用户名: 密码: 验证码:
鼻咽癌抑瘤基因BRD7的转录调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溴区结构(Bromodomain)是近年来发现的广泛存在于多种生物中的一种高度保守结构域,可特异性地与组蛋白末端乙酰化的赖氨酸位点结合。Bromodomain蛋白通过与乙酰化组蛋白结合,改变染色质构象,协调多个转录复合物与染色质模板的有序结合而参与信号依赖性基因转录调控。BRD7基因是利用cDNA代表性差异分析法筛选出的Bromodomain基因。它在鼻咽癌细胞和组织中表达下调。前期研究工作表明:BRD7是一个细胞周期特异性转录相关因子,一方面通过调节Ras/MEK/ERK和Rb/E2F信号通路中的关键分子而参与细胞周期调控,另一方面通过与乙酰化组蛋白H3结合,参与核内组蛋白乙酰化信号传递。过表达BRD7基因可抑制鼻咽癌细胞增殖和细胞周期进程,并部分地逆转鼻咽癌细胞的恶性表型。为了揭示BRD7基因在鼻咽癌细胞和组织中表达下调的分子机制,更深入地阐明BRD7基因的生物学功能,本课题展开了BRD7基因的转录调控研究。
     【BRD7基因启动子的克隆、鉴定及精细定位】
     生物信息学分析为基因转录调控研究提供了一个很好的切入点。在线程序PromoterInspector分析结果表明BRD7调控区-375/+416的区间为其候选启动子区,而在线程序PromoterScan的预测结果表明-391/-141的区间为BRD7的候选启动子区。以正常人外周血细胞基因组DNA为摸板,利用PCR技术,获得了BRD7调控区长片段-711/+496,并证实该区域具有与病毒SV40启动子同等强度的启动活性。进一步以该长片段调控区为模板,利用缺失突变体报告质粒构建技术和荧光素酶活性分析系统,定位了BRD7基因的近距离启动子区-404/+46,并发现BRD7启动子区-293/-168的125bp区域是其发挥启动子活性的必需序列。
     为了进一步获得BRD7基因的最小启动子序列,分别在其近距离启动子片段-404/+46的5’、3’或内部缺失部分序列,构建一系列缺失突变体报告载体,并将它们分别转染不同细胞系中,发现BRD7基因-266/-212的55bp区间为其最小启动子区域,而且这一最小启动子选择性地在c-Myc缺失的细胞株中发挥启动活性。
     【BRD7启动子区顺式作用元件和反式作用因子的鉴定和功能研究】
     真核基因的转录调控是一个非常复杂的生化反应过程,数目惊人的蛋白因子参与了基因的转录调控。在线软件MatInspector分析结果表明BRD7启动子区是一个不含TATA盒,也不含CAAT盒的GC富集区。它含有多个GC盒,多种转录因子结合位点,如:KLF,Sp1,E2F,MYC-MAX和AP2等结合位点。凝胶迁移率分析(EMSA)证实了BRD7基因启动子区的Sp1/MYC-MAX(-223/-198)、E2F-6(-243/-229)以及E2F(-183/-169)结合位点。超变动(Supershift Assay)和免疫染色质共沉淀(ChIP)实验证实了转录因子c-Myc、E2F6和Sp1对这些位点的特异性结合。
     利用转基因技术,发现过表达c-Myc能大幅度地下调BRD7启动子活性并明显抑制BRD7基因的内源性mRNA表达水平;封闭内源性c-Myc的表达使BRD7启动子活性在鼻咽癌5-8F细胞中提高了10倍以上,同时也明显上调了BRD7基因内源性mRNA的表达水平。采用MicroRNA芯片分析发现,封闭内源性c-Myc的表达在鼻咽癌细胞中上调了14个miRNA分子的表达,其中hsa-miR-224上调了66.49倍,是上调幅度最大的miRNA基因,同时还下调7个miRNA分子的表达,hsa-miR-200c和hsa-miR-141的表达下调了10倍以上。在线程序预测这些差异表达miRNA分子的靶基因,发现它们大多涉及细胞周期和凋亡等信号分子通路。
     过表达转录因子Sp1以浓度依赖性方式在鼻咽癌细胞中上调BRD7启动子活性,但并不足以使BRD7启动子活性上调至全长启动子-404/+46的活性;转录因子Sp1结合位点的特异性竞争剂光辉酶素A(Mithramycin A)可大幅度地抑制BRD7启动子活性,并明显下调BRD7基因内源性mRNA表达水平。但转录因子E2F6对BRD7基因最小启动子片段没有活性调节作用。
     为了进一步确定BRD7启动子区-223/-198的MYC-MAX/Sp1重叠结合位点和-243/-229的E2F6结合位点的重要性,分别构建了这两个结合位点的点突变和缺失突变报告基因载体。荧光素酶分析系统结果表明:突变MYC-MAX/Sp1(-223/-198)重叠结合位点中的三个关键碱基(C/A,G/T,G/A)使BRD7最小启动子活性在鼻咽癌5-8F细胞中增加了4个数量级;但缺失MYC-MAX/Sp1结合位点并不影响BRD7最小启动子的活性。而突变E2F6结合位点的4个关键碱基不影响BRD7最小启动子活性,但缺失E2F6结合位点的15个关键碱基却大幅度地增加了BRD7最小启动子活性。
     另外,免疫共沉淀和免疫共定位实验都确证了鼻咽癌5-8F细胞中蛋白因子c-My与Sp1的直接交互作用,提示蛋白因子c-Myc结合于Sp1从而竞争或覆盖了Sp1与其相应位点结合的基序可能是c-Myc抑制BRD7启动子活性和内源性表达的另一调节因素。
     【DNA甲基化抑制BRD7基因的表达,去甲基化恢复其表达】
     c-Myc和Sp1对BRD7启动子活性调节至关重要,但在鼻咽癌细胞中抑制c-Myc的表达或过表达Sp1蛋白因子都不足以使BRD7最小启动子活性上调至全长启动子-404/+46的活性或完全恢复BRD7基因的mRNA表达水平,提示在BRD7基因转录调控机制中还存在未知的调节因素如:CpG岛或Sp1结合位点甲基化等。利用欧洲分子生物学开放软件包(European Molecular Biology Open Software Suite,EMBOSS)和美国softberry软件公司推出的CpGFinder程序在线扫描BRD7基因转录起始位点上游2000bp的gDNA序列,分别发现其5’上游-418/-56或-374/-4的区间为—CpG岛。这两个软件的预测结果大部分重叠,且与BRD7近距离启动子-404/+46重叠。利用BRD7基因启动子区特异性甲基化和非甲基化引物进行甲基化特异性聚合酶链反应(MSP-PCR),发现BRD7启动子在所有鼻咽癌细胞系中都呈部分甲基化状态,且其甲基化程度与BRD7基因mRNA的表达水平呈负相关。MSP-PCR测序结果表明BRD7基因启动子区共有10个甲基化CpG位点,它们分别涉及位于-353/-337的Sp1结合位点、-330/-317的Sp1结合位点、-260/-246的MYC-MAX结合位点、-223/-198的Sp1结合位点以及-243/-229的E2F结合位点,另有两个位于翻译起始位点ATG的附近。利用SssI甲基转移酶能将腺苷甲硫氨酸(H.SAM)中的甲基转移至基因组DNA CpG位点的非甲基化胞嘧啶“C”上,使原本未甲基化的“C”发生甲基化的特点,分别将野生型双链寡核苷酸探针Wt E2F-6(-243/-229)和WtSp1/MYC-MAX(-223/-198)经SssI甲基转移酶处理后,进行EMSA分析,发现这些甲基化的寡核苷酸探针不能与核蛋白结合。同样,将BRD7启动子报告载体pGL3-404/+46、pGL3-404/+46/GFP经SssI甲基转移酶处理后,发现它们在COS7和BHK-21细胞以外的所有癌细胞株中丧失了全部的启动子活性。
     3.75μM的甲基化酶抑制剂5-脱氧杂氮胞昔(ADC)就足以在鼻咽癌5-8F细胞中完全逆转BRD7启动子甲基化状态,并最大幅度地上调BRD7基因mRNA和蛋白质表达水平,其上调幅度分别为76.7%和63.3%。流式细胞仪分析结果表明,3.75μM的5-脱氧杂氮胞苷具有阻滞鼻咽癌细胞周期G2/M、S期进程和诱导鼻咽癌细胞凋亡的作用。MicroRNA芯片分析结果发现,3.75μM的5-脱氧杂氮胞苷在鼻咽癌5-8F细胞中上调了10个miRNA分子的表达,其中hsa-miR-122a上调了63.2倍,是上调幅度最大的miRNA分子,同时还下调7个miRNA分子的表达,其中hsa-miR-203下调了7.79倍。利用在线程序预测其靶基因,发现这些靶基因主要涉及细胞周期和凋亡等信号分子通路。
     更为重要的是:通过检测36例鼻咽癌病人组织和16例正常人外周血细胞中BRD7基因的甲基化状态,发现BRD7基因启动子区的甲基化频率在鼻咽癌病人的鼻咽组织中为100%,而在正常人群外周血细胞中为50%,且在正常人群中呈微弱甲基化状态。
     总之,通过本课题研究,我们获得了BRD7启动子及其精细位置,较系统地阐述了BRD7启动子的特征及其顺式作用元件和反式作用因子的组成和功能,较详细地探索了DNA甲基化对BRD7启动子活性、mRNA和蛋白质表达水平的影响及分子机制,并获得了BRD7基因启动子甲基化可能成为界定鼻咽癌病人和正常人群的生物分子标志物之一的重要信息。这些研究结果将有助于全面地了解BRD7基因的生物学功能,明确BRD7基因在鼻咽癌癌变中的作用机制,并为其潜在的临床应用提供科学的理论和实验依据。
Bromodomain is an evolutionally conserved domain that wasrecently identified in many living organisms. Bromodomain containingprotein has specific affinity to combine with acetylated lysines onN-terminal tails of histones. It has been demonstrated that bromodomainwas characteristics of proteins that regulated signal-dependenttranscriptional regulation through the mechanism that bromodomainproteins may modulate chromatin remodelling and facilitate the accessionof transcription factors to chromatin. BRD7 is a bromodomain gene thathas been recently cloned by cDNA RDA (cDNA RepresentationalDifference Analysis). It is down-expressed in Nasopharygeal Carcinoma(NPC) biopsies and their derived cell lines. Previous studies showed thatBRD7 is a cell cycle related transcription factor. It participates in cellcycle regulation by regulating some of the cell cycle associated genesthrough Ras/MEK/ERK and Rb/E2F pathways. Moreover, it can transmithistoric acetylation signal and modulate chromatin remodeling throughbinding to acetylated lysines of histone H3. Over-expression of BRD7inhibits cell growth and cell cycle progression of NPC cells, and partlyreverses malignant phenotype of NPC cells. To uncover the molecularmechanisms underlying down-expression of BRD7 in NPC cells, in thisstudy, we investigated the transcriptional regulation of BRD7.
     【Cloning, characterization and fine mapping of BRD7 promoter】
     Bioinformatics approaches provide a breakthrough point foranalyzing of transcriptional regulation. A 792 bp region spanning frompositions -375 to +416 was identified as potential promoter region ofBRD7 gene by using PromoterInspector, whereas a 252 bp region located positions from -393 to -141 was identified as BRD7 promoter by usingPromoterScan program. With human genomic DNA prepared fromhuman blood cells as templates, a fragment spanning from positions -711to +496 of BRD7 gene was amplified by PCR. This fragment expressesas strong promoter activity as SV40 promoter. Further analysis withdeletion constructs demonstrated that the region spanning from positions-404 to +46 is the proximal promoter of BRD7 gene, and that thefragment from positions -293 to -168 was indispensable for the basalpromoter activity of BRD7.
