用户名: 密码: 验证码:
自锚式悬索桥结构可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自锚式悬索桥以其造型美观、经济、适应性强等优点,越来越受到工程界的青睐,在国内外,已有多座自锚式悬索桥建成或建造中。随着自锚式悬索桥的迅速发展和被大量设计采用,人们已对自锚式悬索桥的设计理论、静力和动力特性方面以及极限跨度、极限承载力、施工控制等方面都进行深入的研究和探讨。以上这些关于自锚式悬索桥的分析研究大都是在确定性分析的基础之上。然而,确定性分析方法在许多方面难于像非确定性分析方法那样可以更深层次地揭示结构参数的变化对结构响应的影响程度。因此,引入可靠性理论,从概率论的角度出发研究探讨结构的各种参数(变量)对自锚式悬索桥的静力、动力响应的影响规律,进而研究各随机变量对自锚式悬索桥可靠度的影响程度,找到对可靠度影响较大的影响因素,为合理设计提供理论依据。本文的具体研究内容如下:
     (1)对于大型复杂桥梁结构的极限功能函数不能用显式表达的可靠度评估问题,在已有的响应面法基础上,采取了一种自动调整样本点取值区间策略的改进响应面法求解真实极限状态曲面。通过算例表明,文中的改进响应面法可以提高计算效率与计算精度,在大型复杂的工程结构可靠度评估中尤为适用。最后,将MATLAB软件与结构分析软件ANSYS相结合,编制了可用于大型复杂桥梁结构在正常使用极限下的可靠度评估程序。
     (2)考虑材料、几何尺寸、外部荷载等的变异,应用响应面法对自锚式悬索桥结构进行了随机静力分析。研究了各种随机因素变异时自锚式悬索桥结构响应的变化规律。使设计者清楚地了解各种随机因素对自锚式悬索桥结构响应的影响程度,为合理设计提供理论依据。最后应用自行编制的结构在正常使用极限状态下的可靠度评估程序对一座自锚式悬索桥加劲梁最大挠度的可靠度进行了评估。
     (3)对自锚式悬索桥在承载能力极限状态下的系统可靠度进行了评估。应用全局b约界法搜索自锚式悬索桥的主要失效模式,采用微分等价递归算法确定自锚式悬索桥各个失效历程中阶段失效模式的等价安全裕量方程。通过计算验证了全局b约界法是识别系统主要失效模式的高效、精确的算法。最后,通过Ditlevsen上、下界理论确定了自锚式悬索桥结构的系统失效概率界限值。
     (4)将虚拟激励法引入自锚式悬索桥结构抗震动力可靠度分析中,克服了以往随机振动计算方法计算量庞大的缺点,使随机振动理论应用于大型复杂桥梁结构的动力可靠度分析中成为可能。系统地研究了混凝土自锚式悬索桥在随机地震荷载作用下的主要抗震子系统中的各墩、塔控制截面的抗震动力可靠度。重点考察了地震动的空间效应、非平稳性以及阻尼比对各墩、塔控制截面的抗震动力可靠度的影响。
     (5)对于加劲梁以混凝土为材料的自锚式悬索桥结构,不可避免要面临钢筋混凝土结构所共有的耐久性问题。文中在已有钢筋混凝土结构耐久性研究成果基础之上,尝试性采用一种基于等效抗力时变可靠度的耐久性设计方法。文中所采用的耐久性设计方法比传统设计方法增加了计算在使用期内时变可靠度指标一项,将其作为结构构件的截面配筋、混凝土强度等级以及混凝土保护层厚度的验算。
At present, self-anchored suspension bridges are greatly appreciated for their aestheticappearances, low costs and high adaptabilities. Many self-anchored suspension bridges havebeen constructed or are in construction now. This kind of bridge has its own features, which isgreatly different from the conventional suspension bridge both in construction and inmechanical performances. No matter in the theoretical research on static and dynamicmechanical performances or in the supervision of design and construction, the research on theconventional suspension bridges has been greatly developed with a large number of relatedpapers. With the rapid development and wide adoption of the self-anchored suspension bridge,the research on its design theory, static and dynamic mechanical performances, limit span,ultimate carrying capability and construction control has been carried out deeply. Based onthe structural reliability theory and combining engineering practice, this doctoral paper isfocused on the evaluation of reliability for self-anchored suspension bridges under servicelimit states and ultimate limit states, analyzing the dynamic reliability under seismicexcitations. Moreover, the durability design for concrete self-anchored suspension bridges isalso discussed in the paper. The main research involves the following:
     (1) As for the problem of reliability evaluation that the limit state function of the large,complex bridge structures can not be expressed explicitly, an improved response surfacemethod (IRSM) is proposed based on the existing response surface method (RSM). It issuggested that the IRSM is highly efficient. And it can simulate the real limit state curvedsurface so that it will be helpful to improve the convergence of the existing RSM. At last,based on the large commercial software MATLAB and combining the general structuralanalysis software ANSYS with it, the program is established for any complex structuralreliability analysis under service limit states.
