用户名: 密码: 验证码:
典型金属矿床正断层中继构造控矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正断层中继构造是正断层分段扩展的基本构造形式,是国际上构造地质学研究的新课题。本文在认识正断层分段构造形式及其扩展演化特征的基础上,对伸展环境中的矿床成矿构造受正断层控制的特征进行研究,发现和恢复矿床受中继构造控制的形态特征,探讨了矿床新的构造成矿因素和形成机制,对我国目前大规模矿产资源勘查工作具有重要的理论意义和应用价值。论文取得主要研究成果有:
     (1)通过对锡铁山矿床矿体地质特征的系统研究,提出了锡铁山矿床喷流沉积的原始形态为矿体沉积扇模式这一创新性认识,并分析了矿体沉积扇的形成机制以及与矿床分带性的关系,丰富了喷流沉积矿床成矿构造的研究内容。
     (2)以锡铁山矿床和厂坝矿床为例,研究发现古地堑系中喷流沉积矿床成矿盆地的构造形态由正断层中继构造控制,决定了喷流矿液在盆地内的重力流迁移方式和矿体沉积扇形态,为认识喷流沉积矿床构造控矿规律提供了新的思路。
     (3)以锡铁山矿床为例,探讨了正断层中继构造与喷流沉积矿床喷流口构造的关系,首次提出正断层分段扩展应力场的不均匀控制着喷流口构造。根据正断层扩展的力学性质,喷流口构造应该位于雁行断裂带尾端的地段,是断裂顶端应力集中点的位置,具有最大的应力差,是矿液优先喷出的位置。
     (4)在典型喷流矿床实例研究中,结合正断层中继构造扩展演化特征从运动学角度探讨同生断层多次活动对喷流沉积矿床的影响。具体表现在:a、同生断层扩展导致成矿盆地形态的变化,影响含矿热液的迁移与沉淀;b、断层扩展使断层顶端的位置发生迁移,改变喷流中心位置及分布。
     (5)在典型喷流矿床实例研究中,正断层分段扩展能形成雁列型和对称型不同的中继构造型式,它们制约着地堑系同生正断层带构造盆地中喷流沉积矿床的分布,且不同级别同生断层中继构造有着不同的控矿作用。
     (6)以礼岷、小柳沟矿田为实例,首次结合正断层中继构造特征探讨岩体侵位构造产生的容矿正断层成矿构造特征,重新认识矿体分布形式与成矿规律,建立矿床中继构造控矿型式,并根据正断层分段扩展特征,探讨了正断层中继构造的控矿机制。
The relay structure which is not only common feature of normal fault systems but also reflect normal fault segmentation propagation mechanism, is a new research subject of structure geology. Based on propagation and development feature of relay structure in normal fault, the author has used the mode of relay structure in normal fault to study metallotectonics characteristics of metal deposit controlled by normal fault in extension setting, discovered and recovered the whole structure form of deposit, has discussed new factor and mechanism of metallotectonics, and it has important theory meaning and applied significance to the presently large-scale mineral resource surveying work in our country. The main new views obtained are as follows:
     (1) According to systematic studying geological feature of ore body in Xitieshan deposit, the author proposed that the exhalative sedimentary primitive shape of Xitieshan deposit is "ore body fan", and has analyzed formation mechanism and relation with zonation of deposit of "ore body fan", enriched the content of metallotectonics of exhalative sedimentary deposit.
     (2) Based on study of ore deposits and ore-body structures of two sedimentary-exhalative ore-deposit, Changba and Xitieshan ore deposit, the author found that the structural patterns of metallogenic basin of seafloor exhalative sulfide deposits in the ancient graben systems are controlled by relay structures in normal faults. The shapes of metallogenic basins dominate migration of gravity current of ore-hosted fluid and shape of ore-body sedimentary fan in the ramp. By measuring and comparing the difference of length-to-thickness ratios of ore-body sedimentary fan, it shows that the occurrence of the ramp has a remarkable impact on shape of ore-body. It provides new research thinking to recognize metallotectonics of exhalative sedimentary deposit.