     To define minimal promoter of BRD7, a series of 5', 3' or internaldeletion constructs were generated from pGL3-404/+46, andcotransfected with the SV40β-galactosidase vectors into cultured cells.Luciferase assay revealed that the shortest 55 bp region from positions-266 to -212 is the minimal promoter of BRD7 gene, and that thisminimal promoter selectively functions in c-Myc-null cell lines
     【Identification and characterization of the cis-acting elements andtrans-acting factors in BRD7 promoter】
     Eukaryotic gene transcription is a remarkably intricate biochemicalprocess. An astounding number of protein factors were found to beresponsible for transcriptional control. Searches for binding sites oftranscription factors in BRD7 promoter were performed by usingMatInspector Professional program. No canonical TATA or CAAT boxeswere found, while several GC boxes and putative transcription bindingsites for KLF, Sp1, IFRF-2, AP2, MYC-MAX, E2F and E2F6 were foundin BRD7 promoter. The results of EMSA confirmed the specificoverlapping site of Sp1/MYC-MAX at -223/-198, consensus E2F-6 site at-243/-229 and E2F binding site at -183/-169. Supershift and ChIP assay revealed the specific binding of transcription factor c-Myc, E2F6 and Sp1with their corresponding binding sites in BRD7 minimal promoter.
     To explore the regulation role of transcription factor Sp1, c-Myc andE2F on BRD7 promoter activity and mRNA expression, we generated theexpression constructs of c-Myc, E2F6 and Sp1, and carded out a series ofrelated experiments. It was found that over-expression of c-Mycsignificantly inhibits BRD7 promoter activity and obviously reducesendogenous mRNA expression of BRD7 gene, while knockdown ofendogenous c-Myc increases more than ten fold of BRD7 promoteractivity and mRNA expression of BRD7 in NPC 5-8F cells. Additionally,MicroRNA chip results revealed that knockdown of endogenous c-Mycup-regulated 14 miRNA expression including hsa-miR-224, whichexpression was increased more than 66.49 fold, and down-regulated 7miRNA expression including hsa-miR-200c and hsa-miR-141. Onlineprediction results revealed that most of these miRNA target genes areinvolved in cell cycle and cellular apoptosis.
     Over-expression of transcription factor Sp1 increases BRD7promoter activity in a dose-dependant manner in NPC HNE1 and 5-8Fcells, but not enough to the promoter activity of the full-length promoter-404/+46, while mithramycin A, the specific competitor of Sp1, inhibitsthe promoter activity and endogenous expression of BRD7. Butover-expression of E2F6 has no effects on BRD7 minimal promoter.
     To further confirm the importance of the overlapping site ofMYC-MAX/Sp1 at -223/-198 and E2F site at -243/-229, reporterconstructs containing site mutant or deletion mutant of these two bindingsites were generated. It was found that site mutating of three keynucleotides (C/A, G/T, G/A) of the overlapping binding site of MYC-MAX/Sp1 increases 10000 fold of BRD7 promoter activity in NPC5-8F cells, whereas deletion of this overlapping region didn't change thepromoter activity of pGL3-266,-212 either in COS7 or 5-8F cells.Similarly, mutation of four key nucleotides in E2F6 binding site didn'taffect the promoter activity of BRD7 gene, but deletion of E2F6 bindingsite significantly increased BRD7 promoter activity in NPC 5-8F cells.
     Moreover, immunoprecipitation along with immuno-localizationassay revealed the direct interaction between c-Myc and Sp1 in 5-8F cells,suggesting that c-Myc binds to Sp1 to cover or compete the domain ofSp1 for binding to overlapping site of Sp1/MYC-MAX at -223/-198 maybe another mechanism underlying the negative regulation effect of c-Mycon BRD7 promoter.
     【Methylation of BRD7 promoter suppresses its expression, whiledemethylation of BRD7 promoter increases its expression】
     Knock-down of c-Myc expression or over-expression of Sp1 is notenough to increase BRD7 promoter activity to that of the full-lengthpromoter -404/+46 or completely reverse BRD7 expression in NPC 5-8Fcells, indicating that other mechanisms such as methylation status,especially methylation of GC boxes (Sp1 sites), might be related totranscriptional regulation of BRD7 gene. A CpG island spanning frompositions -418 to -56 bp or from -374 to -4 bp was revealed by usingCpGplot and the CpGFinder program, respectively. The CpG islandspredicted by these two programs overlap with each other, and overlapwith BRD7 promoter. Methylation specific primers and unmethylationspecific primers were designed to detect the methylation status of BRD7promoter. It was found that BRD7 promoter was partly methylated in allanalyzed NPC cell lines, and that the methylation status of BRD7 promoter is reversely correlated with BRD7 mRNA expression.MSP-PCR sequencing results revealed ten methylated CpG sites in BRD7promoter region, among which one was included in Sp1 binding site at-353/-337, one in MYC-MAX binding site at -330/-317, one in Sp1binding site at -229/-198, one in E2F binding site at -243/-229, and theother two near the translation start site. As CpG methylase SssI cantransmit the -CH_3 of SAM to Cytosine of CpG site, we incubated probesof oligonucleotide wt E2F6 (-243/-229) and wt Sp1/MYC-MAX(-223/-198) with SssI. EMSA results showed that DNA methylationinhibited the formation of DNA-protein complex. Luciferase and directGFP fluorescence assays showed that methylation of pGL3-404/+46 andpGL3-404/+46/GFP with SssI inhibits BRD7 promoter activity inanalyzed cell lines except for COS7 and BHK-21. 3.75μM of5'-aza-2'-deoxycytine (ADC) was sufficient to reverse the methylatedstatus of BRD7 promoter, and increased the mRNA and proteinexpression of BRD7 up to 66.7% and 63.3%, respectively. Results offlow cytometry analysis showed that 3.75μM ADC can inhibit cell cycleprogression of G_2/M and S phase, and induce cellular apoptosis.Moreover, MicroRNA chip results revealed that 3.75μM ADCup-regulated 10 miRNA expression including hsa-miR-122a, whichexpression was increased more than 63.2 fold, and down-regulated 7miRNA expression including hsa-miR-200c and hsa-miR-203. Onlineprediction results showed that most of these miRNA target genes areinvolved in cell cycle and cellular apoptosis. More importantly, wedetected methylation status of BRD7 promoter in 36 cases of NPCpatients and 16 normal individuals, and found that the methylation rate ofBRD7 promoter in NPC patients is 100%, while 50% of weak promoter methylation was revealed in normal individuals.