     (2) The stochastic static analysis method for the self-anchored suspension bridges isestablished through applying the RSM, in which the variation of material, geometricdimension and external loads are taken into account. The response law is studied for theself-anchored suspension bridges with variation of the diversified stochastic factors. Then it iseasily seen how the diversified stochastic factors affect the self-anchored suspension bridges.The reliability for self-anchored suspension bridge is evaluated under service limit state bythe IRSM.
     (3) The system reliability method is established for the self-anchored suspension bridgesunder ultimate limit states. The globalβ-unzipping method and the different equivalentrecursion algorithm are adopted to recognize the significant failure models and equivalent limit state functions. The results show that the globalβ-unzipping method is highly efficientand accurate in recognizing the main failure models of structural system. The bond of failureprobability of the self-anchored suspension bridge system is calculated by the Ditlevsen'stheory.
     (4) The pseudo excitation method is introduced in the structural dynamic reliabilityanalysis, which overcomes the shortcoming of time consuming of the random vibrationapproach and makes it possible to apply the random vibration approach for large and complexbridge structures. In the paper, the reliability of important structural component, piers andtowers used as resist the seismic action, is analyzied in detail. It is special considered that thespace effect, non-stationary and damping ratio can impact on the dynamic reliability.
     (5) The girder of the suspension bridge is made of concrete material, which makes itinevitable to face the common durability problem as the reinforced concrete structures do. Inthis paper, a new equivalent resistance durability design method is introduced based on theexisting durability researches. In the method, calculating the time dependant reliability indexis used as the item to check the reinforcement calculation, concrete grade and cover thicknessare meet the requirement or not.
引文
[1] 李建本,贾军政.自锚式悬索桥发展综述.城市道路与防洪.2005,9(5):50-54.
    [2] 罗福午.19世纪第一悬索桥.布鲁克林桥.建筑技术,2001,32(10):690-691.
    [3] 谢红兵.韩国桥梁建设的一个顶峰.国外桥梁,2000,1:6.
    [4] 张元凯,肖汝诚,金成棣.自锚式悬索桥设计.桥梁建设,2002,5:30-32.
    [5] 张元凯,肖汝诚,金成棣.自锚式悬索桥概念设计.公路,2002,11:46-49.
    [6] 颜娟译.自锚式悬索桥.国外桥梁,2002,1:19-22.
    [7] 楼庄鸿译.自锚式悬索桥.中外公路,2002,6:49-51.
    [8] 雷俊卿,郑明珠,徐恭义.悬索桥设计.北京:人民交通出版社,2002.1.
    [9] 楼庄鸿.近年来悬索桥发展的若干趋势.公路交通科技,1999,16(3):35-39.
    [10] 唐寰澄.世界长大桥梁技术和艺术的发展趋向.广东公路交通科技,2000,66:73-79.
    [11] 李明元,常兴文,王新春.世界最大跨径的悬索桥—日本珍珠大桥.河南交通科技,2000,20(5):22-23.
    [12] 严国敏译.韩国永宗悬索桥.国外公路,1998,12:16-18.
    [13] Cho C Y, Lee S W, Park S Y, Lee M. Korea. Yongjong Self-anchored Suspension Bridge. (IABSE) Structural Engineering International SE1. 2001, 11 (1).
    [14] Gil H, Cho C Y. Korea. Yongjong Grand Suspension Bridge.(IABSE) Structural Engineering International SEI, 1998, 8(2).
