用户名: 密码: 验证码:
新型特种光纤及其相关器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特种光纤及其相关器件在光通信、传感、材料加工和军事等领域有着广泛而重要的应用。本论文在国家高技术研究发展计划(863)项目“稀土掺杂光纤”和“新型特种光纤”的支持下,对掺铒保偏光纤、掺铒微结构光纤和长周期光纤光栅等进行了深入系统的研究,获得以下创新性成果:
     1.提出一种新型的制作熊猫型掺铒保偏光纤预制棒的方法—U型槽嵌入法,此方法制作工艺简单,易于操作,而且成品率高。采用新型石墨电炉加热的MCVD法结合溶液掺杂技术制作掺铒芯棒。
     2.综合考虑光纤的截止波长、模场直径、背景损耗和双折射等性能指标,优化设计了熊猫型掺铒保偏光纤的结构参量。据此优化参量,利用U型槽嵌入法试制出高吸收系数高双折射的熊猫型掺铒保偏光纤。所研制的纤芯共掺铋镓铝铒的保偏光纤在波长1530nm处的吸收系数高达58dB/m;外径为125μm的掺铒保偏光纤的双折射达到4.8×10~(-4);在1200nm处的背景损耗小于15dB/km。
     3.给出了一种准确高效的模拟掺铒光纤放大器的算法—改进的平均粒子数反转度迭代算法;采用此算法结合有限元法研究了掺铒微结构光纤放大器的性能。利用有限元法数值分析了空气孔对掺铒微结构光纤的截止波长、重叠积分因子和模场直径的影响。综合考虑掺铒光纤的截止波长、放大器的增益系数和与普通单模光纤的熔接损耗等,优化设计了掺铒微结构光纤的结构参量,并与普通掺铒光纤的性能进行了比较。
     4.基于标量近似和耦合模理论系统深入地研究了振幅掩模紫外写入的长周期光纤光栅的特性。理论推导出辐射模的归一化系数和长周期光栅中纤芯模与辐射模之间的耦合方程。数值分析了纤芯模与辐射模之间耦合系数的特性,并给出了数值估计外部环境折射率高于石英包层折射率时长周期光栅的谐振波长的方法。利用有限元法结合耦合模理论研究了各结构参量对基于孔辅助导光光纤的长周期光栅的谐振波长和耦合系数的影响。
Special optical fibers and related devices have great applications in the optical communications, sensing, material process and military fields. In this dissertation, we concentrate on the study of the erbium-doped polarization-maintaining fibers (EDPMF), erbium-doped microstructured fibers and long-period fiber gratings. And the work is supported by the National High Technology Research and Development Programs of China, "Rare-earth doped fibers" and "Novel special optical fibers". The main achievements of this dissertation are listed as follows:
     1. A novel method called the U-shaped groove method is proposed for fabricating the Panda-type erbium-doped polarization-maintaining fiber preforms. This method is easy to operate and can increase the yield. And the erbium-doped optical fiber preforms are fabricated by the combination of the Furnace-MCVD process and the solution doping technique.
     2. The structural parameters of the Panda-type EDPMFs are optimized in terms of the design criteria, which take into account the EDPMFs' cutoff wavelengths, mode field diameters, background loss and birefringence. High absorption and high birefringence Panda-type EDPMFs are successfully fabricated by the U-shaped groove method. The absorption coefficient of the EDPMF, whose core is co-doped with Bi, Ga A1 and Er, is about 58dB/m at the wavelength of 1530nm. The birefringence of the EDPMF, whose outer cladding diameter is 125μm, is about 4.8x10~(-4). And the background loss is less than 15dB/km at the wavelength of 1200 nm.
     3. The modified average population inversion iteration method is proposed for calculating the gain and noise figures of erbium-doped fiber amplifiers. The characteristics of erbium-doped microstructured fiber amplifiers are investigated by the combination of the finite element method and the modified average population inversion iteration method. The effects of air holes on the cutoff wavelengths, overlap factors and mode field diameters of the erbium-doped microstructured fibers are analyzed by using the finite element method. The structural parameters of erbium-doped microstructured fibers are optimized in terms of the design criteria, which take into account the cutoff wavelengths, the gain and noise figure of fiber amplifiers and the splice loss between the erbium-doped microstructured fiber and the conventional single-mode fiber. The comparison between the erbium-doped microstructured fiber and the conventional erbium-doped fiber is made.
     4. The characteristics of the long period fiber gratings, which are ultraviolet-written by the amplitude mask, are studied in detail by using the scalar approximate and coupled-mode theory. The normalization of the individual radiation mode is discussed and the coupled equations between the core mode and radiation modes are deduced. The properties of the coupling constants between the core mode and radiation modes are investigated. The numerical calculation of the resonance wavelengths of the long period fiber gratings is given, when the refractive index of ambient environment is higher than that of silica cladding. The effects of the structural parameters on the resonance wavelengths and the coupling constants of the long period fiber gratings based on the hole-assisted lightguide fibers, are studied by the combination of the finite element method and coupled-mode theory.