     In summary, we have identified BRD7 promoter and finely mappedits positions, demonstrated the characteristics of BRD7 promoter,confirmed and investigated the functions of cis-acting elements andtrans-acting factors of BRD7 promoter, explored the effects of DNAmethylation on BRD7 promoter activity and mRNA expression, andfound that the methylation status of BRD7 promoter may be served asone of the biomarkers to distinguish NPC patients from normalindividuals. These results will help to better understand the biologicalfunctions of BRD7, elucidate the molecular mechanisms of BRD7involved in the carcinogenesis of NPC, provide evidences for thepromising clinical application of BRD7.
引文
1. Patrizia Filetici, Omghi P and Paola Ballario. 2001, The bromodomain: a chromatin brower. Frontiers in Bioscience, 6 (1): 866-876.
    2.余鹰,谢奕,李桂源。一个新鼻咽癌抑瘤候选基因的克隆及其功能初步分析,生物化学与生物物理进展,2000,27(3):319
    3.余鹰,朱诗国,张必成,等。BRD7基因转染对鼻咽癌细胞生长的抑制作用,癌症,2001:20(6):569-574
    4. Zhou J, Ma J, Zhang BC, Li XL, et al. 2004. BRD7, a novel bromodomain gene, inhibits G1-S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathways. J Cell Physiol. 200(1): 89-98.
    5. Mark H. Dyson, Sally Rose, Louis C Mahadevan, et al. Acetyllysine-binding and function of bromodomain-containing proteins in chromatine. Frontiers in Bioscience 2001, 6 (1): 853-865
    6. P.J.Horn and C.L.Peterson. The bromodomain: a regulator of ATP- dependent chromatin remodeling. Frontiers in Bioscience, 2001, 6 (1): 1019-1023.
    7. Gerald VD. Bromodomain motifs and "scaffolding". Frontiers in Bioscience, 2001, 6 (1): 1065-1068
    8. Alan P Wolffe. Chromatin remodeling: why it is important in cancer. Oncogene, 2001, 20, 2988-2990
    9. Kevin Struhl. 1998, Histone acetylation and transcription regulation mechanism. Gene. Dev, 12(5): 599-606
    10. Kitabayashi I and Aikawa Y. 2001, Fusion of the MORF and CBP genes in acute myeloid leukemia with t (10;16)(q22;p13). Hum Mol Genet, 6(1): 610-629
    11. Cheng WW,. Maufu.Fu, Sridhar Mani, et al. 2001, Histone acetylation and the cell cycle in cancer. Frontiers in Bioscience, 6, april (1): 610-629.
    12. French CA, Miyoshi I, Kubonishi I et al. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res. 2003 Jan 15; 63 (2): 304-7.
    13. French CA, Miyoshi I, Kroll TG et al. BRD4 bromodomain gene rearmgent in aggressive carcinoma with translocation t (15; 19); Am J Pathol. 2001 Dec; 159 (6): 1979-80;
    14. Lavau C, Du C, Thirmn M, Zeleznik-Le N. Chromatin-related properties of CBP fused to MLL generate a myeloysplastic syndrome that evolves into myeloid leukemia. EMBO, 2000, 1, 19(17): 4655-64;
    15. Panagopoulos I, Fioretos T, Isaksson M, et al. Fusion of the MORF and CBP gene in acute myeloid leukemia with the t(10;16)(q22;p13). Hum Mol Genet, 2001, 15.10 (4): 395-404;
    16. Kzhyshkowska J., Rusch A., Wolf, H., Dobner, T. Regulation of transcription by the heterogeneous nuclear ribonucleoprotein EIB-AP5 is mediated by complex formation with the novel bromodomain-containing protein BRD7. Biochem J. 2003 371(Pt 2): 385-93.
    17. Staal A, Enserink JM, Stein JL, et al. Molecular Characterization of Celtix-1 a Bromodomain Protein Interacting with the Transcripton Factor Interferom Regulatory Factor 2. Jouranl of Cellular Physiology. 2000 185: 269—279
    18. Kim S, Lee J, Jeehye Park, et al. BP75, bromodomain-containing M(r)75,000 protein, binds disheveled-enhances Wnt signaling by inactivating glycogen synthase kinase-3 bet. Cancer Res. 2003 Aug 15; 63(16): 4792—5
    19. Yao YQ, Xu JS, Lee WM, et al. Identification of mRNAs that are up-regulated after fertilization in zygote by suppression subtractive hybridization. Biochem Bio phys Res Commun. 2003 Apr 25; 304 (1): 60—6
    20. Alan P Wolffe. Chromatin remodeling:why it is important in cancer. Oncogene, 2001, 20, 2988-2990
    21. Patrizia Filetici, Omghi P and Paola Ballario, The bromodomain: a chromatin brower. Frontiers in Bioscience, 2001, 6 (1): 866-876
    22.周洁,BRD7传递组蛋白乙酰化信号而调控细胞周期的机制研究,中南大学博士论文(2004年4月)Jie Zhou, A Cell Cycle Regulation Role of BRD7 by Transmitting Histone Acetylation Signal. Doctoral Degree Theses of Central South University, 2004.
    23. Zhou M, Liu H, Xu X, et al. 2006. Identification of nuclear localization signal that governs nuclear import of BRD7 and its essential roles in inhibiting cell cycle progression. J Cell Biochem. 98(4): 920-30.
    24.余鹰,朱诗国,张必成,等。应用酵母双杂交系统筛选BRD7相互作用的蛋白质。中国科学C辑,2002;32(2):153-158
    25. Zhou M, Xu XJ, Zhou HD, et al. BRD2 is one of BRD7-interacting proteins and its over-expression could initiate apoptosis. Mol Cell Biochem. 2006 Nov; 292(1-2): 205-12.
    26. Thomas MC, Chiang CM. The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol. 2006 May-Jun;41(3):105-78. Review.
    27. Madan Babu M, Teichmann SA, Aravind L. Evolutionary dynamics of prokaryotic transcriptional regulatory networks. J Mol Biol. 2006 Apr 28;358(2):614-33
    28. Gross P, Oelgeschlager T. Core promoter-selective RNA polymerase II transcription. Biochem Soc Symp. 2006;(73):225-36. Review.
    29. Hannenhalli S, Levy S. 2001. Promoter prediction in the human genome. Bioinformatics. Suppl 1 :S90-6.
    30. Scherf M, Klingenhoff A, Werner T. 2000. Highly specific localization of promoter regions in large genomic sequences by PromoterInspector: a novel context analysis approach. J Mol Biol. 297(3): 599-606.
    31. Down TA, Hubbard TJ. 2002. Computational detection and location of transcription start sites in mammalian genomic DNA. Genome Res. 12(3): 458-61.
    32. Wolner BS, Gralla JD. 2000. Roles for non-TATA core promoter sequences in transcription and factor binding. Mol Cell Biol. 20(10): 3608-15.
    