    [15] 高小云译.日本Konohana桥.国外公路,1993,1:30-31.
    [16] 林荫岳译.世界上第一座自锚体系斜吊杆悬索桥一日本此花大桥.国外桥梁,1993,1:1-4.
    [17] Kamei M, Maruyama T, Tanaka H. Japan. Konohana Bridge. Japan (IABSE) Structural Engineering International SEI, 1992, 2(1).
    [18] John A. Ochsendorf. Self-Anchored Suspension Bridges. Journal of Bridge Engineering, 1999, 4(3): 151-156.
    [19] Klein J F.瑞士日内瓦湖上的新型悬索桥方案.哥本哈根IABSE学术会议论文集,1996.
    [20] 楼庄鸿,严文彪.自锚式悬索桥,中国公路学会桥梁和结构工程学会2002年全国桥梁学术会议论文集,2002.10.
    [21] 石磊,张哲,刘春城.混凝土自锚式悬索桥设计及其力学性能分析.大连理工大学学报,2003,43(2):202-206.
    [22] 张哲,窦鹏,石磊等.混凝土自锚式悬索桥的发展综述.世界桥梁,2003,1:1-4.
    [23] 张哲,张洪金,邱文亮.混凝土自锚式悬索桥模型试验研究.大连理工大学学报,2005,45(4):575-579.
    [24] 义乌江大桥施工图设计.杭州市政设计院,2002.
    [25] Leonhardt F. Past, present and furore of cable-stayed bridges, 1991.
    [26] Virola J.世界和芬兰的著名桥梁,1998.
    [27] Gimsing N J.跨越丹麦大贝尔特的大跨缆索承重桥设计—25年的经验和发展,1996.
    [28] Kwon S D, Chang S P, Kim Y S, et al. Aerodynamic stability of self-anchored double deck suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54(55): 25-34.
    [29] Kim Ho-Kyung, Lee Myeong-Jae, Chang Sung-Pil. Non-linear shape-finding analysis of a self-anchored suspension bridge. Engineering Structures, 2002, 24(12): 1547-1559.
    [30] John A, Ochsendor Divid, Billington P. Self-Anchored Suspension Bridges. Journal of Bridge Engineering, 1999, 4(3): 155-155.
    [31] 石磊.混凝土自锚式悬索桥设计理论研究:(博士学位论文).大连:大连理工大学,2003.
    [32] 刘春城.混凝土自锚式悬索桥三维地震反应研究:(博士学位论文).大连:大连理工大学,2003.
    [33] 邱文亮.自锚式悬索桥非线性分析与试验研究:(博士学位论文).大连:大连理工大学,2004.
    [34] 贡金鑫,仲伟秋,赵国藩.工程结构可靠性基本理论的发展与应用(一).建筑结构学报,2002,23(4):2-9.
    [35] 贡金鑫,仲伟秋,赵国藩.工程结构可靠性基本理论的发展与应用(二).建筑结构学报,2002,23(5):2-10.
    [36] 贡金鑫,仲伟秋,赵国藩.工程结构可靠性基本理论的发展与应用(三).建筑结构学报,2002,23(6):2-9.
    [37] 贡金鑫,赵国藩.国外结构可靠性理论的发展与应用.土木工程学报,2005,38(2):1-8.
    [38] 赵国藩,贡金鑫,赵尚传.我国土木工程结构可靠性研究的一些进展.大连理工大学学报,2000,40(3):253-258.
    [39] 赵国藩.工程结构可靠性理论与应用.大连:大连理工大学出版社,1996.
    [40] 赵国藩,金伟良,贡金鑫.结构可靠度理论.北京:中国建筑工业出版社,2000.
    [41] Freudenthal A M. The safety of structures Transactions. ASCE, 1947, 112: 125-180.
    [42] Lind N C. Consistent partial safety factors. Journal of the Structural Division, ASCE, 1971, 97(ST6): 1651-1659.
    [43] Conell C A. A probability based structural code. Journal of the American Concrete Institute, 1969, 66(12): 974-985.
    [44] Hasofer A. M, Lind N C. Exact and invariant second-moment code format. Journal of the engineering Mechanics Division, ASCE, 1974, 100(EM1): 111-121.