     (3) Take Xitieshan deposit as an example, the author discuss the relation between the spout structure of exhalative sedimentary deposit and relay structure of normal fault, it is the first time to propose that the spout structure of exhalative sedimentary deposit is controlled by relay structure of normal fault. According to mechanical properties of relay structure in normal fault, the spout structure should locate in end of en echelon fault, which has stress concentration and the biggest stress difference, is position which the ore fluid first spouts.
     (4) In the case study of typical exhalative sedimentary deposit, combine the propagation feature of relay structure of normal fault, the influence of the multi-activity growth fault on exhalative sedimentary deposit in terms of kinematics is discussed, which is: a, the propagation of growth fault reduce the change of mineralize basin shape, influence the migration and sediment ore-hostd fluid; b, the propagation of fault make the position of fault tip move, influence the position and distribution of spout structure.
     (5) The segmentation propagation of normal fault produce different form of relay structure, such as en echelon-type and symmetry-type relay structure, which restrict the distribution of exhalative sedimentary deposit in structure basin controlled by growth faults of graben systems, and different scale relay structure of growth faults has different control of mineralization.
     (6) Take Liming and Xiaoliugou deposit as an example, accord with the propagation feature of relay structure of normal fault, the author discuss the metallotectonics feature of the ore-hosted normal fault by magma invade, re-recognize the distribution form and mineralize law of ore body, set up the ore-controlling pattern by relay structure, and according to mechanics characteristic of relay structure in normal fault, discuss the ore-control mechanism by relay structure of normal fault.
引文
[1]查·赫奇逊(英),1990.矿床及其构造背景,张炳熹,李文达译,北京,地质出版社,
    [2][英]B.R.劳恩,T.R威尔肖,1985.脆性固体断裂力学.陈颙,尹祥础译.北京:地震出版社.
    [3][法]A尼古拉,1989.构造地质学原理,嵇少丞译,北京:石油工业出版社.
    [4]J.C.耶格等,1981,岩石力学基础,北京:科学出版社
    [5]Davis.G.H,1988.区域和岩石构造地质学,张樵英等译,北京,地质出版社
    [6]D.F Sangster.1985.与火山有关的块状硫化物矿床.国外矿床地质.增刊,1-53
    [7]Bonin.1989.环状花岗岩杂岩体.北京:地质出版社.
    [8]白耀斗,张安君,1992,青海锡铁山的达肯大坂群和滩间山群,地层学杂志,16(3):219-221
    [9]陈国达.1982.成矿构造研究法.北京:地质出版社.
    [10]陈发景,汪新文,陈昭年等.2004.伸展断陷盆地分析.北京:地质出版社,52—85.
    [11]程小久,翟裕生.1995,沉积盆地中同生断层及对层控型Pb-Zn-(Ba-Cu-Ag)矿床的控制.现代地质,(3):343~350
    [12]褚武杨.1979.断裂力学基础,北京:科学出版社.
    [13]程小久.1994,同生断层控矿作用综述.矿床地质,(增刊):110~130
    [14]党玉琪、胡勇等,2000,柴达木盆地北缘石油地质,北京,地质出版社
    [15]丁国瑜,田勤俭,孔凡臣等,1993.活断层分段—原则、方法及应用.北京:地震出版社.
    [16]邓吉牛,1999.青海锡铁山矿区褶皱构造及其找矿预测,有色金属矿产与勘查。V8,No5:283—288
    [17]戴问天.1985,海底热液沉积成矿.地质与勘探.(6):22-28
    [18]冯益民等,1996,祁连山大地构造与造山作用,北京,地质出版社,
    [19]高秋斌 范永香.1995,论变质岩区断裂构造对脉状金矿床的控制规律.地球科学—中国地质大学学报,20(2):209—214..