    33. Teichmann SA, Bornberg-Bauer E, Luscombe NM. Transcriptional networking. Genome Biol. 2005;6(9):344
    34. Carninci P, Kasukawa T, Katayama S, et al. The transcriptional landscape of the mammalian genome. Science, 2005, 309(5740): 1559-63.
    35. Luscombe NM, Babu MM, Yu H, et al. Genomic analysis of regulatory network dynamics reveals large topologicalchanges. Nature. 2004 Sep 16;431(7006):308-12.
    36. Suske G 1999. The Sp-family of transcription factors. Gene. 238(2): 291-300. Review.
    37. Gazzoli I, Kolodner RD. 2003. Regulation of the human MSH6 gene by the Sp1 transcription factor and alteration of promoter activity and expression by polymorphisms. Mol Cell Biol. 23(22): 7992-8007
    38. Rance JB, Follows GA, Cockerill PN, et al. 2003. Regulation of the human endothelial cell protein C receptor gene promoter by multiple Spl binding sites. Blood.101 (11): 4393-401.
    39. DeGregori J. 2002. The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochim Biophys Acta. 1602(2): 131-50. Review. No abstract available.
    40. Stevaux O, Dyson NJ. 2002 A revised picture of the E2F transcriptional network and RB function. Curr Opin Cell Biol. (6): 684-91. Review.
    41. Zheng N, Fraenkel E, Pabo CO, et al. 1999. Structural basis of DNA recognition by the heterodimeric cell cycle transcription factor E2F-DP. Genes Dev. 13(6): 666-74.
    42. Kherrouche Z, De Launoit Y, Monte D. 2004 Human E2F6 is alternatively spliced to generate multiple protein isoforms. Biochem Biophys Res Commun. 317(3): 749-60.
    43. Pelengaris S, Khan M. 2003. The many faces of c-MYC. Arch Biochem Biophys. 416(2): 129-36. Review.
    44. Levens DL. 2003 Reconstructing MYC. Genes Dev. 17(9): 1071-7. Review.
    45. Cheng SW, Davies KP, Yung E, et al. 1999. c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. Nat. Genet. 22: 102-105
    46. Luscher B. 2001. Function and regulation of the transcription factors of the Myc/Max/Mad network. Gene 277: 1-14
    47. Martin K. A., A. Gualberto, M. F. Kolman, et al. 1991. Transcription factor AP2 and its role in epidermal-specific gene expression. Proc. Natl. Acad. Sci. U.S.A. 88: 7948-7952.
    48. Dimosthenis Kizis, Victoria Lumbreras, Montserrat Pages. 2001, Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Letters 498 187-189
    49. Neal Gutterson and T Lynne Reuber. 2004, Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology, 7: 465-471
    50. Peng C, Zhou J, Liu HY, et al. 2006. The transcriptional regulation role of BRD7 by binding to acetylated histone through bromodomain. J Cell Biochem. 97(4): 882-92.
    51. Liu H, Peng C, Zhou M, et al. 2006. Cloning and characterization of the BRD7 gene promoter. DNA Cell Biol. 25(6): 346-58
    52.刘华英,罗晓敏,牛朝霞等。2006,BRD7基因调控区的克隆与功能研究。生物化学与生物物理进展 33(6):531-539
    53. Bryan Lemon and Robert Tjian. 2000. Orchestrated response: a symphony of transcription factors for gene control. Genes & Dev. 14: 2551-2569
    54. Vatsyayan J, Peng HL, Chang HY. 2005. Analysis of human UDP-glucose dehydrogenase gene promoter: identification of a Sp1 binding site crucial for the expression of the large transcript. J Biochem (Tokyo). 137(6): 703-9
    55. Nesbit CE, Tersak JM, Prochownik EV. 1999. MYC oncogenes and human neoplastic disease. Oncogene18 (19): 3004-16
    56. Fernandez PC, Frank SR, Wang L, et al. 2003. Genomic targets of the human c-Myc protein. Genes Dev. 17(9): 1115-29.
    57. Gartel AL. 2006. A new mode of transcriptional repression by c-myc: methylation. 25(14): 1989-90
    58. Mao DY, Barsyte-Lovejoy D, Ho CS, et al. 2004. Promoter-binding and repression of PDGFRB by c-Myc are separable activities. Nucleic Acids Res. 32(11): 3462-8.
    59. Staller P, Peukert K, Kiermaier A, et al. 2001. Repression of p15INK4b expression by Myc through association with Miz-1. Nat. Cell Biol. 3(4): 392-9.
    60. Kleine-Kohlbrecher D, Adhikary S, Eilers M. 2006. Mechanisms of transcriptional repression by Myc. Curr Top Microbiol Immunol. 302: 51-62. Review
    61. Gartel AL, Shchors K. 2003. Mechanisms of c-myc-mediated transcriptional repression of growth arrest genes. 283(1): 17-21.
    62. Mattick, J.S. (2001) Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep. 2(11): 986-91.
    63. Mattick, J.S. (2003) Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays. 25 (10): 930-9.
    64. Yang M, Li Y, Padgett RW. (2005) MicroRNAs: Small regulators with a big impact. Cytokine Growth Factor Rev. 16(4-5): 387-93.
    65. Yelin, R., Dahary, D., Sorek, R., et al. (2003) Widespread occurrence ofantisense transcription in the human genome. Nat. Biotechnol. 21 (4): 379-86.
    66. Mattick, J.S. (2004) RNA regulation: a new genetics? Nat. Rev. Genet. 5 (4): 316-23.
    67. Calin GA, Croce CM. (2006) MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66(15): 7390-4.
    68. Kiss, A.M., Jady, B.E., Bertrand, et al. (2004) Human box H/ACA pseudouridylation guide RNA machinery. Mol. Cell. Biol. 24 (13): 5797-5807.
    69. Esquela-Kerscher A, Slack FJ. (2006) Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 6(4): 259-69
    70. Calin, G. A. et al. (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101 (9):2999-3004.
    71. Calin, G. A. et al. (2002) Frequent deletions and downregulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99 (24): 15524-9.
    72. Kadonaga JT, Carner KR, Masiarz FR, Tjian R. 1987. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell. Dec 24;51(6): 1079-90.
    73. Letovsky J, Dynan WS. 1989. Measurement of the binding of transcription factor Spl to a single GC box recognition sequence. Nucleic Acids Res. 17(7):2639-53.
    74. Manel Esteller. 2006. The necessity of a human epigenome project. Carcinogenesis 27 (6) 1121-1125.
    75. Garber,K. 2006. Momentum building for human epigenome project. J. Natl Cancer Inst. 98 (2):84-86.
    76. Rauscher,F.,III. 2005. It is time for a Human Epigenome Project. Cancer Res. 65 (24): 11229.
    77. Jones,P.A. and Martienssen,R. 2005. A blueprint for a Human Epigenome Project: the AACR Human Epigenome Workshop. Cancer Res. 65 (24):11241-6.
    78. Bird, A. 2002. DNA methylation patterns and epigenetic memory. Genes Dev.16 (1): 6-21.
    79. Takai, D. & Jones, P. A. 2002. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl Acad. Sci. USA 99 (6):3740-5.
    80. Jones, P. A. & Laird, P. W. 1999. Cancer epigenetics comes of age. Nature Genet. 21 (2):163-7.
    81. Feinberg, A. P. & Vogelstein, B. 1983. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301(5895):89-92.
    82. Feinberg, A. P., Gehrke, C. W., Kuo, K. C. & Ehrlich, M. 1988. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res. 48(5):1159-61.
    83. Baylin, S. B. & Herman, J. G. 2000. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 16 (4): 168-74.
    84. Gardiner-Garden M, Frommer M. 1987. CpG islands in vertebrate genomes. J MolBiol. 196(2): 261-82.
    85. Larsen F, Gundersen G, Lopez R, et al. 1992. CpG islands as gene markers in the human genome. Genomics. 13(4): 1095-107.
    86. Antequera F, Bird A. 1993. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A. 90(24): 11995-9.
    87. Murumagi A, Vahamurto P, Peterson P. 2003. Characterization of regulatory elements and methylation pattern of the autoimmune regulator (AIRE) promoter. J Biol Chem. 278(22): 19784-90.
    88. Uhl J, Klan N, Rose M, et al. 2002 The 5-lipoxygenase promoter is regulated by DNA methylation. J Biol Chem. 277(6): 4374-9. Epub 2001 Nov 12.