    [45] Rackwitz R, Fiessler B. Structural reliability under combined random load sequences. Computer & Structures, 1978, 9: 489-494.
    [46] Breitung K. Asymptotic approximation for multi-normal integrals. Journal of Engineering Mechanics, 1984310(3): 357-366.
    [47] Der Kiuzeghian A, Lin H Z, Hwang S J. Second-order reliability approximations. Journal of Engineering Mechanics, 1987, 113(8): 1208-1225.
    [48] Tvedt L. Distribution of quadratic forms in the normal space-application to structural reliability. Journal of Engineering Mechanics, 1990, 116(6): 1183-1197.
    [49] Der Kiureghian A, De Stefano M. Efficient algorithm for second-order reliability analysis. Journal of Engineering Mechanics, 1991, 117(12): 2904-2923.
    [50] Cai G Q, Elishakoff I. Second-order reliability analysis. Structural Safety. 1994, 14: 267-276.
    [51] Bjerager P. Probability integration by directional simulation. Journal of Engineering Mechanics, 1988,114(8):1285-1302.
    [52] 赵国藩,贡金鑫.结构可靠度分析中的最小方差抽样.上海力学,1996,17(3):245-252.
    [53] 金伟良.结构可靠度数值模拟的新方法.建筑结构学报,1996,17(3):63-68.
    [54] 贡金鑫,赵国藩.结构体系可靠度分析中的最小方差抽样.工程力学,1997,14(3):29-35.
    [55] Melchers R E. Importance sampling in structural systems. Structural Safety, 1989, 6(1):3-10.
    [56] Bucher C G. Adaptive sampling-an iterative fast Monte-Carlo procedure. Structural Safety, 1988, 5(2): 119-126.
    [57] 贡金鑫,何世钦,赵国藩.结构可靠度模拟的方向重要抽样法.计算力学学报,2003,20(6):655-660.
    [58] 张建仁,许福友.计算结构可靠指标的子域抽样法.土木工程学报.2003,36(12):39-43.
    [59] Ayyub B M, Chia C Y. Generalized conditional expectation for structural reliability assessment. Structural Safety, 1992, 11(2): 131-146.
    [60] Chia C Y, Ayyub B M: Conditional sampling for simulation-based structural reliability assessment. The 6th International Conference on Structural Safety and Reliability, ICOSSAR'93, Schueller, Shinozuka & Yao (eds), 1994,11(2): 1233-1240.
    [61] Bucher C G and Schueller G I. Systems' reliability revisited. 6th International Conference on Structural Safety and Reliability, ICOSSAR'93, Schueller, Shinozuka & Yao (eds), 1994, 1227-1232.
    [62] Wong F S. Uncertainties in dynamic soil-structure interaction. Journal of Engineering Mechanics, 1984, 110(2): 308-324.
    [63] Wong F S. Slope reliability and response surface method. Journal of Geotechnical Engineering Mechanics, 1985, 111(1): 32-53.
    [64] Bucher C G, Bourgund U. A fast and efficient response surface approach for structural reliability problems. Structural Safety, 1990, 7(1): 57-66.
    [65] Faravelli L. Response surface approach for reliability analysis. Journal of Structural Engineering, 1989, 115(12): 2763-2781.
    [66] Turk G M, Ramirez R, Corotis R. Structural reliability analysis of non-linear systems response-surface approach for reliability analysis. Journal of Structural Engineering, 1989, 115(12): 2763-2781.
    [67] Rajashekhar M R, Ellingwood B R. A new look at the response surface approach for reliability. Structural Safety, 1993, 12(3): 205-220.
    [68] Liu W. K, Moses F: A sequential response surface method and its application in the analysis of aircraft structural system. Structural Safety, 1994, 16(1): 39-46.
    [69] 佟晓利,赵国藩.一种与结构可靠度几何法相结合的响应面法.土木工程学报,1997,30(4):51-57.
    [70] Kim S H, Na S W. Response surface method using vector projected sampling points. Structural Safety, 1997, 19(1): 3-19.
    [71] Zhao Y G, Ono T. System reliability evaluation of ductile frame structures. Journal of Structural Engineering, 1998, 124(6): 678-685.