引文
[1] Poole S. B., Payne D. N., Mears R. J., Fermann M. E., Laming R. I. Fabrication and characterization of low-loss optical fibers containing rare-earth ions. J. Lightwave TechnoI., 1985, LT-4(7): 870-876
    [2] Poole S. B., Payne D. N., Fermann M. E. Fabrication of low-loss optical fibres containing rare-earth ions. Electron. Lett., 1985, 21(17): 737-738
    [3] Stone J., Burrus C. A. Neodymium-doped silica lasers in end-pumped fiber geometry. Appl. Phys. Lett., 1973, 23(7): 388-389
    [4] Townsend J. E., Poole S. B., Payne D. N. Solution-doping technique for fabrication of rare-earth-doped optical fibres. Electron. Lett., 1987, 23(7): 329-331
    [5] Ainslie B. J. A review of the fabrication and properties of erbium-doped fibers for optical amplifiers, J. Lightwave Technol., 1991, 9(2): 220-227
    [6] Wu F., Puc G, Foy R, Snitzer E., Sigel G. H. Jr. Low-loss rare earth doped single-mode fiber by sol-gel method. Mater Res Bull, 1993, 28(7): 637-644
    [7] Soderlund M., Tammela S., Hoffman H. J., Willson B., Stenius R Direct nanoparticle deposition builds active fibers. Laser Focus World, 2006, 42(1): 103-111
    [8] Nagel S. R., MacChesney J. B., Walker K. L. An overview of the modified chemical vapor deposition (MCVD) process and performance. IEEE J. Quantum Electron., 1982, QE-18(4): 459-476
    [9] Li Tingye. Optical fiber communications vol. 1 Fiber fabrication. London: Academic Press, 1985
    [10] Sudo Shoichi. Optical fiber amplifiers: materials, devices, and applications. Boston: Artech house Inc., 1997
    [11] 唐仁杰,曹美娥.提高MCVD工艺单模光纤生产率的新技术.光通信研究,1998,(4):24-31
    [12] Pal M., Sen R., Paul M. C., Bhadra S. K., Chatterjee S., Ghosal D., Dasgupta K. Investigation of the deposition of porous layers by the MCVD method for the preparation of rare-earth doped cores of optical fibres. Opt. Commun., 2005, 254(1-3): 88-95
    [13] Dhar A., Paul M. Ch., Pal M., Mondal A. Kr., Sen S., Maiti H. S., Sen R. Characterization of porous core layer for controlling rare earth incorporation in optical fiber. Opt. Express, 2006, 14(20): 9006-9015
    [14] Vienne G G., Caplen J. E., Liang D., Minelly J. D., Nilsson J., Payne D. N. Fabrication and characterization of Yb~(3+):Er~(3+) phosphosilicate fibers for lasers. J. Lightwave Technol., 1998, 16(11): 1990-2001
    [15] Tang F. Z., McNamara P., Barton G. W., Ringer S. P. Nanoscale characterization of silica soots and aluminium solution doping in optical fibre fabrication. J. Non Cryst. Solids, 2006, 352(36-37): 3799-3807
    [16] Tang F. Z., McNamara P., Barton G. W., Ringer S. P. Microscale inhomogeneities in aluminum solution-doping of silica-based optical fibers. J. Am. Ceram. Soc., 2007, 90(1): 23-28
    [17] Noda J., Okamoto K., Sasaki Y. Polarization-maintaining fibers and their applications. J. Lightwave Technol., 1986, LT-4(8): 1071-1089
    [18] 陈伟,李诗愈,成煜,陆大方.保偏光纤技术进展及发展趋势.光通信研究,2003,(6):54-57
    [19] Birch R. D., Payne D. N., Varnham M. P. Fabrication of polarization maintaining fibers using gas-phase etching. Electron. Lett., 1982, 18(24): 1036-1038
    [20] Katsuyama T., Matsumura H., Suganuma T. Reduced pressure collapsing MCVD method for single polarization optical fibers. J. Lightwave Technol., 1984, LT-2(5): 634-639
    [21] 廖延虎.光纤光学.北京:清华大学出版社,2003
    [22] Sasaki Y., Hosaka T., Takada K., Noda J. 8 km-long polarization maintaining fiber with highly stable polarization state. Electron. Lett., 1983, 19(19): 792-794
    [23] Sasaki Y. Long-length low-loss polarization-maintaining fibers. J. Lightwave Technol., 1987, LT-5(9): 1139-1146
    [24] Knight J. C., Birks T. A., Russell R St. J., Atkin D. M. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett., 1996, 21(19): 1547-1549
    [25] Tajima K., Zhou J., Kurokawa K., Nakajima K. Low water peak photonic crystal fibers. ECOC 2003, Postdeadline Paper.
