用户名: 密码: 验证码:
地球物理摄动因素对远程弹道导弹命中精度的影响分析及补偿方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以提高我国机动发射远程弹道导弹命中精度为背景,针对弹道导弹要求命中精度高、作战准备时间短的特点,深入分析了地球物理摄动因素的影响,开展了考虑地球物理摄动因素下的射击诸元快速计算和制导补偿的研究,得到许多有意义的结果。论文的工作和创新点体现在以下几个方面。
     首先,论文提出了一套考虑地球物理摄动因素的弹道快速计算方法:
     对于主动段标准弹道,论文分析了不同射向和纬度下的弹道特性,提出了大气层内固定飞行程序的弹道拟合方法和大气层外弹道解析方法。对于12,000km射程的典型弹道,该方法对主动段关机点的逼近误差,速度小于0.3m/s,位置小于20m;
     对于自由段标准弹道,论文系统分析了考虑地球扁率的四种自由段解析方法,并针对自由段弹道的特点,推导出基于状态空间摄动的等大地高度约束解析解,提出只在地球外部轨迹上求平均值的平根数方法。如果以地心距或大地高度为终端条件,状态空间摄动法无须迭代,可以将落点计算误差控制在50m以内,相比其它方法,在计算精度和计算速度方面具有优势;
     对于考虑扰动引力的偏差弹道,论文将广义延拓逼近法和球谐函数换极法应用到扰动引力的赋值中,大大提高了计算速度。相对于有限元法,广义延拓逼近法在相同的存储量下逼近精度可提高1倍以上。通过对球谐函数换极法的改进,使其平均方法误差降低到15m以下。将换极法与状态空间摄动法结合,推导出四阶带谐项作用下自由段弹道射程角的等高偏差解析解。
     其次,论文系统分析了扰动引力、定位定向误差、高空大气、上升段引力常数变化、电磁力等地球物理摄动因素对远程弹道导弹命中精度的影响:利用状态空间摄动法,给出了各个因素的误差传播方程。计算结果表明扰动引力和定位定向误差是其中影响最大的因素,而简化计算方法具有很高的精度;
     分析了扰动引力对主动段弹道、被动段弹道、显式制导和惯导系统误差标定的影响;
     同时考虑几何项、初值项和引力项,推导出定位定向误差影响分析的完整解析解,并针对是否存在独立的天文观测和显式制导给出不同的计算公式。计算表明该解析解计算速度快,计算精度高,其中速度偏差逼近的方法误差小于10%,位置偏差逼近的方法误差小于1%。
     最后,论文设计了诸元和制导计算中进行补偿的方案,开发了通用的动力学仿真系统:
     考虑主动段弹道变形,推导出发射方位角初值的精确确定模型,可以将逼近精度由传统方法的5提高到0.5 ;
     提出了诸元和制导计算中地球物理摄动因素快速补偿的算法。其方法误差小于15m,同时可避免复杂弹道的迭代;
     提出考虑地球自转的零射程线方法,并应用于弹道导弹的末修级标准飞行程序设计、多头分导方案设计与固体弹道导弹的耗尽关机制导中;
     基于面向对象思想和统一建模语言,设计了考虑地球物理摄动因素的弹道导弹飞行动力学仿真框架,开发了导弹飞行动力学通用仿真软件。将设计样式引入导弹动力学的面向对象建模,并针对其特点提出了通用积分和层次聚合两种新的设计样式。
     论文的工作对于缩短导弹发射准备时间、减小制导方法误差、提高导弹作战效能具有重要意义。
The primary goal of the thesis is to improve hit accuracy of mobile long-range ballistic missile. Aiming at the requirements of high accuracy and short launching preparation time, geophysical disturbance factors impact was lucubrated and the compensatory approaches in ballistic data calculation and guidance equation were studied. Some meaningful results are achieved and shown as follows.
     At first ,the thesis put forward one group of fast trajectory calculation techniques considering geophysical disturbance factors:
     For power-flight reference trajectory, the thesis analyzed trajectory characteristics in different launching azimuths and launch latitudes. Then the atmospheric ballistic fitting method under constant flight program and the extra-atmospheric ballistic analytic method were advanced. The cutoff state evaluated error is less than 0.3m/s for velocity and 20m for position when the missile range is 12,000km, typically.
     For free-flight reference trajectory, the thesis first analyzed four analytic methods considering earth oblateness roundly, then deduced contour restricted analytic solution based on state space perturbance method, and advanced an modified mean element models in view of missile free-flight characteristics. If the terminal condition is geocentric range or geodetic height, state space perturbance method has no need for iterative computation process and can limit position error below 50m. So this method wins an advantage of other methods in calculating speed and precision.
     For warp trajectory considering gravity anomaly, the thesis applied extension approximate method and pole changing spherical harmonics method to gravity anomaly calculation, and gain faster calculating rate. Using the same memory space, extensive approximate method gets twice the precision as the finite element method can. Pole changing spherical harmonics method was modified to keep the fall point warp below 15m. Combining Pole changing spherical harmonics method and state space perturbance method, contour restricted range angle analytic solution considering J3,J4 perturbance was deduced.