    89. Herman, J.G, Baylin, S.B. 2003. Gene silencing in cancer in association with
    90. promoter hypermethylation. N Engl J Med 349, (21)2042-54.
    91. Fraga, M.F. and Esteller, M. 2005. Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle 4(10): 1377-81.
    1. Voigt. Aertzl. Verein. Hamburg February 3 1896.
    2. Jackson C. Primary carcinoma of the nasopharynx: a table of cases. JAMA 1901; 31: 371-7.
    3. Wei WI, Sham JS. Nasopharyngeal carcinoma. Lancet. 2005 Jun 11-17; 365(9476): 2041-54. Review.
    4. Chan ATC, Teo PML, Johnson PJ: Nasopharyngeal carcinoma. Ann Oncol 2002, 13: 1007-1015.
    5. Yu MC, Yuan JM: Epidemiology ofnasopharyngeal carcinoma. Semin Cancer Biol 2002, 12: 421-429.
    6. Lo KW, To KF, Huang DP. Focus on nasopharyngeal carcinoma. Cancer Cell. 2004 May; 5(5): 423-8.
    7. Manavis J, Sivridis L, Koukourakis MI. Nasopharyngeal carcinoma: The impact of CT-scan and of MRI on staging, radiotherapy treatment planning, and outcome of the disease Journal of Clinical Imaging Clin Imaging. 2005 Mar-Apr; 29(2): 128-33.
    8. Faivre S, Janot F, Armand JP. Optimal management of nasopharyngeal carcinoma. Curr Opin Oncol. 2004 May; 16(3): 231-5. Review.
    9. Ma BB, Chan AT. Recent perspectives in the role of chemotherapy in the management of advanced nasopharyngeal carcinoma. Cancer. 2005 Jan 1; 103(1): 22-31. Review.
    10. Thompson MP, Kurzrock R. Epstein-Barr virus and cancer. Clin Cancer Res. 2004 Feb 1; 10(3): 803-21. Review.
    11. O'Meara WP, Lee N. Advances in nasopharyngeal carcinoma. Curr Opin Oncol. 2005 May; 17(3): 225-30. Review.
    12.李桂源.染色体脆性部位、癌基因位点与人类恶性肿瘤。国外医学肿瘤学分册 1986,(2):65-70
    13.李桂源。染色体位点与癌变。湖南医学院学报 1987,(1):15-22
    14.李桂源。染色体位点与癌变(续)。湖南医学院学报 1987,(2):137-142
    15.李桂源。人细胞染色体上DNase-1敏感区的稳定性观察。湖南医科大学学报1989,(4):307-311
    16. Xiong W, Zeng ZY, Xia JH, et al. A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer Res, 2004, 64(6): 1972-4.
    17.熊炜,曾朝阳,沈守荣,等。高频等位基因不平衡位点D6S1581与鼻咽癌的遗传易感性研究。中华医学遗传学杂志,2003;20(4):311-314.
    18. Feng BJ, Huang W, Shugart YY, et al. Genome-wide scan for familial nasopharyngeal carcinoma reveals evidence of linkage to chromosome 4. Nat Genet. 2002 Aug; 31(4): 395-9.
    19. Hui, A.B., Lo, K.W., Leung, S.F., et al. Detection of recurrent chromosomal gains and losses in primary nasopharyngeal carcinoma by comparative genomic hybridization. Int. J. Cancer 1999; 48, 498-503.
    20. Lo, K.W., Teo, P.M., Hui, A.B., et al. High resolution allelotype of microdissected primary nasopharyngeal carcinoma. Cancer Res. 2000a; 60, 3348-3353.
    21. Longwen Deng, Ning Jiang, Guolin Tan, et al. A Common Region of Allelic Loss on ChromosomeRegion 3p25.3-26.3 in Nasopharyngeal Carcinoma. Genes, Chromosome & Cancer 1998, 23: 21-25
    22. Tan G, Xiao J, Tian Y, et al. Mierosatellite analyses of loci at 7q31.3-q36 reveal a minimum of two common regions of deletion in nasopharyngeal carcinoma. Otolaryngol Head Neck Surg 2002; 126(3): 296-300
    23.阳剑波,唐湘娜,邓龙文,等。鼻咽癌染色体9p21-22区域精细物理图谱的构建中华肿瘤杂志,1999;21(6):419-421
    24.李忠花,王璐,张小慧,等。比较基因组杂交研究鼻咽癌遗传变异。中华医学遗传学杂志,2001,18(5):338-342
    25.李忠花,李桂源。鼻咽癌基因组的杂合性丢失和微卫星不稳定性的研究。临床耳鼻喉科杂志,2001,15(suppl):70-75
    26.阳剑波,宾亮华,李忠花,等。精细定位和克隆9p21-22区域内鼻咽癌候选抑瘤基因.癌症,2000;19(1):6-9
    27. Qian J; Zhang XH; Yang JB; et al. Cloning and Expression Analysis of a Novel Gene, UBAP1, Possibly Invovled in Ubiquitin Pathway, ACTA BIOCHIMICA et. BIOPHYSICA SINICA 2001, 33(2): 147-152
    28. Xie, Y, Bin, L, Yang, J, et al. Molecular cloning and characterization of NAG-7: a novel gene downregulated in human nasopharyngeal carcinoma. Chinese Medical Journal, 2001; 114(5): 530-534.
    29. Andrew Siu Chung Chan, Ka Fai To, Kwok Wai Lo, et al. High Frequency of Chromosome 3p Deletion in Histologically Normal Nasopharyngeal Epithelia from Southern Chinese. Cancer Research 60, 5365-5370, October 1, 2000
    30. Lo KW, Teo PM, Hui AB, et al. High resolution allelotype of microdissected primary nasopharyngeal carcinoma. Cancer Res. 2000 Jul 1; 60(13): 3348-53.
    31. Qiu GH, Tan LK, Loh KS, et al. The candidate tumor suppressor gene BLU, located at the commonly deleted region 3p21.3, is an E2F-regulated, stress-responsive gene and inactivated by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma. Oncogene. 2004 Jun 10; 23(27): 4793-806
    32. Rupp PA, Fouad GT, Egelston CA, et al. Identification, genomic organization and mRNA expression of CRELD1, the founding member of a unique family of matricellular proteins. Gene. 2002 Jun 26; 293(1-2): 47-57.
    33.余鹰,朱诗国,向娟娟,等。BRD7单核苷酸多态性及其鼻咽癌易感性分析。生物化学与生物物理进展,2001,28(4):568-572
    34.熊炜,曾朝阳,李小玲,等。NGX6基因单核苷酸多态及与鼻咽癌的相关性.生物化学与生物物理学报.2002,34(4):512-515.
    35.熊炜,曾朝阳,沈守荣,等。泛态相关蛋白基因UBAPl单核苷酸多态及与鼻咽癌的相关研究.生物化学与生物物理进展,2002,29(5):766-770
    36.熊炜,曾朝阳,肖炳皴,等。一个新硝基还原酶基因NORl编码区单核苷酸多态及与鼻咽癌的关联分析。生物化学与生物物理进展,2003;30(3):401-405.
    37.基因有限公司专家组.单核苷酸多态性研究前沿及主要技术方法.生物学教学 2004:29:3-4
    38. Lu QL, Elia G, Lucas S, Thomas JA. Bcl2 proto-oncogene expression in Epstein-Barr virus-associated nasopharyngeal carcinoma. IntJ Cancer. 1993; 53: 29-35
    39. Lai JP, Tong CL, Hong C, et al. Association between high initial tissue levels of cyclin D1 and recurrence of nasopharyngeal carcinoma. Laryngoscope. 2002; 112: 402-408
    40. Porter MJ, Field JK, Leung SF, et al. The detection of the c-myc and ras oncogenes in nasopharyngeal carcinoma by immunohistochemistry. Acta Otolaryngol. 1993; 114: 105-109
    41. Qian CN, Guo X, Cao B, et al. The BT Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma. Cancer Res, 2002; 62: 589-596
    42. Hui AB, LoKW, Teo PM, et al. Genome-wide detection of oncogene ampli.cations in nasopharyngeal carcinoma by array-based comparative genomic hybridization. 2002; Int J Oncol 20: 467-473
    43. Fujii M, YamashitaT, Ishiguro R, et al. Significance of epidermal growth factor receptor and turnourassociated tissue eosinophilia in the prognosis of patients with nasopharyngeal carcinoma. Auds Nasus Larynx. 2002; 29:175-181
    44.余鹰,谢奕,张必成,等。应用混合探针文库筛选法克隆多个肿瘤差异表达基因.癌症,2000,19(7):709-712
    45.湛凤凰,江宁,曹利,等。eDNA代表性差异分析法分离鼻咽癌上皮细胞株HNE1表达差异cDNA序列的初步研究。中华医学遗传学杂志.1998,15(6):341-344
    46.张必成,曹利,钱骏,等。人胚鼻咽上皮细胞cDAN文库的构建及鼻咽癌相关基因的筛选。生物化学与生物物理进展。2002,29(2):302-306
    47. Bicheng Zhang, Xinmin Nie, Bingyi Xiao, et al. Identification of tissue-specific genes in nasopharyngeal epithelial tissue and differentially expressed genes in nasopharyngeal carcinoma by suppression subtractive hybridization and cDNA microarray. Genes Chromosomes Cancer. 2003; 38(1): 80-90
    48. Xinmin Nie, Bicheng Zhang, Xiaoling Li, et al. Cloning, expression, and mutation analysis of NOR1, a novel human gene down-regulated in HNE1 nasopharyngeal carcinoma cell line. J Cancer Res Clin Oncol, 2003; 129 (7): 410-414
    49.余鹰,张必成,谢奕,等。鼻咽癌差异表达基因的分析与克隆.生物化学与生物物理学报。2000,32(4):327-332.
    50. Yu Ying, Zhu Shiguo, Zhang Bicheng, et al. Screening of BRD7 interacting proteins by yeast two-hybrid system. SCIENCE IN CHINA (Series C) 2002; 32(2): 153-158
    51. Cong P, Jie Z, Ying LH, et al. The transcriptional regulation role of BRD7 by binding to acetylated histone through bromodomain. J Cell Biochem. 2006 Mar 1; 97(4): 882-92.
    52. Zhou J, Ma J, Zhang BC, et al. 2004. BRD7, a novel bromodomain gene, inhibits G1-S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathways. J Cell Physiol. 200(1): 89-98
