏,甘卫军,等.2003.中国大陆现今构造应变率场及其动力学成因 研究.地学前缘,10(特刊):93~100
    石耀霖.1992.遗传算法在地球物理中的一些应用.地球物理学报,35(增刊):367~371
    苏有锦,刘杰,郑斯华,等.2006.云南地区S波非弹性衰减Q值研究.地震学报,28(2):206~212
    孙洁,晋光文,白登海,等.2003.青藏高原东缘地壳、上地幔电性结构探测及其构造意义.中国科学(D辑),33(增刊):173~180
    孙若昧,刘福田.1991.四川地区的地震层析成像.地球物理学报,34(6):708~716
    汪素云,陈培善.1980.中国及邻区现代构造应力场的数值模拟.地球物理学报,23(1):35~45
    汪素云,许忠淮,俞言祥,等.1996.中国及其邻区周围板块作用力的研究.地球物理学报,39(6):764~771
    汪一鹏,沈军,王琪等.2003.川滇块体的侧向挤出问题.地学前缘,10(特刊):188-192
    王椿镛,王溪莉,颜其中.1994.昆明地震台网下方的三维速度结构[J].地震学报,16(2):167~175
    王椿镛,吴建平,楼海,等.2003.川西藏东地区的地壳P波速度结构.中国科学(D辑),33(增刊):181~189
    王椿镛,Mooney W D,王溪莉等.2002.川滇地区地壳上地幔三维速度结构研究.地震学报,24(1):1~16
    王二七,Burchfiel B C,季建青.2001.东喜马拉雅构造结新生代地壳缩短量的估算及其地质依据.中国科学(D辑),31(1):1~9
    王辉.2005.中国大陆地震应变场研究与青藏活动地块区运动学数值模拟[博士论文].北京:中国地震局地球物理研究所,1~106
    王继存,黄清阳.1991.川滇菱形块构造应力场的数值模拟.地震地质,13(1):67-72
    王建,叶正仁.2005.地幔对流对全球岩石圈应力产生与分布的作用.地球物理学报,48(3):584-590
    王凯英,马瑾,顾国华.2003.1996年川滇地区发生的一次应力转向事件.地学前缘,10(特刊):233~239
    王凯英,马瑾.2004.川滇地区断层相互作用的地震活动证据及有限元模拟.地震地质,26(2):259~272
    王敏,沈正康,牛之浚,等.2003.现今中国大陆地壳运动与活动地块模型.中国科学(D辑),33(增刊):21~32
    王琪,张培震,牛之俊,等.2001.中国大陆现今地壳运动和构造变形.中国科学,31(7):529~536.
    王仁,何国琦,殷有泉,等.1980.华北地区地震迁移规律的数学模拟.地震学报,2(1):32~42
    王仁,黄杰藩,孙荀英,等.1982.华北地震构造应力场的模拟.中国科学(B辑),4:337~344
    王绳祖,张流.2002b.塑性流动网络控制下川滇菱形块体及邻区构造应力场与地震构造.地震地质,24(3):324~334
    王绳祖,张四昌,田勤俭,等.2001.大陆动力学—网状塑性流动与多级构造变形[M].北京:地震出版社.
    王绳祖.1985.岩石共轭剪切网络的实验研究[A].国家地震局地质研究所.现代地壳运动研究(1)[C].北京:地震出版社,171~178,190~192.
    王绳祖.1993a.亚洲大陆岩石圈多层构造模型和塑性流动网络.地质学报,67(1):1~18
    王绳祖.1993b.岩石的脆性.延性转变及塑性流动网络[J].地球物理学进展,8(4):25~37.
    王绳祖.2002a.青藏高原岩石圈多层构造应力场.地震,22(3):21~26.
    王新岭,刘杰,张国民,等.2006.2000年姚安地震余震序列的剪切波分裂研究.地震学报,28(2):119~131.
    邬成栋,秦嘉政,皇甫岗.2004.永胜6.0级地震的余震S波分裂研究.地震研究,27(2):140~145.