     Then, the thesis analyzed geophysical disturbance factors impacting on hit accuracy such as gravity anomaly, positioning and orientation deviation, upper atmosphere, gravitation constant variety in power-flight phase, electromagnetic force systemically:
     Error propagation equations were given for every factor based on state space perturbance method. Experiment results indicate that gravity anomaly, positioning and orientation deviation are the most significant factors, and simplified methods have high calculating precision.
     Gravity anomaly influences power-flight trajectory, free-flight trajectory, explicit guidance and inertial system error calibration. All above were investigated in the thesis.
     Integrated analytic solution about positioning and orientation deviation impact was proposed in view of geometry item, initial state item and gravitation item, and different calculation equations were deduced depending on whether independent celestial observation is existed or guidance mode is considered. Experiment results show that the method has high calculating rate, and velocity deviation evaluation is less than 10%, and position deviation evaluation is less than 1%.
     At last, the thesis designed a data and guidance compensatory scheme, and developed a common dynamics simulation system:
     Initial azimuth determination method in view of ballistic deformation was deduced, that reduces estimated error from 5 to 0.5 .
     Geophysical disturbance factors compensatory arithmetic in data and guidance was built up, that can avoid complicated ballistic iterativeness and keep the fall point warp within 15m.
     Zero range orientation in the spinning earth was presented, and was applied to reference flight program design in terminal correction phase, multiple independently-targeted sequence plan and burnout guidance in solid rocket.
     A general simulation frame about ballistic missile dynamics was put forward based on object-oriented methodology and united modeling language, and common simulation software was developed to sustain study work. Design patterns can improve modeling level and efficiency, so four patterns were discussed, and two new patterns, namely common integral pattern and hiberarchy aggregation pattern, were put forward to satisfy vehicle dynamics specialty.
     In summing up, it may be stated that the research work has contributed to shorten launching preparation time, decrease guidance equation error and improve fighting efficiency for ballistic missile.
引文
[1] 郭俊义. 地球物理学基础[M]. 北京: 测绘出版社, 2001.
    [2] 陆仲连, 吴晓平, 丁行斌, et al. 弹道导弹重力学[M]. 北京: 八一出版社, 1993.
    [3] Richard B.Barrar. Some Remarks on the Motion of a satellite of an oblate planet[J], The Astronomical Journal, Vol. 66,No. 1, pp. 11-14, 1961.
    [4] 刘林. 人造地球卫星轨道力学[M]. 北京: 高等教育出版社, 1992.
    [5] 刘林, 赵德滋. 中间轨道摄动法及其应用[J], 宇航学报,No. 2, pp. 50-61, 1982.
    [6] 刘林, 赵德滋. 人造地球卫星轨道摄动的三阶解[J], 中国科学,No. 11, pp. 1066-1080, 1980.
    [7] A A Kanter. Method of calculating lunisolar perturbations in the intermediate elements of satellite orbits[J], Kosmicheskie Issledovaniya, Vol. 35,No. 4, pp. 378-386, 1997.
    [8] V A Kuz'minykh. Effect of light pressure on intermediate satellite motion[J], Kosmicheskie Issledovaniya, Vol. 35,No. 1, pp. 107-110, 1997.
    [9] A P Gromoglasov. An intermediate orbit of a planet's satellite[J], Astronomicheskij Zhurnal, Vol. 71,No. 3, pp. 492-498, 1994.
    [10] A P Gromoglasov. A spatial intermediate orbit in the theory of motion of planet satellites[J], Astronomicheskij Zhurnal, Vol. 71,No. 3, pp. 499-509, 1994.
    [11] I A GERASIMOV, B R MUSHAILOV. Evolution of Hyperion's orbit [J], Astronomicheskii Zhurnal, Vol. 68,No. Mar.-Apr, pp. 411-418, 1991.
    [12] A P TRISHCHENKO, N V EMEL'IANOV. Accuracy estimates for monitoring the orbit of the Meteor-3 series satellites using the satellite motion forecasting system of the Radiation Balance international project[J], Issledovanie Zemli iz Kosmosa No. 2, pp. 40-47, 1993.
    [13] CHUN-FANG CUI. The notion of artificial satellites in the anisotropic gravitational field of a uniformly rotating solid Earth model - A second order analytical solution[R], ETN-91-90012, 1990.
    [14] GEORGIEV NIKOLA, CHAPANOV IAVOR. An analytical-numerical method for satellite movement determination of an intermediate orbit base for geodetical and geodynamical investigations[J], Vissha Geodeziia, Vol. 14, pp. 9-13, 1990.
    [15] 朱龙根. 改进的 Barrar 型中间轨道[J], 国防科学技术大学学报,No. 2, pp. 61-75, 1985.
    [16] 李振涛. 自由飞行轨道解析解的中间轨道方法[J], 导弹与航天运载技术,No. 5, pp. 16-26, 1993.