    53. Zhou M, Liu H, Xu X, et al. Identification of nuclear localization signal that governs nuclear import of BRD7 and its essential roles in inhibiting call cycle progression. J Cell Biochem. 2006 Feb 10;[Epub ahead of print]
    54. Li J, Tan C, Xiang Q, et al. Proteomic detection of changes in protein synthesis induced by NGX6 transfected in human nasopharyngeal carcinoma cells. J Protein Chem. 2001 Apr; 20(3): 265-71
    55. Ma J, Li J, Zhou J, et al. Profiling genes differentially expressed in NGX6 overexpressed nasopharyngeal carcinoma cells by cDNA array. J Cancer Res Clin Oncol. 2002 Dec;128(12):683-90.
    56. Ma J, Zhou J, Fan S, et al. Role of a novel EGF-like domain-containing gene NGX6 in cell adhesion modulation in nasopharyngeal carcinoma cells. Carcinogenesis. 2005 Feb;26(2):281-91.
    57. Wang L, Ma J, Li J, et al. NGX6 gene inhibits cell proliferation and plays a negative role in EGFR pathway in nasopharyngeal carcinoma cells. J Cell Biochem. 2005 May l;95(l):64-73.
    58. Tan C, Li J, Xie Y, et al. Preliminary Function Study of NAG7 Using Two-dimensional Electrophoresis and Mass Spectrometry. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2001;33(4):373-378.
    59. Tan C, Peng C, Huang YC, et al. Effects of NPC-associated gene NAG7 on cell cycle and apoptosis in nasopharyngeal carcinoma cells. Ai Zheng. 2002 May;21(5):449-55.
    60. Tan C, Li J, Wang J, et al. Proteomic analysis of differential protein expression in human nasopharyngeal carcinoma cells induced by NAG7 transfection. Proteomics. 2002 Mar;2(3):306-12.
    61. Crook, T., Nicholls, J.M., Brooks, L., et al. High level expression of AN-p63: a mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)? Oncogene 2000; 19, 3439-3444.
    62. Lu, Q.L., Elia, G., Lucas, S., et al. Bcl-2 proto-oncogene expression in Epstein-Barr-virus-associated nasopharyngeal carcinoma. Int. J. Cancer. 1993; 53, 29-35.
    63. Jayasurya, A., Bay, B.H., Yap, W.M., et al. Correlation of metallothionein expression with apoptosis in nasopharyngeal carcinoma. Br. J. Cancer. 2000; 82, 1198-1203.
    64. Wang, X., Xu, K., Ling, M.T., et al. Evidence of increased Id-1 expression and its role in cell proliferation in nasopharyngeal carcinoma cells. Mol. Carcinog. 2002; 35,42-49.
    65. Qian J, Zhang XH, Yang JB, et al. Cloning and Expression Analysis of a Novel Gene, UBAP1, Possibly Involved in Ubiquitin Pathway. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2001 ;33(2):147-152
    66. Qian J, Yang J, Zhang X, et al. Isolation and characterization of a novel cDNA, UBAP 1, derived from the tumor suppressor locus in human chromosome 9p21-22. J Cancer Res Clin Oncol. 2001 Oct; 127(10): 613-8.
    67. Xiao B, Fan S, Zeng Z, et al. Purification of novel UBAP1 protein and its decreased expression on nasopharyngeal carcinoma tissue microarray. Protein Expr Purif. 2005 Sep 26; [Epub ahead of print]
    68. Raab-Traub, N. Epstein-barr virus in the pathogenesis of NPC. Semin. Cancer Biol. 2002; 12, 431-441.
    69. Burgos JS. Involvement of the Epstein-Barr virus in the nasopharyngeal carcinoma pathogenesis. Med Oncol. 2005; 22(2): 113-21.
    70. Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004 Oct; 4(10): 757-68. Review.
    71. Busson P, Keryer C, Ooka T, et al. EBV-associated nasopharyngeal carcinomas: from epidemiology to virus-targeting strategies. Trends Microbiol. 2004 Aug; 12(8): 356-60. Review.
    72. Zhou HD, Li GY, Yang YX, et al. Intracellular co-localization of SPLUNC1 protein with nanobacteria in nasopharyngeal carcinoma epithelia HNE1 cells depended on the bactericidal permeability increasing protein domain. Mol Immunol. 2006 Apr; 43(11): 1864-71. Epub 2005 Dec 20.
    73. Zhou HD, Fan SQ, Zhao J, et al. Tissue distribution of the secretory protein, SPLUNC1, in the human fetus. Histochem Cell Biol. 2006 Mar; 125(3): 315-24. Epub 2005 Sep 30.
    74.周厚德,李小玲,李桂源。新的天然免疫保护分子——PLUNC家族蛋白。生物化学与生物物理进展,2004;9:1-5
    75. Ghafouri B, Kihlstrom E, Tagesson C, et al. PLUNC in human nasal lavage fluid: multiple isoforms that bind to lipopolysaccharide. Biochim Biophys Acta. 2004 Jun 1; 1699(1-2): 57-63
    76. Hancock R. E. W, Patrzykat A. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Current Drag Targets-Infectious Disorders, 2002, 2, 79-83
    77.李桂源。鼻咽癌患者外周血淋巴细胞染色体对化学致癌物的敏感性研究。遗传与疾病1986;(2):76-78
    78.李桂源。用大鼠和小鼠肝微粒体酶系活化二亚硝基哌嗪以诱发姐妹染色单体交换。湖南医学院学报 1983;12(4):373-378
    79. Xinmin Nie, Bicheng Zhang, Xiaoling Li, et al. Cloning, expression, and mutation analysis of NOR1, a novel human gene down-regulated in HNEl nasopharyngeal carcinoma cell line. J Cancer Res Clin Oncol, 2003; 129 (7): 410-414
    80. Nie XM, Xiao BY, Li XL, et al. Expression of a new cloned nitroreductase gene NORl and purification of expressed product. Ai Zheng 2003 Feb; 22: 136-9
    81.NIE Xin-min, ZHOU Ming, GUI Rong, et al. EXPRESSION OF NITROREDUCTASE GENE NORl IN E.Coli AND THE PREPARATION OF ANTISERUM. CHINESE JOURNAL OF CANCER RESEARCH. 2004 Vol.16 No.1 P.11-14
    82. Felmer RN, Clark JA. The gene suicide system Ntr/CB1954 causes ablation of differentiated 3T3L1 adipocytes by apoptosis. Biol Res. 2004;37(3):449-60.
    83. Green NK, Young DJ, Neoptolemos JP, et al. Sensitization of colorectal and pancreatic cancer cell lines to the prodrug 5(aziridin l-yl)-2, 4'dinitrobenzamide (CB1954) by retroviral transduction and expression of the E. coli nitroreductase gene. Cancer Gene Ther, 1997;4:229-238
    84. Bridgewater JA, Knox RJ, Pitts JD, et al. The bystander effect of the nitroreductase/CB1954 enzyme/ prodrug system is due to a cellpermeable metabolite. Hum Gene Ther, 1997;8:709-717
    1. Manel Esteller. (2006) The necessity of a human epigenome project. Carcinogenesis 27 (6) 1121-1125.
    2. Garber, K. (2006) Momentum building for human epigenome project. J. Natl Cancer Inst. 98 (2): 84-86.
    3. Rauscher, F., Ⅲ (2005) It is time for a Human Epigenome Project. Cancer Res. 65 (24): 11229.
    4. Jones, P.A. and Martienssen, R. (2005) A blueprint for a Human Epigenome Project: the AACR Human Epigenome Workshop. Cancer Res. 65 (24): 11241-6.
    5. Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev. 16 (1): 6-21.
    6. Takai, D. & Jones, P. A. (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl Acad. Sci. USA 99 (6): 3740-5.
    7. Jones, P. A. & Laird, P. W. (1999) Cancer epigenetics comes of age. Nature Genet. 21 (2): 163-7.
    8. Feinberg, A. P. & Vogelstein, B. (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301(5895): 89-92.
    9. Feinberg, A. P., Gehrke, C. W., Kuo, K. C. et al. (1988) Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res. 48 (5): 1159-61.
    10. Baylin, S. B. & Herman, J. G. (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 16 (4): 168-74.
    11. Herman, J.G, Baylin, S.B. (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349, (21)2042-54.
    12. Fraga, M.F. and Esteller, M. (2005) Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle 4(10): 1377-81.
    13. Wei WI, Sham JS. Nasopharyngeal carcinoma. Lancet. (2005) 365(9476): 2041-54. Review.
    14. Lo KW, To KF, Huang DP. (2004) Focus on nasopharyngeal carcinoma. Cancer Cell. 5(5): 423-8.
    15. Chan ATC, Teo PML, Johnson PJ: Nasopharyngeal carcinoma. Ann Oncol 2002, 13 (7): 1007-15.
    16. Yu MC, Yuan JM: Epidemiology ofnasopharyngeal carcinoma. Semin Cancer Biol 2002,12: 421-429.
    