    [20]顾连兴,1999,块状硫化物矿床研究进展评述,地质论评,45(3):265~275
    [21]顾连兴,顾素绢.1989,块状硫化物矿床的研究现状,地质科技情报,8(2):67—73
    [22]何绍勋.1999.雁行断裂带内的“中继构造”综述.见:马宗晋等编.构造地质学—岩石圈动力学研究进展.北京:地震出版社.41-47
    [23]何绍勋.1992.小型构造研究的新进展.见:中南工业大学40周年校庆学术论文选.长沙:中南工业大学出版社.9—16
    [24]黄杰等,2000,甘肃李坝金矿床地质特征及成因研究.矿床地质,(2):
    [25]韩发,孙海田,1999,Sedex型矿床成矿系统,地学前缘,6(1):139~162
    [26]姜在兴,2003,沉积学。石油工业出版社,北京
    [27]刘德来,王伟,马莉.1994,伸展盆地转换带分析:以松辽盆地北部为例.地质科技情报,13(2):5—10.
    [28]刘剑平 汪新文 周章保等.2000,伸展地区变换构造研究进展 地质科技情报,19(3):27-32
    [29]刘建明,刘家军,顾雪祥.1997,沉积盆地中的流体活动及其成矿作用。岩石矿物学杂志,16(4):341-352
    [30]马国良,祁思敬,李英等,1996,甘肃厂坝铅锌矿床喷气沉积成因研究.地质找矿论丛,11(3):36—44
    [31]芮宗瑶.1989,海底喷气沉积矿床研究的新进展.国外矿床地质.(2):1~5
    [32]宋鸿林.1996,斜向滑动与走滑转换构造.地质科技情报,15(4):32—38.
    [33]田毓龙,秦德先,林幼斌等.1999,喷流热水沉积矿床研究的现状与进展.昆明理工大学学报,24(1),150~156
    [34]王集磊,何伯墀,李健中等,1996,中国秦岭型铅锌矿床.北京地质出版社
    [35]吴树仁,1993,控矿断层几何学和运动学及其控矿规律研究,地质与勘探,29,1—6
    [36]邬介人等,1994,西北海相火山岩地区块状硫化物矿床,武汉:中国地质大学出版社,
    [37]邬介人,1985,青海锡铁山块状硫化物矿床地质特征,矿床地质,4(2):1-6
    [38]奚小双,何绍勋.1995a.旋转雁行断裂的三维构造型式初探-以西华山脉状钨矿构造为例.中南工业大学学报.26(3):285-289.
    [39]奚小双,张曾荣.1995b.甘肃礼岷金矿田的中继构造及其控矿作用.矿产与地质,9(1):33—37.
    [40]奚小双,张曾荣.2002.西秦岭礼岷金矿田构造压影域控矿型式.中南工业大学学报.33(3):221-224.
    [41]徐兴旺,蔡新平.2000.隐伏矿床预测理论与方法的研究进展.地球科学进展.15(1):76-83
    [42]徐开礼,朱志澄.1989,构造地质学[M].北京:地质出版社,
    [43]夏林圻等,1998,祁连山及邻区火山作用与成矿,北京,地质出版社
    [44]夏元祁,1996,柴达木北缘达肯大坂群与滩间山群的接触关系,地层学杂志,20(2):123-127
    [45]颜文,李朝阳,1993,热水喷流沉积成矿与地学思维,地球科学进展,8 (2):40-46
    [46]殷鸿福,黄定华,1995.早古生代镇淅地块与秦岭多岛小洋盆的演化.地质学报.V69,No3:193—204
    [47]袁奎荣等,1996,青海锡铁山隐伏矿床预测,长沙:中南工业大学出版社
    [48]杨建功,1999,甘肃成县李家沟铅锌矿床成矿特征及成因机制.有色金属矿产与勘查.8(2):96—102
    [49]翟裕生.,1981,矿田矿床构造的研究内容和研究方法.矿田构造与成矿,北京:地质出版社,
    [50]翟裕生等,1993,矿田构造学,北京:地质出版社:40-47
    [51]翟裕生,张湖,宋鸿林,1997,大型构造与超大型矿床,北京,地质出版社
    [52]翟裕生,邓军,宋鸿林等,1998,同生断层对层控超大型矿床的控制.中国科学D辑,28(3):214—218
    [53]朱上庆,黄华盛等.1988.层控矿床地质学.北京:冶金工业出版社,116-182
    [54]张寿庭,李忠权.1998.断裂转折及其控矿特征.矿物岩石,18:85-89
    [55]庄培仁,常志忠.1996.断裂构造研究.北京:地震出版社
    [56]张胜业,李杰,周继强等.2002,小柳沟铜钨多金属矿区地质特征.地质与勘探,38(4):34-36
    [57]曾佐勋,刘立林.1992.构造模拟.武汉:中国地质大学出版社
    [58]周建勋.1999.基于平面砂箱实验对黄骅盆地新生代构造成因的新解释.大地构造与成矿学,23(3):281-287
    [59]周建勋,漆家福.1999.伸展边界方向对伸展盆地正断层走向的影响.地质科学,34(4):492-499
    [60]周廷贵,周继强,宋史刚等.2002,小柳沟铜钨矿田矿化特征及找矿方向.地质与勘探,38(2):37-41
    [61]Acocella V, Morvillo P, Funiciello R. 2005. What controls relay ramps and transfer faults within rift zones? Insights from analogue models.Journal of Structural Geology, 27,397-408
    [62] Anders, M.H., Schlische,R.W., 1994, Overlapping faults, intra-basin highs, and the growth of normal faults. Journal of Geology 102,165-180.