    [26] Zhou Jian, Tajima K., Nakajima K., Kurokawa K., Fukai C., Matsui T., Sankawa I. Progress on low loss photonic crystal fibers. Opt. Fiber Technol., 2005, 11 (2): 101-110
    [27] Hasegawa T., Sasaoka E., Onishi M., Nishimura M., Tsuji Y., Koshiba M. Novel hole-assisted lightguide fiber exhibiting large anomalous dispersion and low loss below 1 dB/km. OFC2001, PD5, 2001
    [28] Eggleton B. J., Westbrook R S., Windeler R. S., Strasser T. A., Burdge G L. Grating spectra in air-silica microstructure fibers. OFC2000, ThI2, 2000
    [29] Hasegawa T., Sasaoka E., Onishi M., Nishimura M., Tsuji Y., Koshiba M. Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss. Opt. Express, 2001,9(13):.681-686
    [30] Hasegawa T., Sasaoka E., Onishi M., Nishimura M., Tsuji Y., Koshiba M. Modeling and design optimization of hole-assisted lightguide fiber by full-vector finite element method. ECOC2001, We.L.2.5, 2001
    [31] Zhu Z., Brown T. G.. Multipole analysis of hole-assisted optical fibers. Opt. Cornmun., 2002, 206(4-6): 333-339
    [32] Yan M., Shum R, Lu C. Hole-Assisted Multiring Fiber with Low Dispersion Around 1550 nm. IEEE Photonics Technol. Lett., 2004, 16(1): 123-125
    [33] 栗岩锋,王清月,刘博文,胡明列.孔助光纤色散和双折射特性的研究.光子学报,2004,33(11):1313-1316
    [34] Nakajima K., Hogari K., Jian Z., Tajima K., Sankawa L. Hole-assisted fiber design for small bending and splice losses. IEEE Photonics Technol. Lett., 2003,15(12): 1737-1739
    [35] Saitoh K., Tsuchida, Y., Koshiba M. Bending-insensitive single-mode hole-assisted fibers with reduced splice loss. Opt. Lett., 2005, 30(14): 1779-1781
    [36] Tsuchida Y., Saitoh K., Koshiba M. Design and characterization of single-mode holey fibers with low bending losses. Opt. Express, 2005, 13(12): 4770-4779
    [37] Saitoh K., Tsuchida Y., Koshiba M. Bending-insensitive single-mode hole-assisted fibers with reduced splice loss. Opt. Lett., 2005, 30(14): 1779-1781
    [38] Kim G. H., Cho H. S., Han Y. G., et al. Investigation on the reliability of holey fiber in telecommunication field application. Proc. SPIE, 2006, 6351 : 635148
    [39] Kim G. H., Han Y. G., Cho H. S., et al. A novel fabrication method of versatile holey fibers with low bending loss and their optical characteristics. OFC2006
    [40] 陈伟,李进延,李诗愈等.FTTH用微结构光纤.光通信研究.2006,(2):52-54
    [41] Knight J. C, Broeng J., Birks T. A., Russell E St. J. Photonic band gap guidance in optical fibers. Science, 1998, 282(5393): 1476-1478
    [42] Cregan R. E, Knight J. C., Russell P. S. J., Roberts P. J. Spontaneous emission from an erbium doped photonic crystal fibre. CLEO 1999
    [43] Cregan R. E, Knight J. C., Russell R S. J., Roberts R J. Distribution of spontaneous emission from an Er~(3+)-doped photonic crystal fiber. J. Lightwave Technol., 1999, 17(11): 2138-2141
    [44] Furusawa K., Sahu J. K., Monro T. M., Richardson D. J. A high efficiency, low threshold, erbium-doped holey optical fiber laser. CLEO 2003
    [45] Kogure T., Furusawa K., Lee J. H., Monro T. M., Richardson D. J. An erbium doped holey fiber amplifier and ring laser. ECOC 2003, Postdeadline Paper
    [46] Richardson D. J., Furusawa K., Kogure T. et al. Holey fiber amplifiers and lasers. ECOC 2004: Th1.3.1
    [47] Furusawa K., Kogure T., Monro T. M., Richardson D. J. High gain efficiency amplifier based on an erbium doped aluminosilicate holey fiber. Opt. Express, 2004, 12(15): 3452-3458
    [48] Furusawa K., Kogure T., Sahu J. K., Lee J. H., Monro T. M., Richardson D. J. Efficient low-threshold lasers based on an erbium-doped holey fiber. IEEE Photonics Technol. Lett., 2005, 17(1): 25-27
    [49] Hougaard K. G., Broeng J., Bjarklev A. Low pump power photonic crystal fibre amplifiers. Electron. Lett., 2003, 39(7): 599-600
    [50] Cucinotta A., Poll E, Selleri S. Design of erbium-doped triangular photonic-crystal-fiber-based amplifiers. IEEE Photon. Technol. Lett., 2004, 16(9): 2027-2079
    [51] Prudenzano F. Erbium-doped hole-assisted optical fiber amplifier: Design and optimization. J. Lightwave Technol., 2005, 23(1): 330-340
    [52] D'Orazio A., Sario M. De, Mescia L., Petruzzelli V., Prudenzano F. Refinement of Er~(3+)-doped hole-assisted optical fiber amplifier. Opt. Express, 2005, 13(25): 9970-9981
    [53] Cucinotta A., Poli E, Selleri S., Vincetti L., Zoboli M. Amplification properties of Er~(3+)-doped photonic crystal fibers. J. Lightwave Technol., 2003, 21(3): 782-788