    [72] Hopperstad O S, Leira B J, Remseth S, Tromborg E. Reliability-based analysis of a stretch-bending process for aluminum extrusions. Computers & structures, 1999, 71(1): 63-75.
    [73] Conell C A. Bounds on the reliability of structural system. Journal of the Structural Division, ASCE, 1967, 93(ST1).
    [74] Ang A H-S, Amin M. Reliability of structures and structural systems. Journal Engineering Mechanics Division, ASCE, 1968, 94(EM2): 671-691.
    [75] Ang A H-S, Abdelnour J, Chaker A A. Analysis of activity networks under uncertainty. Journal Engineering Mechanics Division, ASCE,1975, 101(EM4): 373-387.
    [76] Ditlevsen O. Narrow reliability bounds for structural systems. Journal Engineering Mechanics, ASCE, 1979, 7(4): 453-472.
    [77] 董聪.现代结构系统可靠性理论与应用.北京:科学出版社,2001.
    [78] Zimmerman J J, Ellis J H, Corotis R B. Stochastic optimization models for structural reliability analysis. Journal of Structural Engineering, 1993, 119(1): 223-239.
    [79] 董聪.结构系统可靠性理论:进展与回顾.工程力学,2001,18(4):79-89.
    [80] Stevenson J, Moses F. Reliability analysis of frame structures. Journal of Structural Division, ASCE, 1970, 96(ST11): 2409-2427.
    [81] Moses F. New directions and research needs in system reliability research. Structural Safety, 1990, 7: 93-100.
    [82] Feng Y S. Enumerating significant failure modes of a structural system by using criterion methods. Computers and Structures, 1988, 30(5): 1153-1157.
    [83] 冯元生,董聪.枚举结构主要失效模式的一种方法.航空学报,1991,12(9):537-541.
    [84] 董聪,杨庆雄.结构系统静强度可靠性分析理论与算法.强度与环境,1993,2:1-8.
    [85] Murotsu Y, Okada H, Taguchi K, et al. Automatic generation of stochastically dominant failure modes of frame structures. Structural Safety, 1984, 28(2): 17-25.
    [86] Melchers R E, Tang L K. Dominant failure modes in stochastic structural systems. Structural Safety, 1984,2: 127-143.
    [87] Tang L K, Melchers R E. Dominant Mechanisms in stochastic plastic Reliability Engineering, 1987, 18: 101-115.
    [88] Thoft-Christensen P, Murotsu Y. Application of structural systems reliability theory. 1986 Springer-Verlag, Berlin.
    [89] Gorman M R. Automatic generation of collapse mode equations. Journal of the Structural Division, ASCE, 1981, 107(ST7): 1350-1354.
    [90] Nafday A M, Corotis R B, Cohon J L. Filure mode identification for structural frames. Journal of Structural Engineering, 1987, 113(7): 1415-1432.
    [91] Simoes L M C. Stochastically dominant modes of frames by mathematical programming. Journal of Structural Engineering, 1990, 116(4): 1041-1059.
    [92] Rashedi R, Moses F. Identification of failure modes in system reliability. Journal of Structural Engineering, 1988, 114(2): 292-313.
    [93] Zhang Y C. Rigidity reliability analysis of structural systems. Computers & Structures, 1993, 48(3):505-510.
    [94] Chowdhury M R, Wang D, Haldar A. Reliability assessment of pile-supported structural systems. Journal of Structural Engineering, 1998, 124(1): 80-88.
    [95] Thoft-Christensen P, Murotsu Y. Application of structural systems reliability theory. Spring-Vedag, Berlin, Heidelberg, New York, Tokyo, 1986.
    [96] 蔡迎建,孙焕纯.结构失效模式的快速识别方法.大连理工大学学报,1999,39(4):489-493.
    [97] 董聪.结构系统可靠性分析与优化:(硕士学位论文).西安:西北工业大学大学,1990.
    [98] Grimmett M J, Schueller G I. Benchmark study on methods to determine collapse failure probabilities of redundant structures. Structural Safety, 1982, 1: 93-106.
    [99] Feng Y S. A method for computing system reliability with high accuracy. Computers & Structures, 1989, 33(1): 1-5.
    [100] 赵岩.桥梁抗震的线性/非线性分析方法研究:(博士学位论文).大连:大连理工大学,2003.