    [17] 李晓明. 经典 f、g 级数的修正法[J], 国防科技大学学报, Vol. 13,No. 2, pp. 59-67, 1991.
    [18] Kozai Y. The motion of a close earth satellite[J], Astron.J, Vol. 64,No. 9, pp. 367~377, 1959.
    [19] Brouwer D. Solution of the problem of artificial sate1lite theory without drag[J], Astron.J, Vol. 64,No. 9, pp. 378~39, l959.
    [20] 刘林. 航天器轨道理论[M]. 北京: 国防工业出版社, 2000.
    [21] 李济生. 航天器轨道确定[M]. 北京: 国防工业出版社, 2003.
    [22] 汤锡生, 陈贻迎, 朱明才. 载人飞船轨道确定和返回控制[M]. 北京: 国防工业出版社, 2002.
    [23] Shaoran Liu, Guoqiang Zeng. A nonlinear control of formation flying based on mean elements[J], Chinese Space Science and Technology, Vol. 25,No. 5, pp. 24-26, 2005.
    [24] Hanspeter Schaub, Kyle T. Alfriend. Hybrid Cartesian and orbit element feedback law for formation flying spacecraft[J], Journal of Guidance, Control, and Dynamics, Vol. 25,No. 2, pp. 387-393, 2002.
    [25] Hanspeter Schaub. Relative orbit geometry through classical orbit element differences[J], Journal of Guidance, Control, and Dynamics, Vol. 27,No. 5, pp. 839-848, 2004.
    [26] Liyan Zhang, Faren Qi. Study on accuracy of long-range navigation of rendezvous[A], Proceedings of SPIE - The International Society for Optical Engineering, Wuhan, China, 2005.
    [27] You-Xi Tang, Hong-Zhi Zhao, Hao Liu, et al. Optimum low-thrust power rendezvous between neighboring elliptic orbits considering the oblateness of earth[J], Journal of Northwestern Polytechnical University, Vol. 23,No. 3, pp. 401-405, 2005.
    [28] Xin Wang, Lin Liu. Analytical solution of low thrust transfer orbit[A], 54th International Astronautical Congress of the International Astronautical Federation (IAF), the International Academy of Astronautics and the International Institute of Space Law, Bremen, Germany, 2003.
    [29] Paul J. Cefola, Ronald J. Proulx. Application of the semianalytical satellite theory to shallow resonance orbits[J], Advances in the Astronautical Sciences, Vol. 75,No. 1, pp. 94, 1991.
    [30] Ahmed H. Salama. Analytical evaluation of mascon effects in a semi-analytic theory[J], Advances in the Astronautical Sciences, Vol. 76,No. 3, pp. 2173-2189, 1992.
    [31] 朱龙根. 平均根数法在研究弹道飞行器运动中的应用[R], 国防科技大学论文报告资料,83-3016.
    [32] 潘刚. 远程弹道导弹快速诸元计算方法研究[D], 国防科技大学研究生院硕士学位论文, 2002.
    [33] 李连仲. 弹道飞行器自由飞行轨道的解析解法[J], 宇航学报,No. 1, pp. 1-17, 1982.
    [34] 严卫钢. 考虑 J2、J3、J4 的弹道飞行器自由飞行轨道解析解[J], 固体导弹技术,No. 1, pp. 24-26, 1986.
    [35] 任萱. 地球引力势 J2 项引起的弹道飞行器自由飞行运动参数偏差的近似解析解[R], 国防科技大学论文报告资料,82-3017, 1982.
    [36] 任萱. 自由飞行时摄动方程的状态转移矩阵的解析解[J], 中国空间科学技术,No. 1, pp. 1-16, 1983.
    [37] P. Vanicek, R.Tenzer, L.E.Sjoberg, et al. New Views of the Spherical Bouguer Gravity Anomaly[J], Geophys. J.,No. 159, pp. 460-472, 2004.
    [38] 黄谟涛, 翟国君, 管铮. 关于重力场元计算中积分元和积分域的确定问题[R], 天津海洋测绘研究所技术报告, 1993.1.
    [39] 黄谟涛, 翟国君, 管铮. 高斯积分在地球重力场数值计算中的应用[R], 天津海洋测绘研究所技术报告, 1993.1.
    [40] 孟嘉春, 蒋福珍, 操华胜. 关于向上延拓法确定扰动重力的问题[J], 中国科学院测量与地球物理研究所专刊, Vol. 8, 1984.
    [41] 蒋福珍, 蔡少华. 覆盖层法计算高空扰动引力[J], 测量与地球物理集刊, Vol. 5, 1984.
    [42] 孟嘉春, 蒋福珍, 操华胜. 空间扰动重力确定方法的比较[J], 测量与地球物理集刊, Vol. 5, 1987.
    [43] 游存义. 地球外空重力扰动快速计算的新表达式和方法[A], 地球外空重力扰动计算讨论会, 1991.9.