    [54] Li Changzhi, Huang Yidong, Zhang Wei, Ni Yi, Peng Jiangde. Amplification properties of erbium-doped solid-core photonic bandgap fibers. IEEE Photonics Technol. Lett., 2005, 17(2): 324-326
    [55] Vengsarkar A. M., Lemaire P. J., Judkins J. B., Bhatia V., Erdogan T., Sipe J. E. Long-period fiber gratings as band-rejection filters. J. Lightwave Technol., 1996, 14(1): 58-65
    [56] Vengsarkar A. M., Pedrazzani J. R., Judkins J. B., Lemaire P. J., Bergano N. S., Davidson C. R. Long-period fiber-grating-based gain equalizers. Opt. Lett., 1996, 21(5): 336-338
    [57] Poole Craig D., Wiesenfeld J. M., DiGiovanni D. J., Vengsarkar A. M. Optical fiber-based dispersion compensation using higher order modes near cutoff. J. Lightwave Technol., 1994, 12(10): 1746-1758
    [58] Bhatia V., Vengsarkar A. M. Optical fiber long-period grating sensors. Opt. Lett., 1996, 21(9): 692-694
    [59] Eggleton B. J., Westbrook P. S., Windeler R. S., Spalter S., Strasser T. A. Grating resonances in air-silica microstructured optical fibers Opt. Lett., 1999, 24(21): 1460-1462
    [60] Hill K. O., Fujii Y., Johnson D. C., Kawasaki B. S. Photosensitivity in optical fibre waveguides: Application to reflection filter fabrication. Appl. Phys. Lett., 1978, 32(10): 647-649
    [61] Espindola R. P., Windeler R. S., Abramov A. A. et al. External refractive index insensitive air-clad long period fibre grating. Electron. Lett., 1999, 35(4): 327-328
    [62] Eggleton B. J., Westbrook P. S., Windeler R. S., Strasser T. A., Burdge G. L. Grating spectra in air-silica microstructure fibers. OFC2000, ThI2, 2000
    [63] Eggleton B. J., Westbrook P. S., White C. A., Kerbage C., Windeler R. S., Burdge G. L. Cladding-mode-resonances in air-silica microstructure optical fibers. J. Lightwave Technol., 2000, 18(8): 1084-1100
    [64] Eggleton B. J., Kerbage C., Westbrook P. S., Windeler R. S., Hale A. Microstructured optical fiber devices Opt. Express, 2001, 9(13): 698-713
    [65] Savin S., Digonnet M. J. E, Kino G. S., Shaw H. J. Tunable mechanically induced long-period fiber gratings. Opt. Lett., 2000, 25(10): 710-712
    [66] Lim J. H., Lee K. S., Kim J. C., Lee B. H. Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure. Opt. Lett., 2004, 29(4): 331-333
    [67] Kakarantzas G., Birks T. A., Russell R St. J. Structural long-period gratings in photonic crystal fibers. Opt. Lett., 2002, 27(12): 1013-1015
    [68] Zhu Yinian, Shum Ping, Chong Joo-Hin et al. Deep-notch, ultracompact long-period grating in a large-mode-area photonic crystal fiber. Opt. Lett., 2003, 28(24): 2467-2469
    [69] Zhu Yinian, Shum Ping, Chong Joo-Hin et al. Strong resonance and a highly compact long-period grating in a large-mode-area photonic crystal fiber. Opt. Express, 2003, 11(16): 1900-1905
    [70] Akiyama M., Nishide K., Shima K. et al. Novel long-period fiber grating using periodically released residual stress of pure-silica core fiber. OFC 1998:276-277
    [71] Enomoto T., Shigehara M., Ishikawa S. et al. Long-period fiber grating in a pure-silica-core fiber written by residual stress relaxation. OFC 1998, p 277-278
    [72] Morishita K., Miyake Y. Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change. J. Lightwave Technol., 2004, 22(2): 625-630
    [73] Zhu Yinian, Shum Ping, Bay Hui-Wen. Wide-passband, temperature-insensitive, and compact π-phase-shifted long-period gratings in endlessly single-mode photonic crystal fiber. Opt. Lett., 2004, 29(22): 2608-2610
    [74] Erdogan T. Fiber grating spectra. J. Lightwave Technol., 1997, 15(8): 1277-1294
    [75] Erdogan T. Cladding-mode resonances in short- and long-period fiber grating filters. J. Opt. Soc. Am. A, 1997,14(8): 1760-1773
    [76] 徐新华,崔一平.矩形折射率调制型长周期光纤光栅传输谱的理论分析及数值计算.物理学报,2003,52(1):96-101
    [77] Vassallo C. Optical waveguide concepts. Amsterdam: Elsevier, 1991 : 67-74
    [78] Patrick H. J., Kersey A. D., Bucholtz F. et al. Chemical sensor based on long-period fiber grating response to index of refraction. CLEO 1997:420-421
    [79] Patrick H. J., Kersey A. D., Bucholtz F. Analysis of the response of long period fiber gratings to external index of refraction. J. Lightwave Technol., 1998, 16 (9): 1606-1612
    [80] Koyamada Y. Analysis of core-mode to radiation-mode coupling in fiber Bragg gratings with finite cladding radius. J. Lightwave Technol., 2000, 18(9): 1220-1225
    [81] Koyamada Y. Numerical analysis of core-mode to radiation-mode coupling in long-period fiber gratings. IEEE Photon. Technol. Lett., 2001, 13 (4): 308-310