    [101] 李桂青,曹宏,李秋胜等.结构动力可靠性理论及其应用,北京:地震出版社,1993.
    [102] 李桂青,李秋胜.工程结构时变可靠度理论及其应用.北京:科学出版社.2001.
    [103] 王光远,程耿东,邵卓民等.抗震结构的最优设防烈度与可靠度,北京:科学出版社,1999.
    [104] Rice S O. Mathematical analysis of random noise. Bell System Technical Journal, 1944, 23: 282-332.
    [105] Siegert A J F. On the first-passage probability problem. Physical Reviews, 1951, 81: 617-623.
    [106] Coleman J J. Reliability of aircraft structures in resisting chance failure operations. Res., 1959, 639-645.
    [107] Cramer H, Leadbetter M R. Stationary and related stochastic process. John Wiley and Sons inc., 1967
    [108] Yang J N, Shinozuka M. On the first excursion probability in stationary narrow band random vibration. Journal of Applied Mechanics, 1971, 38:1017-1022.
    [109] Kawano K, Venkataramana K. Dynamic response and reliability analysis of large offshore structures. Computer Methods in Applied Mechanics and Engineering, 1999, 168:255-272.
    [110] Wen Y K, Foutch D A, Eliopoulos et al. Reliability of current steel buiding designs for seismic loads. Lecture Notes in Engineering, 1990, 61: 338-347.
    [111] Ghosn M Chen G. Reliability model for bridge columns under seismic loads. Probabilistic Mechanics and Structural and Geotechnical reliability, ASCE, 1992:168-171.
    [112] Fu G K, Moosa A G. Performance based reliability assessment and calibration for seismic highway bridge design. Structures Congress-Proceedings, ASCE, 1999: 247-250.
    [113] 管昌生.随机时变结构动力可靠度分析的Markov模型.武汉工业大学学报,2002,22(2):48-50.
    [114] 赵雷,陈虬,路湛沁.考虑参数随机性的钢筋混凝土结构非线性地震可靠度分析,建筑结构学报,1999,20(3):23-24.
    [115] 庄一舟,金伟良等.海洋导管架平台抗震可靠性分析方法,海洋学报,1999,21(5):129-136.
    [116] 李国强.基于概率可靠度进行结构抗震设计的若干理论问题.建筑结构学报,2000,21(1):12-20.
    [117] 门玉明,黄义.土层随机地震反应的动力可靠度计算.西安工程学院学报,2002,24(1):43-48.
    [118] 方同.工程随机振动.北京:国防科学出版社,1995.
    [119] 欧进萍,王光远.结构随机振动.北京:高等教育出版社,1998.
    [120] 俞载道,曹国敖.随机振动理论及其应用.上海:同济大学出版社,1988.
    [121] 曹宏,李秋胜,李芝艳.随机结构动力反应和可靠性分析.应用数学和力学,1993,14(10):
    [122] 林家浩,张亚辉,赵岩.大跨度结构抗震分析方法及近期进展.力学进展,2001,31(3):350-360.
    [123] 张亚辉,林家浩.多点非均匀调制演变随机激励下结构地震响应.力学学报,2001,33(1):87-95.
    [124] 陈厚群,梁爱虎,杜修力.拱坝非均匀多点输入的抗震可靠度分析.城市与工程减灾基础研究论文集,北京:科学出版社,1995.
    [125] Lin J H. A fast CQC algorithm of PSD matrices for random seismic responses. Computers and structures, 1992, 44(3): 683-687.
    [126] 李建俊.随机地震响应分析的虚拟激励法:(博士学位论文).大连:大连理工大学,1994.
    [127] 林家浩,张亚辉.随机振动的虚拟激励法.北京:科学出版社,2004.
    [128] 林家浩,李建俊,张文首.结构受多点非平稳随机激励的响应.力学学报,1995,27(5):567-576.
    [129] 贡金鑫,赵国藩.钢筋混凝土结构考虑耐久性的可靠度研究进展.工业建筑,2000,30(11):5-8.
    [130] 李田,刘西拉.混凝土结构耐久性分析与设计.北京:科学出版社,1999.
    [131] 赵国藩,金伟良,贡金鑫著.结构可靠度理论.北京:中国建筑工业出版社,2000.