    [44] 孟嘉春. 重力异常的解析延拓及其计算[J], 测量与地球物理集刊, Vol. 6, 1984.
    [45] 蒋福珍, 孟嘉春, 操华胜. 贝尔哈默延拓方法的讨论[J], 测绘学报, Vol. 17,No. 1, 1988.
    [46] M.M.Benneff, P.W.Davis. Minuteman Gravity Modeling[A], Proceeding AIAA Guidance and Control Conference, 1976.
    [47] 吴晓平. 局部重力场点质量模型[J], 测绘学报, Vol. 13,No. 4, 1984.
    [48] 付容珊. 地球重力异常源深度[J], 地壳形变与地震, 1983.
    [49] Bowin. Marine Geodesy, Vol. 7,No. 4, pp. 61~100.
    [50] 黄谟涛等. 潜地战略导弹弹道扰动引力计算与研究[D], 郑州测绘学院硕士学位论文, 1991.
    [51] 黄金水, 朱灼文. 外部扰动重力场的频谱响应质点模式[J], 地球物理学报,No. 2, pp. 182-188, 1995.
    [52] 程雪荣. 边值问题的离散解法[J], 测绘学报, Vol. 13,No. 2, pp. 122-130, 1984.
    [53] 朱灼文, 许厚泽. 顾及局部地形效应的离散型外部边值问题[J], 中国科学(B 辑),No. 2, pp. 185-192, 1985.
    [54] 许厚泽, 朱灼文. 地球外部重力场的虚拟单层密度表示[J], 中国科学(B 辑), Vol. 第 6 期, pp. 576-580, 1984.
    [55] 操华胜, 朱灼文, 王晓岚. 地球重力场的虚拟单层密度表示理论的数字实现[J], 测绘学报, Vol. 14,No. 4, pp. 262-272, 1985.
    [56] 朱灼文. 统一引力场表示理论[J], 中国科学(B 辑),No. 12, pp. 1348-1356, 1987.
    [57] 朱灼文. 顾及椭球扁率效应的统一引力场表示[J], 科学通报,No. 16, pp. 1744-1748, 1997.
    [58] 朱灼文, 黄金水, 操华胜, et al. 一种基于统一引力场表示理论的外部扰动场赋值建模方法[J], 武汉测绘科技大学学报, Vol. 24,No. 2, pp. 95-98, 1999.
    [59] 程芦颖, 许厚泽. 外空扰动引力计算方法的内在联系[J], 测绘学院学报, Vol. 20,No. 3, pp. 161-164, 2003.
    [60] Moritz H. Advance Physical Geodesy[M]. England: Abacus Press, 1980.
    [61] 夏哲仁, 林丽. 局部重力异常协方差函数逼近[J], 测绘学报, Vol. 24,No. 1, pp. 23-27, 1995.
    [62] 任萱. 扰动引力作用时自由飞行弹道计算的新方法[J], 国防科技大学学报, Vol. 2, pp. 41-52, 1985.
    [63] 许厚泽, 蒋福珍. 关于重力异常球函数展式的变换[J], 测绘学报, Vol. 7,No. 4, pp. 252-260, 1964.
    [64] 任萱. 地球外部空间扰动引力对弹道导弹运动的影响一对被动段运动的影响[J], 国防科技大学学报,No. 7, pp. 63-82, 1984.
    [65] 石磐. 利用局部重力数据改进重力场模型[J], 测绘学报, Vol. 23,No. 4, pp. 276-281, 1994.
    [66] 管泽霖, 管铮, 黄谟涛, et al. 局部重力场逼近理论和方法[M]. 北京: 测绘出版社, 1997.
    [67] 彭富清, 于锦海. 球冠谐分析中非整阶 Legendre 函数的性质及其计算[J], 测绘学报, Vol. 29,No. 3, pp. 204-208, 2000.
    [68] O. L. Colombo. Numerical methods for harmonic analysis on the sphere[R], Rep. 310,OSU, 1981.
    [69] G Strang van Heers. Stokes formula using fast Fourier techniques[J], Manuscripta geodaetica, Vol. l5, pp. 235-239, l990.
    [70] M. G. Sideris. A Fast Fourier Transform method for computing terrain corrections[J], manuscripta geodaetica, Vol. l0,No. l, l985.
    [71] M. G. Sideris, K. P Schwar. Solving Molodensky's series by Fast Fourier Transform techniques[J], Bullitin Geodesique, Vol. 60,No. l, 1986.
    [72] M. G. Sideris. Sperical methods for the numerical solution of Molodensky's problem[R], Calgaly UCSE Report No.30024, l987.
    [73] R Forsberg, Sideris M. G. Geoid computation by the multi-band spherical FFT approach[J], manuscripta geodaetica, Vol. l8,No. 2, pp. 82-90, 1993.
    [74] Haagmans, E. Min R., M. Gelderen. Fast evaluation of convolution integrals on the sphere using ID FFT,and a comparison with exsiting methods for Stokes' integral[J], manuscripta geodaetica, Vol. l8, pp. 227~24l, l993.