    [82] 童治,陶锋,魏淮等 长周期光纤光栅中基模到辐射模耦合的数值分析.电子学报,2003,31(1):89-91
    [83] Lee B. H., Liu Yu, Lee S. B. et al. Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index. Opt. Lett., 1997, 22(23): 1769-1771
    [84] Stegall D. B., Erdogan T. Leaky cladding mode propagation in long-period fiber grating devices. IEEE Photon. Technol. Lett., 1999, 11(3): 343-345
    [85] Hou R., Ghassemlooy Z., Hassan A., Lu C., Dowker K. P. Modelling of long-period fibre grating response to refractive index higher than that of cladding. Meas. Sci. Technol., 2001, 12(10): 1709-1713
    [86] Jeong Y., Lee B., Nilsson J., Richardson D. J. A quasi-mode interpretation of radiation modes in long-period fiber gratings. IEEE J. Quantum Electron., 2003, 39(9): 1135-1142
    [87] 刘锐,瞿荣辉,蔡海文,方祖捷.光子晶体光纤布拉格光栅传输谱特性的分析.光学学报,2006,26(7):1007-1012
    [88] 刘建国,开桂云,薛力芳等.微结构光纤光栅谐振峰得分析.激光与红外,2006,36(5):369-373
    [89] Wang Zhi, Jian Ju, Jin W., Chiang K. S. Scaling property and multi-resonance of PCF-based long period gratings. Opt. Express, 2004,12(25): 6252-6257
    [90] 王智,李欣蓓,王晶晶.高双折射光子晶体光纤中均匀布拉格光栅的特性.光学学报,2006,26(9):1325-1328
    [91] Park K. N., Erdogan T., Lee K. S. Cladding mode coupling in long-period gratings formed in photonic crystal fibers. Opt. Commun., 2006, 266(2): 541-545
    [1] Cooper D. G., Dexter J. L., Esman R. D. Widely tunable polarization-stable fiber lasers. IEEE J. Sel. Top. Quantum Electron., 1995, 1(1): 14-21
    [2] Noda J., Okamoto K., Sasaki Y. Polarization-maintaining fibers and their applications. J. Lightwave Technol., 1986, LT-4(8): 1071-1089
    [3] 陈伟,李诗愈,成煜,陆大方.保偏光纤技术进展及发展趋势.光通信研究,2003,(6):54-57
    [4] Edvold B., Palsdottir B. High-birefringent and high-gain erbium-doped polarization-maintaining fiber. Proc. SPIE, 1994, 2289:69-77
    [5] Sasaki Y. Long-length low-loss polarization-maintaining fibers. J. Lightwave Technol., 1987, LT-5(9): 1139-1146
    [6] Okamoto K., Hosaka T., Edahiro T. Stress analysis of optical fibers by a finite element method. IEEE J. Quantum Electron., 1981, QE-17(10): 2123-2129
    [7] Koshiba M. Optical waveguide theory by the finite element method. Tokyo: KTK Scientific publishers, 1992:133-160
    [8] Guan Rongfeng, Zhu Fulong, Gan Zhiyin, Huang Dexiu, Liu Sheng. Stress birefringence analysis of polarization maintaining optical fibers. Opt. Fiber Technol., 2005, 11(3): 240-254
    [9] 李维特,黄保海,毕仲波.热应力理论分析及应用.北京:中国电力出版社,2004:79-89
    [10] 陆明万,罗学富.弹性理论基础.北京:清华大学出版社,1990
    [11] Marrone M. J., Rashleigh S. C., Blaszyk P. E. Polarization properties of birefringent fibers with stress rods in the cladding. J. Lightwave Technol., 1984, LT-2(2): 155-160
    [12] 天津大学材料力学教研室光弹组.光弹性原理及测试技术.北京:科学出版社,1980
    [13] 童维军,刘德明,汪洪海,罗杰.改进的PCVD工艺制造高掺硼材料的性能研究.光通信技术,2006,30(5):52-55
    [14] Tajima K., Sasaki Y. Transmission loss of a 125-μm diameter PANDA fiber with circular stress-applying parts. J. Lightwave Technol., 1989, 7(4): 674-679
    [15] Sasaki Y., Hosaka T., Horiguchi M., Noda J. Design and fabrication of low-loss and low-crosstalk polarization-maintaining optical fibers. J. Lightwave Technol., 1986, LT-4(8): 1097-1102
    [16] Poole S. B., Payne D. N., Mears R. J., Fermann M. E., Laming R. I. Fabrication and characterization of low-loss optical fibers containing rare-earth ions. J. Lightwave Technol., 1985, LT-4(7): 870-876
    [17] Poole S. B., Payne D. N., Fermann M. E. Fabrication of low-loss optical fibres containing rare-earth ions. Electron. Lett., 1985, 21(17): 737-738
    [18] Townsend J. E., Poole S. B., Payne D. N. Solution-doping technique for fabrication of rare-earth-doped optical fibres. Electron. Lett., 1987, 23(7): 329-331
    [19] Wu E, Puc G., Foy P., Snitzer E., Sigel G. H. Jr. Low-loss rare earth doped single-mode fiber by sol-gel method. Mater Res Bull, 1993, 28(7): 637-644
    [20] Soderlund M., Tammela S., Hoffman H. J., Willson B., Stenius P. Direct nanoparticle deposition builds active fibers. Laser Focus World, 2006, 42(1): 103-111
    [21] Sudo Shoichi. Optical fiber amplifiers: materials, devices, and applications. Boston: Artech house Inc., 1997
    [22] Pal M., Sen R., Paul M. C., Bhadra S. K., Chatterjee S., Ghosal D., Dasgupta K. Investigation of the deposition of porous layers by the MCVD method for the preparation of rare-earth doped cores of optical fibres. Opt. Commun., 2005, 254(1-3): 88-95
    [23] Dhar A., Paul M. Ch., Pal M., Mondal A. Kr., Sen S., Maiti H. S., Sen R. Characterization of porous core layer for controlling rare earth incorporation in optical fiber. Opt. Express, 2006, 14(20): 9006-9015