    [63]Betts,P.G. et al. 2004. Aeromagnetic patterns of half-graben and basin inversion: implications for sediment-hosted massive sulfide Pb-Zn-Ag exploration. Jour. Struct. Geol.26,1137-1156.
    [64] Chadwick,R.A. 1986. Extension tectonics in the Wessex Basin, southern England. Jour, of the Geol. Soc.,London. 143,465-488.
    [65]Childs C, Watterson J, Walsh J J. 1995, Fault overlap zones within developing normal fault systems. Journal of the Geological Society of London, 152(3): 535-549.
    [66]Childs,C. et al. 1996. Growth of vertically segmented normal faults. Jour. Structural. Geol. 18(12),1389-1397.
    [67]Crider J G, Pollard D D. 1998, Fault linkage: three-dimensional mechanical interaction between echelon normal faults. Journal of Geophysical Research, 103(B10): 24373-24391.
    [68]Crider, J.G., 2001, Oblique slip and the geometry of normal-fault linkage: mechanics and a case study from the Basin and Range in Oregon. Journal of Structural Geology 23(12): 1997-2009.
    [69]Cooke M L, Pollard D D. 1996, Fracture propagation paths under mixed mode loading within rectangular blocks of polymethyl methacrylate. Journal of Geophysical Research, 101(B2):3387-3400.
    [70]Destro, N., 1995, Release fault: A variety of cross fault in linked extensional fault systems, in the Sergipe-Alagoas Basin, NE Brazil. Journal of Structural Geology 17, 615-629.
    [71]Ferrill, D.A., Stamatakos, J.A., Sims, D., 1999. Normal fault corrugation: Implications for growth and seismicity of active normal faults. Journal of Structural Geology 21,1027-1038.
    [72]Ferrill, D.A. and Morris, A.P., 2001, Displacement gradient and deformation in normal fault systems. Journal of Structural Geology ,23, 619-638.
    [73]Gamond J F. 1987,Bridge structures as sense of displacement criteria in brittle fault zone. Journal of Structural. Geology, 9(5/6):609-620.
    [74]Gibbs, A.D., 1984, Structural evolution of extensional basin margins. Journal of the Geological Society London 141,609-620.
    [75]Goguel J. 1952. Traite de Tectonique, Paris,English Translation, San Francisco, W H Fremen and Company, 128-129.
    [76] Gupta A, Scholz C H. 2000. A model of normal fault interaction based on observations and theory. Journal of Structural Geology22 , 865-879.
    [77]Hooper,E.C.D. 1991. Fluid migration along growth faults in compacting sediments. Jour. Petrol. Geo. 14(2), 161-180.