    [75] Li J.C., Ning J. S., Chao D.B. Conunents on Two Dimensional Convolution of the Geodetic Problems in Planar and Spherical Coordinates[A], IAG SymPosia l 19, l997.
    [76] 黄谟涛, 翟国君, 管铮, et al. 利用 FFT 技术计算大地水准面高若干问题研究[J], 测绘学报, Vol. 29,No. 2, pp. 124-131, 2000.
    [77] 黄谟涛, 翟国君, 管铮, et al. 利用 FFT 技术计算地形改正和间接效应[J], 测绘学院学报, Vol. 17,No. 4, pp. 242-246, 2000.
    [78] 黄谟涛, 翟国君, 管铮, et al. 利用 FFT 技术计算垂线偏差研究[J], 武汉测绘科技大学学报, Vol. 25,No. 5, pp. 414-420, 2000.
    [79] Y.C. Li, Sideris M. G. The fast Hart1ey transform and its app1ication in physical geodesy[J], manuscripta geodaetica, Vol. l7, pp. 38l ~387, l992.
    [80] 宁津生, 晁定波, 李建成. 计算 Stokes 公式的 Hartley 变换(FHT)技术[J], 武汉测绘科技大学学报,No. 3, 1993.
    [81] John L. Junkins. Investigation of Finite-Element Representations of the Geopotential[J], AIAA Journal, Vol. 14,No. 6, pp. 803-808, 1976.
    [82] 郑伟, 汤国建. 扰动引力的有限元表达方法研究[A], 2006 年中国飞行力学学术年会, 安徽黄山, 2006.
    [83] 赵东明. 弹道导弹扰动引力快速逼近的算法研究[D], 中国人民解放军信息工程大学测绘学院硕士学位论文, 2001.
    [84] 赵东明, 吴晓平. 弹道扰动引力的有限元逼近算法[J], 测绘学院学报, Vol. 19,No. 2, pp. 99-101, 2002.
    [85] 赵东明, 吴晓平. 利用有限元方法逼近飞行器轨道主动段扰动引力[J], 宇航学报, Vol. 24,No. 3, pp. 309-313, 2003.
    [86] 刘纯根. 远程导弹射击诸元准备中的若干问题研究[D], 国防科技大学研究生院硕士学位论文, 1998.
    [87] 赵东明, 吴晓平. 扰动引力快速确定的替代算法[J], 测绘学院学报, Vol. 18,No. 增刊, pp. 11-13, 2001.
    [88] 施浒立, 颜毅华, 徐国华. 工程科学中的广义延拓逼近法[M]. 北京: 科学出版社, 2005.
    [89] 施浒立, 蔡显新. 变形主面的最佳逼近描述和副面最佳匹配调整[J], 电子机械工程,No. 2, pp. 45-50, 1988.
    [90] Shi Huli, Yan Yihua. The Extension Finite Element Method for Solving Electromagnetic Field Problems[A], in Numerical Methods and Examples in Engineering Science[M], PHEI, 1992, pp. 126-132.
    [91] Yan Yihua. On the Application of the Boundary Element Method in Coronal Magnetic Field Reconstruction[J], Space Science Reviews, Vol. 107,No. 1, 2003.
    [92] Yu Qing, Yan Yihua. The Application of Block BEM-GNF in 3-D Arbitrarily Shaped Conducting Waveguide Transitions[A], International Conference on Electromagnetic Field Problem and Application(ICEF), hangzhou,china, 1992.
    [93] 赵彦, 施浒立. 广义延拓外推法在卫星导航差分定位中的应用[R], 国家天文台资料, 2004.
    [94] 郑伟, 钱山, 汤国建. 弹道导弹制导计算中扰动引力的快速赋值[J], 飞行力学(录用,待发表), 2006.
    [95] 陈国强. 异常重力场中飞行器动力学[M]. 长沙: 国防科技大学研究生教材, 1982.
    [96] 陈国强. 引力异常对惯性制导的影响[J], 国防科技大学学报,No. 1, pp. 141-160, 1980.
    [97] 陈国强. 远程弹道导弹误差传播特性[J], 宇航学报,No. 3, pp. 50-65, 1984.
    [98] Levine S.A, Gelb A. Effects of Deflections of the Vertical on the Performance of Terrestrial Navigation Systems[J], AIAA Journal of Spacecraft, Vol. 6,No. 9, pp. 978-984, 1969.
    [99] Edwards R.M. Gravity Model Evaluation for Precise Terrestrial Inertial Navigation:A System Accuracy Approach[R], AIAA Report 80-1726, 1980.
    [100] William J Fitzpatrick, Julius C. Shu. Inertial Navigation Gravity Model Evaluation Using Covariance Integrals[R], AD-A161996.
    [101] A.B.Chatfield, M.M.Benneff, T.Chen. Effect of Gravity Model Inaccuracy on Navigation Performance[J], AIAA Journal, Vol. 13,No. 11, pp. 1494-1501, 1975.