    [132] 吴海军,陈艾荣.桥梁结构耐久性设计方法研究.中国公路学报,2004,17(3):57-61.
    [133] 刘宁,吕泰仁.随机有限元及其工程应用.力学进展,1995,25(1):114-126.
    [134] 秦权.随机有限元及其进展,Ⅱ可靠度随机有限元及随机有限元的应用.工程力学,1995,12(1):1-9.
    [135] 赵雷,陈虬.随机有限元动力分析方法的研究进展.力学进展,1999,29(1):9-18.
    [136] 董聪,刘西拉.非线性结构系统可靠性理论及其模拟算法.土木工程学报,1998,31(1):33-43.
    [137] Bjerager P. Probability integration by directional simulation. Journal of Engineering Mechanics, 1988, 114(8): 1285-1302.
    [138] Melchers R E. Importance sampling in structural systems. Structural Safety, 1989, 6(1): 3-10.
    [139] Ayyub B M, Chia C Y. Generalized conditional expectation for structural reliability assessment. Structural Safety, 1992, 11(2): 131-146.
    [140] Chia C Y, Ayyub B M.: Conditional sampling for simulation-based structural reliability assessment. 6th International Conference on Structural Safety and Reliability, ICOSSAR'93, Schu~ller, Shinozuka & Yao (eds), 1994,11(2): 1233-1240.
    [141] Das P K, Zheng Y.: Cumulative formation of response surface and its use in reliability analysis. Probabilistic Engineering Mechanics, 2000, 15(4): 309-315.
    [142] 贡金鑫.工程结构可靠度计算方法.大连:大连理工大学出版社,2003.
    [143] 刘春华,秦权.材料变异时大跨悬索桥的静力分析.清华大学学报,1997,37(6):91-94.
    [144] 陈铁冰.斜拉桥几何、材料非线性静力及其可靠度评估:(博士学位论文).上海:同济大学,2000.
    [145] 石磊,张哲,刘春城.大跨度悬索桥非线性随机静力分析.大连理工大学学报,2003,43(2):202-206.
    [146] 林道锦,秦权.一座现有拱桥面内失稳的可靠度随机有限元分析.工程力学,2005,22(6):122-126.
    [147] 龚尧南,钱纯.非线性随机过程的有限元分析.计算力学学报,1994,11(1):9-18.
    [148] 李扬海,鲍卫刚,郭修武等编著.公路桥梁结构可靠度与概率极限状态设计.北京:人民交通出版社,1997.
    [149] 公路桥涵设计通用规范(JTG D60-2004).北京:人民交通出版社,2004.
    [150] ISO 2394: 1998. General principles on reliability for structures. International Organization for Standardization.
    [151] 姚继涛,赵国藩,浦聿修.二维标准正态联合概率的计算.建筑结构学报,1996,17(4):10-19.
    [152] 范立础.桥梁抗震.上海:同济大学出版社,1997.
    [153] 李国豪.工程结构抗震动力学.上海:上海科学技术出版社,1990.
    [154] 李国豪.桥梁结构稳定与振动.北京:中国铁道出版社,1992.
    [155] 范立础,胡世德,叶爱君.大跨度桥梁抗震设计.北京:人民交通出版社,2001.
    [156] 张相庭,王志培,黄本才。结构振动力学.上海:同济大学出版社,1994.
    [157] Miles J W. On structural fatigue under random loading. Journal of Aeron Science, 1954, 21: 753-768.
    [158] Vanmarcke E H, Lai S S-P. Strong motion duration and RMS amplitude of earthquake records. BSSA, 1980, 7(4): 1293-1307.
    [159] Park Y J, Ang A H-S. A mechanistic seismic damage model for reinforced concrete. Engineering Structures, 1983, 111: 722-739.
    [160] Kiureghian A D, Neuenhofer A. Response spectrum method for multi-support seismic excitaions. Earthquake Engineering and Structural Dynamics, 1992, 21: 713-740.
    [161] Yamamura N, Tanaka H. Response analysis of flexible MDF system for multiple-support seismic excitations. Earthquake Engineering and Structure Dynamic s. 1990, 19: 345-357.