    [24] Vienne G. G., Caplen J. E., Liang D., Minelly J. D., Nilsson J., Payne D. N. Fabrication and characterization of yb~(3+): Er~(3+) phosphosilicate fibers for lasers. J. Lightwave Technol., 1998, 16(11): 1990-2001
    [25] Tang F. Z., McNamara P., Barton G. W., Ringer S. P. Nanoscale characterization of silica soots and aluminium solution doping in optical fibre fabrication. J. Non Cryst. Solids, 2006, 352(36-37): 3799-3807
    [26] Tang E Z., McNamara P., Barton G. W., Ringer S. P. Microscale inhomogeneities in aluminum solution-doping of silica-based optical fibers. J. Am. Ceram. Soc., 2007, 90(1): 23-28
    [27] 唐仁杰,曹美娥.提高MCVD工艺单模光纤生产率的新技术.光通信研究.1998,(4):24-31
    [28] Li Tingye. Optical fiber communications vol.1 Fiber fabrication. London: Academic Press, 1985
    [29] Nagel S. R., MacChesney J. B., Walker K. L. An overview of the modified chemical vapor deposition (MCVD) process and performance. IEEE J. Quantum Electron., 1982, QE-18(4): 459-476
    [30] Walker K. L, Harvey J. W., Geyling E T., Nagel S. R. Consolidation of particulate layers in the fabrication of optical fiber preforms. J. Am. Ceramic Society, 1980, 63(1-2): 96-102
    [31] 干福熹.硅酸盐玻璃物理性质变化规律及其计算方法.北京:科学出版社,1966
    [32] Arai K., Namikawa H., Kumata K. et al. Aluminium or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass. Journal of Applied Physics, 1986, 59(10): 3430-3436
    [33] 梁毅.特种光纤的研究与试制.北京:北京交通大学,1988
    [34] Giles C. R., Desurvire E. Modeling erbium-doped fiber amplifiers. J. Lightwave Technol., 1991, 9(2): 271-283
    [35] Barnes W. L., Laming R. I., Tarbox E. J., Morkel P. R. Absorption and emission cross section of Er~(3+) doped silica fibers. IEEE J. Quantum Electron., 1991, 27(4): 1004-1010
    [36] 娄淑琴.保偏光子晶体光纤的研究.北京:北京交通大学,2005
    [37] Hayata K., Koshiba M., Suzuki M. Stress-induced birefringence of side-tunnel type polarization-maintaining fibers. J. Lightwave Technol., 1986, LT-4(6): 601-607
    [38] 李智忠,胡永明,杨华勇等.圆芯型边孔光纤双折射的有限元分析.光学学报,2005,25(8):1013-1018
    [39] 吴重庆.光波导理论(第2版).北京:清华大学出版社,2005
    [40] Fleming J. W. Dispersion in GeO2-SiO2 glasses. Appl. Opt., 1984, 23(24): 4486-4493
    [1] Hasegawa T., Sasaoka E., Onishi M., Nishimura M., Tsuji Y., Koshiba M. Modeling and design optimization of hole-assisted lightguide fiber by full-vector finite element method. ECOC2001, We.L.2.5, 2001
    [2] Hasegawa T., Sasaoka E., Onishi M., Nishimura M., Tsuji Y., Koshiba M. Novel hole-assisted lightguide fiber exhibiting large anomalous dispersion and low loss below 1 dB/km. OFC2001, PD5, 2001
    [3] Hasegawa T., Sasaoka E., Onishi M., Nishimura M., Tsuji Y., Koshiba M. Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss. Opt. Express, 2001, 9(13): 681-686
    [4] Zhu Z., Brown T. G.. Multipole analysis of hole-assisted optical fibers. Opt. Commun., 2002, 206(4-6): 333-339
    [5] 栗岩锋,王清月,刘博文,胡明列.孔助光纤色散和双折射特性的研究.光子学报,2004,33(11):1313-1316
    [6] 任国斌,王智,娄淑琴,简水生.空气孔辅助光纤的模式截止.光学学报,2004,24(11):1477-1480
    [7] 任国斌.光子晶体光纤的理论与制作工艺研究.北京:北京交通大学,2005
    [8] 娄淑琴.保偏光子晶体光纤的研究.北京:北京交通大学,2005
    [9] Brechet F., Marcou J., Pagnoux D., Roy P. Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method. Opt. Fiber Technol., 2000, 6(2): 181-191
    [10] Koshiba M. Full-vector analysis of photonic crystal fibers using the finite element method. IEICE Trans. Electron., 2002, E85-C(4): 881-888
    [11] Becker P. C., Olsson N. A., Simpson J. R. Erbium-doped fiber amplifiers: fundamentals and technology. San Diego: Academic Press, 1999:140-144
    [12] Koshiba M., Saitoh K. Structural dependence of effective area and mode field diameter for holey fibers. Opt. Express, 2003, 11(15): 1746-1756
    [13] Saitoh K., Koshiba M. Numerical modeling of photonic crystal fibers. J. Lightwave Technol., 2005, 23(11): 3580-3590
    [14] Prudenzano E Erbium-doped hole-assisted optical fiber amplifier: Design and optimization. J. Lightwave Technol., 2005, 23(1): 330-340
    [15] D'Orazio A., Sario M. De, Mescia L., Petruzzelli V., Prudenzano E Refinement of Er~(3+)-doped hole-assisted optical fiber amplifier. Opt. Express, 2005, 13(25): 9970-9981
    [16] 童治.宽带光纤放大器及其在超长距离DWDM系统中的应用.北京:北京交通大学,2004
    [17] Di Pasquale E, Federighi M. Modelling of uniform and pair-induced upconversion mechanisms in high-concentration erbium-doped silica waveguides. J. Lightwave Technol., 1995, 13(9): 1858-1864
    [18] Giles C. R., Desurvire E. Modeling erbium-doped fiber amplifiers. J. Lightwave Technol., 1991, 9(2): 271-283