    17. Feil R. (2006) Environmental and nutritional effects on the epigenetic regulation of genes. Mutat Res. 600(l-2):46-57.
    
    18. Peng D, Ren CP, Yi HM, et al. (2006) Genetic and epigenetic alterations of DLC-1, a candidate tumor suppressor gene, in nasopharyngeal carcinoma. Acta Biochim Biophys Sin (Shanghai). 38(5):349-55.
    19. Seng TJ, Low JS, Li H, et al. The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation. Oncogene. 2006 Jul 24; [Epub ahead of print]
    20. Ying J, Li H, Seng TJ, et al. (2006) Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene. 25(7): 1070-80
    21. Pan ZG, Kashuba VI, Liu XQ, et al. (2005) High frequency somatic mutations in RASSF1A in nasopharyngeal carcinoma. Cancer Biol Ther. 4(10):1116-22.
    22. Chow LS, Lo KW, Kwong J, To KF, Tsang KS, Lam CW, Dammann R, Huang DP. (2004) RASSF1 A is a target tumor suppressor from 3p21.3 in nasopharyngeal carcinoma. Int J Cancer. 109(6):839-47
    23. Zhou L, Jiang W, Ren C, et al. (2005) Frequent hypermethylation of RASSF1A and TSLC1, and high viral load of Epstein-Barr Virus DNA in nasopharyngeal carcinoma and matched tumor-adjacent tissues.Neoplasia. 7(9):809-15.
    24. Qiu GH, Tan LK, Loh KS, et al. (2004) The candidate tumor suppressor gene BLU, located at the commonly deleted region 3p21.3, is an E2F-regulated, stress-responsive gene and inactivated by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma. Oncogene. 23(27):4793-806.
    25. Kwong J, Lo KW, Chow LS, et al. (2005) Epigenetic silencing of cellular retinol-binding proteins in nasopharyngeal carcinoma. Neoplasia. 7(l):67-74.
    26. Kwong J, Lo KW, Chow LS, et al. (2005) Silencing of the retinoid response gene TIG1 by promoter hypermethylation in nasopharyngeal carcinoma. Int J Cancer. 113(3):386-92.
    27. 27. Thompson MP, Kurzrock R. (2004 ) Epstein-Barr virus and cancer. Clin Cancer Res. 10(3):803-21. Review
    28. Tsai CN, Tsai CL, Tse KP, et al. (2002) The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases. Proc Natl Acad Sci USA. 99(15): 10084-9.
    29. Li H, Minarovits J. (2003) Host cell-dependent expression of latent Epstein-Barr virus genomes: regulation by DNA methylation. Adv Cancer Res. 89: 133-56.
    30. Lung HL, Cheng Y, Kumaran MK, et al. (2004) Fine mapping of the 11q22-23 tumor suppressive region and involvement of TSLC1 in nasopharyngeal carcinoma. Int J Cancer. 112(4): 628-35.
    31. Hui AB, Lo KW, Kwong J, et al. (2003) Epigenetic inactivation of TSLC1 gene in nasopharyngeal carcinoma. Mol Carcinog. 38(4): 170-8
    32. Xiang YN, Zhang WY. (2005) The clinical significance of p16 protein non-expression and p16 gene inactivation by deletions and hypermethylation in nasopharyngeal carcinoma. Zhonghua Bing Li Xue Za Zhi. 34(6): 358-61.
    33. Cheung HW, Ching YP, Nicholls JM, et al. (2005) Epigenetic inactivation of CHFR in nasopharyngeal carcinoma through promoter methylation. Mol Carcinog. 43(4): 237-45.
    34. Liu XQ, Chen HK, Zhang XS, et al. (2003) Alterations of BLU, a candidate tumor suppressor gene on chromosome 3p21.3, in human nasopharyngeal carcinoma. Int J Cancer. 106(1): 60-5.
    35. Strahl, B.D. & Allis, C.D. (2000) The language of covalent histone modifications. Nature 403 (6 765): 41-45.
    36. Turner, B.M. (2002) Cellular memory and the histone code. Cell 111, 285-291.
    37. Luger, K., Mader, A.W., Richmond, R.K., et al. (1997) Crystal structure of the nucleosome core particle at 2.8 A x resolution. Nature 389 (6648): 251-260.
    38. Cong P, Jie Z, Ying LH, et al. (2006) The transcriptional regulation role of BRD7 by binding to acetylated histone through bromodomain. J Cell Biochem. 97(4): 882-92.
    39. Zhou J, Ma J, Zhang BC, et al. (2004) BRD7, a novel bromodomain gene, inhibits G1-S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathways. J Cell Physiol. 200(1): 89-98
    40. Zhang A, Yeung PL, Li CW, et al. (2004) Identification of a novel family of ankyrin repeats containing cofactors for p160 nuclear receptor coactivators. J Biol Chem. 279(32): 33799-805
    41.Nishikawa J, Kis LL, Liu A, et al. (2004) Upregulation of LMP1 expression by histone deacetylase inhibitors in an EBV carrying NPC cell line. Virus Genes. 28(1):121-8.
    