    [102] HildebrantR.R., Britting K.R., Madden S.J. The effects of Gravitational Uncertainties on the Errors of Inertial Navigation Systems[J], J. of the Institute of navigation, Vol. 21,No. 4, winter 1974-1975.
    [103] Eugene M.Wells. A priori and real time use of a gravity gradiometer to improve inertial navigation system accuracy[D], StanFord University, 1981.
    [104] Gore R.C. The Effect of Geophysical and Geodetic Uncertainies at Launch Area on Ballistic Missile Impact Accuracy[R], AD602214.
    [105] 贾沛然. 垂线偏差对弹道导弹命中精度的影响[J], 国防科技大学学报,No. l, pp. 39-53, 1983.
    [106] 王明海, 杨辉耀, 何浩东. 垂线偏差对导弹命中精度影响研究[J], 飞行力学, Vol. 13,No. 2, pp. 90-95, 1995.
    [107] 王明海, 康建斌, 赵久奋. 弹道设计中定位定向坐标对精度影响分析[J], 飞行力学, Vol. 16,No. l, pp. 26-30, 1998.
    [108] 杨辉耀. 大地测量误差对导弹精度的影响与修正[J], 飞行力学, Vol. 16,No. 1, pp. 43~49, 1998.
    [109] 郑伟, 张士峰, 杨华波. 定位定向误差对导弹落点偏差的影响分析[A], 全国第十一届空间及运动体控制技术学术会议, 云南丽江, 2004.
    [110] 郑伟, 汤国建, 杨华波. 显式制导下定位定向误差的影响分析[A], 全国第十二届空间及运动体控制技术学术会议, 广西桂林, 2006.
    [111] Mason A.Peck. Prospects and Challenges for Lorentz-Augumented Orbits[A], AIAA Guidance,Navigation,and Control Conference and Exhibit San Francisco,California, 2005.
    [112] 黄圳圭. 航天器姿态动力学[M]. 长沙: 国防科技大学出版社, 1997.
    [113] Michael E. Hough. Lorentz Force Perturbations of a Charged ballistic missile[M], 1982.
    [114] A Nurgaliev. Dynamic systems with a variable gravitational constant[A], in Dynamics of stellar systems[M]. Alma-Ata: Izdatel'stvo Nauka Kazakhskoi SSR, 1978, pp. 54-63.
    [115] LT. Col. Howard, L.McKinley. Geokintic and Geophysical Influences on 1980's ICBM Guidance[R], AIAA Paper 75-1064, 1975.
    [116] 李连仲. 机动发射导弹射击诸元计算数学模型[R], 航天部科技报告,HT-870315.
    [117] 王海丽. 弹道导弹动力学通用仿真系统的分析、设计与实现[D], 国防科技大学研究生院硕士学位论文, 1998.
    [118] 王海丽, 陈磊, 胡小平. 弹道导弹基本诸元的快速装订算法研究[J], 国防科技大学学报, Vol. 21,No. 2, pp. 5-8, 1999.
    [119] 王军. 弹道导弹攻防对抗仿真中攻方导弹问题研究[D], 国防科技大学研究生院硕士学位论文, 1999.
    [120] 多招平. 弹道式导弹射击诸元快速装订方法研究[D], 中国航天科工集团第四总体设计部硕士学位论文, 2003.
    [121] 钱学森, 宋健. 工程控制论[M]. 北京: 科学出版社, 1980.
    [122] 程国采编著. 弹道导弹制导方法与最优控制[M]. 长沙: 国防科技大学出版社, 1987.
    [123] 李连仲. 摄动制导关机方案新探[J], 固体导弹技术,No. 2, 1986.
    [124] 陈世年主编. 控制系统设计[M], 宇航出版社, 1996.
    [125] GR. Battin. Astronautical Guidance[M]. New-York: McGraw-Hill Book Company lnc., l964.
    [126] 李连仲. 远程弹道导弹闭路制导方法研究[R], 航天部科技报告,HT-850008.
    [127] 李连仲. 远程弹道导弹闭路制导方法研究[J], 系统工程与电子技术,No. 4, 1980.
    [128] 程国采. 利用中间轨道法进行显式制导的方法探讨[J], 宇航学报,No. 3, 1985.
    [129] 王昌风. 基于中间轨道的空间飞行器一阶理论及其在制导中的应用[J],宇航学报,No. 3, 1985.
    [130] 陈克俊. 耗尽关机制导方法研究[J], 国防科技大学学报, Vol. 18,No. 3, pp. 35-39, 1996.
    [131] 陈磊, 王海丽, 任萱. 弹道导弹显式制导的分析与研究[J], 宇航学报, Vol. 22,No. 5, pp. 44-50, 2001.
    [132] Radhakant Padhi. An Optimal Explicit Guidance Scheme for Ballistic Missiles with Solid Motors[R], AIAA Paper 99-4140, 1999.
    [133] M.Delporte, F.Sauvinet. Explicit Guidance Law for Manned Spacecraft[R], AIAA Paper 92-1145, 1992.