    [19] Pasquale F. D., Zoboli M. Analysis of erbium-doped waveguide amplifiers by a full-vectorial finite-element method. J. Lightwave Technol., 1993, 11(10): 1565-1574
    [20] Di Pasquale F., Federighi M. Modelling of uniform and pair-induced upconversion mechanisms in high-concentration erbium-doped silica waveguides. J. Lightwave Technol., 1995, 13(9): 1858-1864
    [21] Vermelho M. V. D., Peschel Ulf, Aitchison J. S. Simple and accurate procedure for modeling erbium-doped waveguide amplifiers with high concentration. J. Lightwave Technol., 2000, 18(3): 401-407
    [22] Pedersen B., Bjarklev A., Povlsen J. H., Dybdal, K., Larsen C. C. The design of erbium-doped fiber amplifiers. J. Light-wave Teehnol., 1991, 9(9): 1105-1112
    [23] 俞谦,崔景翠,王四海,刘小明,范崇澄.数值模拟掺铒光纤放大器的新方法.中国激光,1999,A26(7):585-588
    [24] Fumsawa K., Sahu J. K., Monro T. M., Richardson D. J. A high efficiency, low threshold, erbium-doped holey optical fiber laser. CLEO 2003
    [25] Kogure T., Furusawa K., Lee J. H., Monro T. M., Richardson D. J. An erbium doped holey fiber amplifier and ring laser. ECOC 2003, Postdeadline Paper
    [26] Richardson D. J., Furusawa K., Kogure T. et al. Holey fiber amplifiers and lasers. ECOC 2004, Th1.3.1
    [27] Furusawa K., Kogure T., Monro T. M., Richardson D. J. High gain efficiency amplifier based on an erbium doped aluminosilicate holey fiber. Opt. Express, 2004, 12(15): 3452-3458
    [28] Furusawa K., Kogure T., Sahu J. K., Lee J. H., Monro T. M., Richardson D. J. Efficient low-threshold lasers based on an erbium-doped holey fiber. IEEE Photon. Technol. Lett., 2005, 17(1): 25-27
    [29] Hougaard K. G., Broeng J., Bjarklev A. Low pump power photonic crystal fibre amplifiers. Electron. Lett., 2003, 39(7): 599-600
    [30] Cucinotta A., Poli E, Selleri S. Design of erbium-doped triangular photonic-crystal-fiber-based amplifiers. IEEEPhoton. Technol. Lett., 2004, 16(9): 2027-2079
    [31] 任国斌.光子晶体光纤的理论与制作工艺研究.北京:北京交通大学,2005
    [32] Midrio M., Singh M. P., Someda C. G. The space filling mode of holey fibers: an analytical vectorial solution. J. Lightwave Technol., 2000, 18(7): 1031-1037
    [33] White T.E, McPhedran R.C., De Sterke C.M. et al. Confinement losses in microstructured optical fibers. Opt. Lett., 2001, 26(21): 1660-1662
    [34] Saitoh K., Koshiba M. Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers. IEEE J. Quantum Electron., 2002, 38(7): 927-933
    [35] Ferrarini D., Vincetti L., Zoboli M., Cucinotta A., Selleri S. Leakage properties of photonic crystal fibers. Opt. Express, 2002, 10(23): 1314-1319
    [36] Koshiba M., Saitoh K. Simple evaluation of confinement losses in holey fibers. Opt. Commun., 2005, 253(1-3): 95-98
    [37] Marcuse D. Influence of curvature on the losses of doubly clad fibers. Appl. Opt., 1982, 21(23): 4208-4213
    [38] Cohen L. G., Marcuse D., Mammel W. L. Radiating leaky-mode losses on single-mode lightguides with depressed-index claddings. IEEE J. Quantum Electron., 1982, QE-18(10): 1467-1472
    [39] Shah V. Curvature dependence of effective cutoff wavelength in single-mode fibers. J. Lightwave Technol., 1987, LT-5(1): 35-43
    [40] Koshiba M., Saitoh K. Applicability of classical optical fiber theories to holey fibers. Opt. Lett., 2004, 29(15): 1739-1741
    [1] Hill K. O., Fujii Y., Johnson D. C., Kawasaki B. S. Photosensitivity in optical fibre waveguides: Application to reflection filter fabrication. Appl. Phys. Lett., 1978, 32(10): 647-649
    [2] Meltz G., Morey W. W., Glenn W. H. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett., 1989, 14(15): 823-825
    [3] Hill K. O., Malo B., Bilodeau F., Johnson D. C., Albert J. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett., 1993, 62(10): 1035-1037
    [4] Vengsarkar A. M., Lemaire R J., Judkins J. B., Bhatia V., Erdogan T., Sipe J. E. Long-period fiber gratings as band-rejection filters. J. Lightwave Technol., 1996, 14(1): 58-65
    [5] Vengsarkar A. M., Pedrazzani J. R., Judkins J. B., Lemaire R J., Bergano N. S., Davidson C. R. Long-period fiber-grating-based gain equalizers. Opt. Lett., 1996, 21(5): 336-338
    [6] Poole Craig D., Wiesenfeld J. M., DiGiovanni D. J., Vengsarkar A. M. Optical fiber-based dispersion compensation using higher order modes near cutoff. J. Lightwave Technol., 1994, 12(10): 1746-1758
    [7] Bhatia V., Vengsarkar A. M. Optical fiber long-period grating sensors. Opt. Lett., 1996, 21(9): 692-694
    [8] Erdogan T. Fiber grating spectra. J. Lightwave Technol., 1997, 15(8): 1277-1294