    [78]Huggins P, Watterson J, Walsh J J, Childs C. 1995, Relay zone geometry and displacement transfer between normal faults recorded in coal-mine plans. Journal of Structural Geology, 17(12): 1741-1755.
    [79]Hus R, Acocellab V, Funiciellob R et al. 2005.Sandbox models of relay ramp structure and evolution. Journal of Structural Geology, 27,459-473
    [80]Imber J, Tuckwell G W, Childs C, et al, 2004, Three-dimensional distinct element modelling of relay growth and breaching along normal faults. Journal of Structural Geology 26(10):1897-1911.
    [81] Jackson,J. et al. 1994. Drainage systems and development of normal faults:an example from Pleasant Valley, Nevada. Jour. Structural. Geol. 16(8),1041-1059.
    [82]Kattenhorn S A, Aydin A, Pollard D D. 2000.Joints at high angles to normal fault strike: an explanation using 3-D numerical models of fault- perturbed stress. Journal of Structural Geology. 22 (1): 1-23
    [83]Large,D.E. 1980.Geological parameters associated with sediment-hosted submarine exhalative Pb-Zn deposits: an empirical model for mineral exploration. Geologisches Jahrbuch.40: 59-129
    [84]Larsen, P.H., 1988. Relay structures in a Lower Permian basement involved extension system, East Greenland. Journal of Structural Geology 10 (1), 3-8.
    [85] Large, R.R., 1992. Australian Volcanic-Hosted Massive Sulfide Deposits: Features, Styles, and Genetic Models. Economic Geology 87,471-510
    [86]Leblanc,M.L. et al. 1990. Zoned and recurrent deposition of Na-Mg-Fe-Si exhalites and Cu-Fe sulfides along synsedimentary faults. Economic. Geol. 85,1759-1769.
    [87]Lydon J W. Ore deposit model#14. 1988, Volcangenic massive sulphide deposit, Part 2:Genetic models, Geoscience Canada, 15,43-66
    [88]Maerten, L et al. 2002, Effects of local stress perturbation on secondary fault development. Journal of Structural Geology, 24:145-153.
    [89]Marchal D, Guiraud T, Rives T. 2003, Geometric and morphologic evolution of normal fault planes and traces from 2D to 4D data. Journal of Structural Geology, 25(1): 135-158.
    [90]McGrath A G, Davison I. 1995, Damage zone geometry around fault tips. Journal of Structural Geology, 17(7): 1011 - 1024.
    [91]McClay.K.R., 1991. Deformation of stratiform Zn-Pb(-barite) deposits in the northern Canadian Cordillera. Ore Geology Reviews, 6: 435-462
    [92]McClay K R, White M. 1995, Analogue models of orthogonal and oblique rifting. Marine and Petroleum Geology, 12(2): 137-151.
    [93]Michal N, Andreas H, Rodney A G et al. 2002, Strike-slip fault bridge fluid pumping mechanism: insights from field-based palaeostress analysis and numerical modeling. Journal of Structural Geology, 24,1885-1901.
    [94]Morley, C.K., Nelson, R.A., Patton, T.L., Munn, S.G., 1990. Transfer ones in the East African Rift System and their relevance to hydrocarbon exploration in rifts. American Association of Petroleum Geologists Bulletin 74, 1234-1253.
    [95]MorIey,C.K.1999,Patterns of Displacement along large normal faults: implications for basin evolution and fault propagation, based on examples from East Africa. AAPG Bulletin, 83 (4) ,613-634
    [96]Peacock D.C.P., Sanderson,D.J.,1991a. Displacements, segment linkage, and relay ramps in normal fault zones. Journal of Structural Geology 13, 721-733.
    [97] Peacock, D.C.P., 1991b. Displacement and segment linkage in strike-slip fault zones. Journal of Structural Geology 13,1025-1035.
    [98] Peacock, D.C.P., Sanderson, D.J., 1994. Geometry and development of relay ramps in normal fault systems. American Association of Petroleum Geologists Bulletin 78,147-165.
    [99]Peacock,D.C.P. et al. 1995. Strike-slip relay ramps. Jour. Struct. Geol. 17(10),1351-1360.