    吴建平,明跃红,王椿镛.2001.云南数字地震台站下方的S波速度结构研究.地球物理学报,44(2):228~237
    吴建平,明跃红,王椿镛.2004.云南及邻区中小地震震源机制及构造应力场研究.地震学报,26(5):457~465
    吴振利,李家彪,阮爱国.地震层析成像及其国内研究进展.东海海洋,2003,21(3):54~64
    谢富仁,祝景忠,粱海庆,等.1993.中国西南地区现代构造应力场基本特征[J].地震学报,15(4):407~417
    谢富仁,刘光勋.1994.滇西北及邻区现代构造应力场.地震地质,16(4):329~338
    谢富仁,崔效锋,赵建涛.2004.中国大陆及邻区现代构造应力场分区.地球物理学报,47(4):654-662
    熊绍柏,郑晔,尹周勋,等.1993.丽江.攀枝花.者海地带二维地壳结构及其构造意义.地球物理学报,36(4):434~443
    熊熊,许厚泽.地幔对流诱发的莫霍面起伏与下地壳塑性流动.测绘学报,2000,29(增刊):21~25
    熊熊,许厚泽,滕吉文.青藏高原物质东流力学背景探讨.地壳形变与地震,2001, 21(2):1~7
    熊熊,藤吉文.2002.青藏高原东缘地壳运动与深部过程的研究.地球物理学报,45(4):507~515
    熊熊,藤吉文,郑勇.2004.中国大陆地壳运动的GPS观测及相关动力学研究.地球物理学进展,19(1):16~25
    胥德恩.1992.康滇地轴地壳演化与铀成矿作用探讨.铀矿地质,8(6):348~354
    徐锡伟,闻学泽,郑荣章等.2003.川滇地区活动块体最新构造变动样式及其动力来源.中国科学,33(增刊):151~162
    许才军.1998.青藏高原地壳运动模型与构造应力场.测绘学报,27(4):371~371
    许志琴、侯立玮、王宗秀等著.1992.中国松潘—甘孜造山带的造山过程.北京:地质出版社,53~62
    许忠淮,汪素云,黄雨蕊,等.1987.由多个小震推断的青甘和川滇地区地壳应力场的方向特征[J].地球物理学报,30(5):476~486
    许忠淮,汪素云,黄雨蕊,等.1989.由大量的地震资料推断的我国大陆构造应力场.地球物理学报,32(6):636~647.
    许忠淮,汪素云,俞言祥,等.1992.根据观测的应力方向利用有限单元法反演板块边界作用力.地震学报,14(4):446~455
    许忠淮.2001.东亚地区现今构造应力图的编制.地震学报,23(5):492~501
    杨国华,李延兴,韩月萍,等.2002.中国西部地壳现今变形特征及其机制探讨.测绘学报,31(4):292~299.
    杨理华,李钦祖.1980.华北地区地壳应力场.北京:地震出版社
    杨晓松,马瑾.2003.大陆岩石圈解耦及块体运动讨论——以青藏高原—川滇地区为例.地学前缘,10(特刊):240~247.
    杨智娴,陈运泰,郑月军,等.2003.双差地震定位法在我国中西部地区地震精确定位中的应用.中国科学(D辑),33(增刊):129~134
    叶正仁,王建.2004.中国大陆现今地壳运动的动力学机制.地球物理学报,47(3):456~461
    于泳.2002.地块变形与断层地震的耦合数值模拟[博士学位论文].北京:中国地震局地质研究所
    俞言祥,许忠淮,汪素云.1989.对我国大陆地壳应力场观测结果的一种解释.见:地球物理学报编辑委员会(编),八十年代中国地球物理学进展.北京:学术期刊出版社,284~292
    臧绍先,宁杰远,刘宝诚,等.1989.中国周边板块的相互作用及其对中国应力场的影响—Ⅰ.太平洋板块、菲律宾海板块的影响.见:地球物理学报编辑委员会(编),八十年代中国地球物理学进展.北京:学术期刊出版社,293~306
    臧绍先,吴忠良,宁杰远,等.1992.中国周边板块的相互作用及其对中国应力场的影响—Ⅱ.印度板块的影响.地球物理学报,35(4):428~440
    曾融生.1991.大陆岩石圈构造与地球动力学.地球科学进展,6(2):1~10
    张东宁,高龙生.1989.东亚地区应力场的三维数值模拟.中国地震,5(4):24~33
    张东宁,许忠淮.1994.青藏高原现代构造应力状态及构造运动的三维弹粘性数值模拟.中国地震,10(2):136-143
    张东宁,许忠淮.1999.中国大陆岩石层动力学数值模型的边界条件.地震学报,21(2):133~139
    张国民,张培震.1999.近年来大陆强震机理与预测研究的主要进展.中国基础科学,(2—4):47~58
    张国民,张培震.2000.《大陆强震机理与预测》中期学术进展[J].中国基础科学,(10):4~10
    张国民,汪素云,李丽,等.2002.中国大陆地震震源深度及其构造含义.科学通报,47(9):663~668
    张国民,李丽.2003.地壳介质的流变性与孕震模型.地震地质,25(1):1~10.