    [9] Erdogan T. Cladding-mode resonances in short- and long-period fiber grating filters. J. Opt. Soc. Am. A, 1997, 14(8): 1760-1773
    [10] 徐新华,崔一平.矩形折射率调制型长周期光纤光栅传输谱的理论分析及数值计算.物理学报,2003,52(1):96-101
    [11] 吴重庆.光波导理论.第2版.北京:清华出版社,2005:119-133
    [12] Vassallo C. Optical waveguide concepts. Amsterdam: Elsevier, 1991:67-74
    [13] Yariv A. Optical electronics in modem communications. Fifth edition. New York: Oxford University Press, 1997:502-509
    [14] 孔梅,周文汤,汤伟中.长周期光纤光栅导模与包层模的耦合分析.光学学报,1999,19(3):369-373
    [15] Patrick H. J., Kersey A. D., Bucholtz F. et al. Chemical sensor based on long-period fiber grating response to index of refraction. CLEO 1997:420-421
    [16] Patrick H. J., Kersey A. D., Bucholtz E Analysis of the response of long period fiber gratings to external index of refraction. J. Lightwave Technol., 1998, 16 (9): 1606-1612
    [17] Zhou K., Liu H., Hu X. Tuning the resonant wavelength of long period fiber gratings by etching the fiber's cladding. Opt. Commun., 2001, 197 (4-6): 295-299
    [18] Koyamada Y. Analysis of core-mode to radiation-mode coupling in fiber Bragg gratings with finite cladding radius. J. Lightwave TechnoL, 2000, 18(9): 1220-1225
    [19] Koyamada Y. Numerical analysis of core-mode to radiation-mode coupling in long-period fiber gratings. IEEEPhoton. Technol. Lett., 2001, 13(4): 308-310
    [20] 童治,陶锋,魏淮等 长周期光纤光栅中基模到辐射模耦合的数值分析.电子学报,2003,31(1):89-91
    [21] Lee B. H., Liu Yu, Lee S. B. et al. Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index. Opt. Lett., 1997, 22(23): 1769-1771
    [22] Stegall D. B., Erdogan T. Leaky cladding mode propagation in long-period fiber grating devices. IEEE Photon. TechnoI. Lett., 1999, 11(3): 343-345
    [23] Hou R., Ghassemlooy Z., Hassan A., Lu C., Dowker K. E Modelling of long-period fibre grating response to refractive index higher than that of cladding. Meas. Sci. Technol., 2001, 12(10): 1709-1713
    [24] Jeong Y., Lee B., Nilsson J., Richardson D. J. A quasi-mode interpretation of radiation modes in long-period fiber gratings. IEEE J. Quantum Electron., 2003, 39(9): 1135-1142
    [25] Snyder A. W., Love J. D. Optical waveguide theory. London: Chapman and hall, 1983:514-533
    [26] Marcuse D. Theory of dielectric optical waveguides. Second edition. Academic press, 1991: 83-91
    [27] Knight J. C., Birks T. A., Russell P. St. J., Atkin D.M. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett., 1996, 21(19): 1547-1549
    [28] Windeler R. S., Wagener J. L., DiGiovanni D. J. Silica-air microstructured fibers: Properties and applications. OFC 1999
    [29] Espindola R. P., Windeler R. S., Abramov A. A. et al. External refractive index insensitive air-clad long period fibre grating. Electron. Lett., 1999,35(4): 327-328
    [30] Eggleton B. J., Westbrook P. S., Windeler R. S., Spalter S., Strasser T. A. Grating resonances in air-silica microstructured optical fibers Opt. Lett., 1999, 24(21): 1460-1462
    [31] Eggleton B. J., Westbrook P. S., Windeler R. S., Strasser T. A., Burdge G. L. Grating spectra in air-silica microstructure fibers. OFC2000, ThI2, 2000
    [32] Eggleton B. J., Westbrook P. S., White C. A., Kerbage C., Windeler R. S., Burdge G. L. Cladding-mode-resonances in air-silica microstructure optical fibers. J. Lightwave Technol., 2000,18(8):1084-1100
    [33] Eggleton B. J., Kerbage C., Westbrook E S., Windeler R. S., Hale A. Microstructured optical fiber devices Opt. Express, 2001, 9(13): 698-713
    [34] Lee Youngjun, Kim Gil Hwan, Han Young-Geun et al. Effect of air hole size on transmission characteristics of fiber Bragg gratings written in holey fiber. OFC 2006
    [35] Han Young-Geun, Lee Young Jun, Kim Gil Hwan et al. Transmission characteristics of fiber Bragg gratings written in holey fibers corresponding to air-hole size and their application. IEEE Photonics Technol. Lett., 2006, 18(16): 1783-1785
    [36] 刘锐,瞿荣辉,蔡海文,方祖捷.光子晶体光纤布拉格光栅传输谱特性的分析.光学学报,2006,26(7):1007-1012
    [37] 刘建国,开桂云,薛力芳等.微结构光纤光栅谐振峰得分析.激光与红外,2006,36(5):369-373
    [38] Wang Zhi, Jian Ju, Jin W., Chiang K. S. Scaling property and multi-resonance of PCF-based long period gratings. Opt. Express, 2004,12(25): 6252-6257
    [39] 王智,李欣蓓,王晶晶.高双折射光子晶体光纤中均匀布拉格光栅的特性.光学学报,2006,26(9):1325-1328
    [40] Lee K.S., Park K. N., Erdogan T. Cladding mode coupling in long-period gratings fonned in photonic crystal fibers. Opt. Commun., 2006, 266(2): 541-545

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700