    [100] Peacock D C P. 2002a. Propagation, interaction and linkage in normal fault systems. Earth-Science Reviews, 58(1-2): 121-142
    [101] Peacock, D.C.P., Parfitt, E.A, 2002b. Active relay ramps and normal fault propagation on Kilauea Volcano, Hawaii. Journal of Structural Geology 24,729-742.
    [102] Peacock D C P. 2003.Scaling of transfer zones in the British Isles Journal of Structural Geology 25, 1561-1567.
    [103] Pollard,D.D ,Holzhausen,G,.1979.On the mechanical interaction between a fluid-filled fracture and the earth's surface, Tectonophysics, 53:27-57
    [104] Pollard D D, Segall P. 1987.Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, dikes, and solution surfaces.In: Atkinson B K, eds. Fracture Mechanics of Rock. London: Academic Press, 277-349.
    [105] Ramsay, J.G., Huber, M.I., 1987. Modern Structure Geology. Volume 2: Folds and Fractures, Academic Press, London.
    
    [106] Rudnicki,J.W., M.Wu. 1995.Mechanics of dip-slip faulting in an elastic half- space. Journal of Geophysical Research, 100: 22173-22186.
    [107] Segall,P. and D.D.Pollard.1980. Mechanics of discontinuous faults, Journal of Geophysical Research, 85:4337-4350.
    [108] Sato,T.K. 1972. Behaviours of ore-forming solutions in seawater, Mining Geology, ,Vol.22,31-34.
    [109] Schlische, R.W., 1995, Geometry and Origin of Fault-Related Folds in Extensional Settings. American Association of Petroleum Geologists Bulletin 79,1661-1678.
    [110] Schultzs R A. 1999.Understanding the process of faulting: selected challenges and opportunities at the edge of the 21st century. Journal of Structural Geology, 21,985-993
    [111] Sharp,I.R. et al. 2000. Fault-propagation folding in extensional settings: Examples of structural style and synrift sedimentary response from the Suez rift,Sinai, Egypt. Geol. Soc. Am. Bull. 112(12),1877-1899.
    [112] Shipton,Z.K. et al. 2001. Damage zone and slip-surface evolution over μm to Km scales in high-porosity Navajo sandstone, Utah. Jour. Structural. Geol. 23, 1825-1844.
    [113] Stewart,I.S. et al. 1991. Scales of structural heterogeneity within neotectonic normal fault zones in the Aegean region. Jour. Structural. Geol. 13(2),191-204.
    [114] Tchalenko, J. S, 1970. Similarities between shear zones of different magnitudes. Bulletin of the Geological Society of America 81,625-1640.
    [115] Thomas A L. 1993. Poly3d: a three-dimensional, polygonal element, displacement discontinuity boundary element computer program with applications to fractures, faults and cavities in the Earth's crust. [M.S. thesis]. California: Stanford University.
    [116] Tikoff B. et al. 1999, Displacement central of geological structures. Journal of Structural Geology, 21,959-967
    [117] Trudgill B D, 1994. Cartwright J A. Relay ramp forms and normal fault linkages-Canyonlands National Park, Utah. Geological Society of America Bulletin, 106(9): 1143-1157.
    [118]Walsh J J, Watterson J. 1987. Distributions of cumulative displacement and seismic slip on a single normal fault. Journal of Structural Geology, 9(8): 1039-1046.
    [119]Walsh J J, Watterson J, Bailey W R, Childs C. 1999.Fault relays, bends and branch-lines. Journal of Structural Geology 21 (8-9): 1019-1026.
    [120]Walsh J J, Bailey W R, Childs C, et al. 2003 .Formation of segmented normal fault: a 3-D perspective. Journal of Structural Geology, 25(8): 1251-1262.
    [121]Wernicke, B., Burchfiel, B.C., 1982. Model of extensional tectonics. Journal of Structural Geology. V4,No2:105-116.
    [122]Willemse E J M. 1997. Segmented normal faults: correspondence between three-dimensional mechanical models and field data. Journal of Geophysical Research, 102(B1): 675-692.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700