    张国民,马宏生,王辉,等.2004.中国大陆活动地块与强震活动,中国科学,34(7):591~599
    张国民,马宏生,王辉,等.2005.中国大陆活动地块边界带与强震活动,地球物理学报,48(3):138~146
    张培震,王琪,马宗晋.2002.中国大陆现今构造运动的GPS速度场与活动地块.地学前缘,9(2):429~441
    张培震,邓起东,张国民,等.2003.中国大陆强震活动与活动地块.中国科学(D辑),33(增刊):12~20
    张少泉.1986.地球物理概论.北京:地震出版社
    张文佑.1984.断块构造导论.北京:石油工业出版社,1~23
    张希,江在森,王琪,等.2003.川滇地区地壳水平运动特征与强震关系研究.大地测量与动力学,23(3):35~41
    张志斌,曹德斌.2002.滇中楚雄中生代盆地的形成、演化及其与哀牢山造山带的关系.以楚雄西舍路至禄丰碧城镇区域地质综合剖面为例.地球学报,23(2):129~134
    赵永贵,刘建华.1992.地震层析地质解释原理及其在滇西深部构造研究中的应用.地质科学,(2):105~113
    郑斯华.1994.地震层析成像和地幔动力学[J].国际地震动态,(6):17~20
    郑勇.2005.青藏高原及中国大陆地壳岩石层变形演化动力学数值模拟[博士论文].合肥:中国科学技术大学,1~194
    中国地震局震害防御司.1999.中国近代地震目录.北京:中国科学技术出版社,1~513
    钟继茂,程万正.2006.由多个地震震源机制解求川滇地区平均应力场方向.地震学报,28(4):337~346
    周龙泉,刘福田,陈晓非.2006.三维介质中速度结构和界面的联合成像.地球物理学报,49(4):1062~1067
    周龙泉,刘杰,张晓东.2007.2003年大姚6.2和6.1级地震前三维波速结构的演化.地震学报,29(1):20~30
    周仕勇,许忠淮,韩京,等.1999.主地震定位方法分析及1997年新疆伽师震群高精度定位[J].地震学报,21(3):258~265
    朱艾斓,徐锡伟,周永胜,等.2005.川西地区小震重新定位及其活动构造意义.地球物理学报,48(3):629~636
    朱创业,夏文杰,伊海生,蔚远江.1997.兰坪—思茅中生代盆地性质及构造演化.成都理工学院学报,24(4):23~30
    朱介寿.1996.全球地幔三维结构模型及动力学研究新进展[J].地球科学进展,11(5):421~431
    朱介寿,曹家敏,蔡学林,等.2003.中国及邻近陆域海域地球内部三维结构及动力学研究[J].地球科学进展,18(4):497~503
    朱介寿,蔡学林,曹家敏,等.2004.中国及相邻区域岩石圈结构及动力学意义.成都理工大学学报(自然科学版),31(6):567~574
    朱介寿,蔡学林,曹家敏,等.2005.中国华南及东海地区岩石圈三维结构及演化.中国岩石圈三维结构丛书之七,北京:地质出版社,1~308
    朱露培,曾融生,刘福田.1990.京津唐张地区地壳上地幔三维P波速度结构.地球物理学报,33(3):267~277
    朱守彪.2004.中国大陆及邻区构造应力场的遗传有限单元法反演及其结果应用[]博士论文.北京:中国科学院研究生院,1~137
    朱守彪,石耀霖.2004.用遗传有限单元法反演川滇下地壳流动对上地壳的拖曳作用.地球物理学报,47(2):232~239
    朱守彪,蔡永恩,石耀霖.2005.青藏高原及邻区现今地应变率场的计算及其结果的地球动力学意义.地球物理学报,48(5):1053~1061

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700