    42. Lusser, A. & Kadonaga, J.T. (2003) Chromatin remodeling by ATP-dependent molecular machines. Bioessays 25 (12):1192-200.
    
    43. Turner, B.M. (1993) Decoding the nucleosome. Cell 75 (l):5-8.
    
    44. Khochbin, S. (2001) Histone H1 diversity: bridging regulatory signals to linker histone function. Gene 271(1):1-12.
    
    45. Mattick, J.S. (2001) Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep.2(11):986-91.
    
    46. Mattick, J.S. (2003) Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays. 25 (10):930-9.
    
    47. Yang M, Li Y, Padgett RW. (2005) MicroRNAs: Small regulators with a big impact. Cytokine Growth Factor Rev. 16(4-5):387-93.
    
    48. Yelin, R., Dahary, D., Sorek, R., et al. (2003) Widespread occurrence of antisense transcription in the human genome. Nat. Biotechnol. 21 (4):379-86.
    
    49. Mattick, J.S. (2004) RNA regulation: a new genetics? Nat. Rev. Genet. 5 (4): 316-23.
    
    50. Calin GA, Croce CM. (2006) MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66(15):7390-4.
    
    51. Kiss, A.M., Jady, B.E., Bertrand, et al. (2004) Human box H/ACA pseudouridylation guide RNA machinery. Mol. Cell. Biol. 24 (13): 5797-5807.
    
    52. Esquela-Kerscher A, Slack FJ. (2006) Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6(4):259-69
    
    53. Calin, G. A. et al. (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101 (9):2999-3004.
    
    54. Calin, G. A. et al. (2002) Frequent deletions and downregulation of micro-RNA genes miR15 and miR16 at 13ql4 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99 (24): 15524-9.
    
    55. Medicine, Stanford, Calif. He L, Thomson JM, Hemann MT, et al. (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828-33.
    
    56. Cimmino, A. et al. (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA 102 (39):13944-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700