    [162] Loh C H, Lin S G. Directionality and simulation in spatial variation of seismic waves. ASCE, Engineering Structures, 1990, 12: 1-27.
    [163] Dong K K, Wieland M. Application of response spectrum method to a bridge subjected to multiple support excitation. IN: Proc. 9th World Conference. Earthquake Engineering, Tokyo, Japan. 1988, 6: 531-536.
    [164] 刘洪兵.大跨度斜拉桥多支承激励地震响应分析.土木工程学报,2001,34(6):38-44.
    [165] 张亚辉.复杂结构在多种荷载工况下的屈曲及动力分析:(博士学位论文).大连:大连理工大学,1999.6.
    [166] Emesto H Z, Vanmarcke E H. Seismic random vibration analysis of multi-support structural systems. ASCE, Journal of Engineering Mechanics, 1994, 120:1107-1128.
    [167] 冯启民,胡聿贤.空间相关地面运动的数学模型.地震工程与工程振动,1981,1(2):1-8.
    [168] Harichandran R S, Vanmarcke E H.Stochastic variation of earthquake ground motion in space and time.Journal of Engineering Mechanics, ASCE, 1986, 112(2): 154-175.
    [169] Loh C H, Yeh Y T. Spatial variation and stochastic modeling of seismic differential ground movement. Earthquake Engineering and Structure Dynamics, 1988, 16: 583-596.
    [170] 屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型.地震学报,1996,18(1):55-62.
    [171] Housner G W. Characteristic of strong motion earthquakes. Bull. Seism. Soc, Am., 1947,37:17-31.
    [172] Kanai K. Semi-empirical formula for seismic characteristic of the ground. 东京大学震研究所汇所, 1957, 35(2).
    [173] 胡聿贤,周锡元.弹性体系在平稳和非平稳化地面运动下的反应.地震工程研究所报告集,第一集.1962.
    [174] Kaul M K. Stochastic characterization fo earthquake through their response spectrum. Earthquake Engineering and Structure Dynamics, 1978, 6(5): 497-510.
    [175] Lin J H, Zhang Y H, Zhao Y, Zhong W X. Seismic spatial effects of long-span bridges. WCCM-V Vienna, 2002, 2: 335.
    [176] 段树金.日本《混凝土结构耐久性设计准则(试行)》简介.华东水利水电学院学报,2991,(1):56-60.
    [177] Melchers R E. Importance sampling in structural systems. Structural Safety, 1989, 6(1): 3-10.
    [178] Melchers R E. Search-based importance sampling. Structural Safety, 1990, 9(1): 117-128
    [179] Mori Y, Ellingwood B. Time-dependent system reliability analysis by adaptive importance sampling. Structural Safety, 1993, 15(1): 59-73.
    [180] Lind N C. Approximate analysis and economics of structures. Journal of the Structural Division, 1976, 102 (ST6).
    [181] Kanda J, Ahmed K A. Optimum reliability based design loads due to natural hazard. Structural Engineering International, 1997 (2).
    [182] 张苑竹,金伟良.基于可靠度的混凝土梁耐久性优化设计.浙江大学学报,2003,37(3):325-330.
    [183] 屈俊文,张誉.混凝土桥梁结构的耐久性优化设计.中国公路学报,1999,1(12):62-70.
    [184] Kanda J and Shah H. Engineering role in failure cost evaluation for buildings. Structural Safety, 1997, 19 (1): 79-90.
    [185] 中华人民共和国行业标准.公路钢筋混凝土及预应力混凝土桥涵设计规范.北京:交通出版社,2004.
    [186] 牛荻涛.混凝土结构耐久性与寿命预测.北京:科学出版社,2003.
    [187] Thoft-Christensen, P. Life-cycle cost evaluation of concrete bridges. Proceedings Structural Engineers World Congress, San Francisco, July 1998.
    [188] 中国工程院土木水利与建筑工程学部.中国土木工程学会标准.混凝土结构耐久性设计与施工指南.北京:中国建筑工业出版社,2005.
    [189] 中华人民共和国国家标准.公路工程结构可靠度设计统一标准(GB/T50283-1999).北京:中国计划出版社,1999.
    [190] 贡金鑫,赵国藩.考虑抗力随时间变化的结构可靠度分析.建筑结构学报,1998,19(5):43-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700