    [134] Der-Ming Ma. Explicit Guidance for Aeroassisted Orbital Plane Change[R], AIAA Paper 94-3527-CP, 1994.
    [135] John E.White. Guidance and Targeting for the Strategic Target System[J], Journal of Guidance,Control and Dynamics, Vol. 15,No. 6, pp. 1313-1319, 1992.
    [136] Ernest J.Ohlmeyer. Guidance Methods for Accurate In-Flight Alignment of Navy Theatre Wide Missiles[A], NDIA Missile&Rockets Symposium and Exhibition, 2004.
    [137] 罗亚中, 唐国金, 张海联. 面向对象的飞行器仿真综述[J], 系统仿真学报, Vol. 16,No. 8, pp. 1615-1620, 2004.
    [138] Zobrist G W. Object Oriented Simulation, Reusability, Adaptability,Maintainability [M], IEEE Press, 1996.
    [139] 陈磊, 王海丽, 吴瑞林. 面向框架的弹道仿真方法[J], 系统仿真学报, Vol. 11,No. 2, pp. 101-107, 1999.
    [140] 罗亚中, 唐国金, 王峰, et al. 运载火箭优化设计通用仿真类库设计与开发[J], 系统仿真学报, Vol. 15,No. 7, pp. 962-965, 2003.
    [141] 王华, 唐国金. 基于面向对象的 RVD 仿真系统的分析与设计[J], 计算机仿真, Vol. 20,No. 5, pp. 25-27, 2003.
    [142] 田晶. 飞航导弹面向对象仿真建模方法研究[J], 计算机仿真, Vol. 17,No. 2, pp. 15-18, 2000.
    [143] 李洪儒, 冯振声. 大型飞行器制导与姿态控制联合仿真建模研究[J], 军械工程学院学报, Vol. 12,No. 3, pp. 29-35, 2000.
    [144] Li H, Feng Z. Objected-oriented modeling of flying vihicle[A], Proceedings of the International Symposium on Test and Measurement, Shanghai, 2001.
    [145] Ke L, Shuyuan S, Hongru L, et al. Simulation on the dynamic flying of one antiaircraft missile based on object-oriented [A], Proceedings of the International Symposium on Test and Measurement, Shanghai, 2001.
    [146] Jose N Hinckel. An Object Oriented Approach to Launch Vehicle Performance Analysis[A], Proceedings of 31st AAAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 1995.
    [147] Darko D, Mohenski Georgi. Guided anti-tank missile control training simulator design via object-oriented modeling[A], Proceeding of UKACC International Conference on Control'98, 1998.
    [148] Strunce R R, Maher F H. An object oriented dynamic simulation architecture for rapid spacecraft prototyping[A], IEEE Aerospace Conference Procedings, 2000.1.
    [149] Rajendra Prasad, Polamraju, Kuga Helio Koiti. An objected oriented architecture for flight dynamics mission support[J], Advances in the Astronautical Sciences,No. 110, pp. 147-160, 2002.
    [150] Corbin M J, Butler G F. MulTiSIM: An Object-Based Distributed Framework for Mission Simulation [J], Simulation Practice and Theory,No. 3, pp. 383-399, 1996.
    [151] Richard A Leslie, David W. LaSRS++-An object-oriented framework for real-time simulation of aircraft[R], AIAA Paper 98-4529, 1998.
    [152] Patricia C Glaab, Michael M Madden. A generic object-oriented implementation for flight control systems[R], AIAA Paper 99-4339, 1999.
    [153] 郑伟, 汤国建, 黄圳圭. 航天动力学的面向对象建模[J], 系统仿真学报, Vol. 13,No. 4, pp. 423-425, 2001.
    [154] 郑伟, 汤国建, 黄圳圭. 受控航天器的通用仿真框架[J], 航天控制, Vol. 19,No. 73, pp. 67-70, 2001.1.
    [155] 郑伟, 汤国建, 黄圳圭. 空间站姿态控制系统的通用仿真框架[A], 国家高技术航天领域空间站技术十五年学术成果交流会论文集, 北京, 2000.12.
    [156] 郑伟, 贾沛然, 孟云鹤. 运载火箭动力学的面向对象仿真框架[J], 系统仿真学报, Vol. 14,No. 8, pp. 1010-1018, 2002.
    [157] 郑伟, 贾沛然, 范利涛. 运载火箭动力学通用仿真框架设计[A], 总装备部第四届飞行力学学术交流年会, 广西南宁, 2001.
    [158] 郑伟, 贾沛然. 运载火箭动力学一体化设计[A], 中国航空学会第十五届飞行力学与飞行试验,国防口“9510”协作攻关办公室联合学术年会, 陕西西安, 2002.
    [159] 刘汉兵, 郑伟, 陈克俊. 运载火箭动力学与制导通用计算软件的设计与实现[A], 中国 2004 年飞行力学与飞行试验学术会议, 湖南长沙, 2004.
    [160] 郑伟, 汤国建, 任萱, et al. 飞行器动力学类库的设计与实现[A], 总装备部第五届飞行力学学术交流年会, 辽宁大连, 2003.
    [161] (美)刘润东. UML 对象设计与编程[M], 北京希望电子出版社, 2001.
    [162] Grady Booch, James Rumbaugh, Ivar Jacobson. The United Modeling Language User Guide[M], Addision Wesley Longman, Inc, 1999.
    [163] 郑伟, 鄢小清. 飞行器动力学面向对象建模中的设计样式[J], 系统仿真学报, Vol. 16,No. 8, pp. 1627-1629, 2004.
    [164] 郑伟, 周伯昭. 模式切换混合系统的建模与仿真[J], 飞行器测控技术, Vol. 17,No. 3, pp. 24-27, 1998.
    [165] 郑伟, 周伯昭. 混合系统的面向对象仿真[J], 系统工程与电子技术, Vol. 25,No. 3, pp. 345-349, 2003.
    [166] 贾沛然, 陈克俊, 何力. 远程火箭弹道学[M]. 长沙: 国防科技大学出版社, 1993.
    [167] 张金槐, 贾沛然等. 远程火箭精度分析与评估[M]. 长沙: 国防科技大学出版社, 1995.
    [168] 钱山, 张士峰, 郑伟, et al. 弹道导弹再入弹道的一种解析方法[A], 中国2006 年飞行力学与飞行试验学术年会, 四川成都, 2006.
    [169] 朱华统, 徐正扬, 艾贵斌, et al. 弹道导弹阵地控制测量[M]. 北京: 解放军出版社, 1993.
    [170] 张超, 郑勇, 李长会. 用任意星进行天文定向的研究[J], 测绘科学, Vol. 30,No. 4, pp. 30-32, 2005.
    [171] 张超, 郑勇, 夏治国. 天文测量中电子经纬仪的应用[J], 信息工程大学学报, Vol. 4,No. 3, pp. 93-96, 2003.
    [172] 刘朝山, 马瑞萍, 肖称贵, et al. 基于星图匹配的导弹初始定位定向方法研究[J], 系统工程与电子技术, Vol. 27,No. 8, 2005.
    [173] 游振东, 张文刚. 利用 GPS 快速标定发射阵地的应用研究[J], 全球定位系统,No. 4, pp. 20-24, 2004.
    [174] 帅平, 陈定昌, 李延兴, et al. 基于 GPS + GLONASS 观测的高精度、快速定位与定向试验[J], 现代防御技术, Vol. 30,No. 33-39, 2002.
    [175] 张西兴, 常武, 单家元. 发射载体中的目标定向定位方法研究[J], 弹箭与制导学报, Vol. 22,No. 3, pp. 6-9, 2002.
    [176] 郑伟, 吴杰, 赵健康. GPS实时定姿系统的设计与实现[J], 空间科学学报, Vol. 23,No. 4, pp. 294-298, 2003.
    [177] 郑冲. 双星/道路组合定位技术及基于双星定位系统的快速定向技术研究[D], 国防科技大学研究生院博士学位论文, 2005.
    [178] 莫国端, 刘开第. 函数逼近论方法[M]. 北京: 科学出版社, 2003.
    [179] 徐延万主编. 控制系统(上)[M]. 北京: 宇航出版社, 1989.
    [180] Fang K.T, Y.Wang. Number-theoretic Methods in Statistics[M]. London: Chapman and Hall, l994.
    [181] 方开泰, 马长兴. 正交与均匀试验设计[M]. 北京: 科学出版社, 2001.
    [182] 陈磊, 任萱, 王海丽. 战术弹道导弹中段多弹头进攻方法的研究[J], 航天控制,No. 2, 2000.
    [183] Grady Booch, James Rumbaugh, Ivar Jacobson. The United Software Development Process[M], Addision Wesley Longman, Inc, 1999.
    [184] J Coplien. Advanced C++ Programing - style and Idioms[M], Addison-Wesley Longman, Inc, 1992.
    [185] E.et al Gamma. Design Patterns:Elements of Reusable Object_Oriented Software[M], Addison-Wesley Longman, Inc, 1995.
    [186] 彭永进等. 离散事件动态系统[M]. 长沙: 湖南科学技术出版社, 1994.
    [187] 王维平等. 离散事件系统建模与仿真[M]. 长沙: 国防科技大学出版社, 1997.
    [188] A.Nerode and W.Kohn. Models for hybrid systems: Automata,topologies, controllability, observability[J], Lecture Notes in Computer science, Vol. 736, 1993.
    [189] Lucio Tavernini. Application of Differential Automata to the Simulation of Control System[A], Summer Computer Simulation Conference, 1990.
    [190] Greg Lomow, Dirk Bazner. A Tutorial Introduction to Object-oriented Simulation and sim++TM[A], Proceedings of the winter simulation conference, 1990.
    [191] 黄柯棣等. 系统仿真技术[M]. 长沙: 国防科技大学出版社, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700