用户名: 密码: 验证码:
GPS/SINS/MMW复合制导关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
该文主要研究攻击慢速目标的巡航导弹制导系统中段导航、中末交班和末制导导引头设计与仿真三部分内容。中段导航、中末交班是MMW(毫米波)导引头可靠的捕获目标的关键,导航误差的大小决定中末交班的成功与否,而MMW导引头是攻击慢速目标的关键部件,因此三部分内容是GPS/SINS/MMW(GPS:全球卫星定位系统;SINS:捷联惯导系统;MMW:毫米波)复合制导系统相互关联的关键技术。
     文中首先研究弹载陀螺仪编排方案,根据该方案中陀螺仪输出角增量,结合GPS/SINS/MMW导弹的动态特性提出一种角增量姿态算法。针对陆基GPS/SINS/MMW制导的巡航导弹,捷联惯导的初始对准采用两位置对准算法,文中提出有别于传统多位置对准算法的两位置对准改进算法,节省了对准时间,而且不用进行三位置对准就可以估计陀螺的天向漂移,通过仿真表明方位误差角估计精度满足中远程巡航导弹的要求。从导弹的研制规律出发,在设计阶段尽量采用状态变量少的卡尔曼滤器,在进行风洞试验确定了导弹的气动外形后,再增加卡尔曼滤波器的维数,以达到提高制导精度的目的,为此文中对21维和15维卡尔曼滤波器都进行研究,对中制导系统精度进行仿真,并设计根据中制导系统误差计算末制导启控点散布域的Matlab算法,给出散布域仿真结果。
     中末交班段首先研究横向捕获域和MMW导引头参数之间的关系,设计一种易实现的中段导引律,提出满足GPS/SINS/MMW复合制导交班要求的中末交接律,仿真表明,该交接律能够实现中末弹道的二阶平滑过渡。在中末交班段要求卡尔曼滤波器的数据更新频率比中段要快得多,为此文中设计交班段的简化卡尔曼滤器,而且精度在交班段内满足要求。
     最后部分研究MMW导引头的总体技术方案和关键参数设计,提出导引头角跟踪算法和天线稳定去耦算法,通过计算捷联姿态阵来实现天线稳定,数学平台可以对复合制导过程中的视线和天线的夹角进行处理,实现文中提出的角跟踪算法。建立烟雾降低MMW末制导导弹杀伤概率的数学模型,若巡航导弹攻击目标时MMW无源干扰严重,可由卡尔曼外推器预测目标状态,向导弹自动驾驶仪提供信号控制导弹攻击目标,以实现制导系统的抗干扰功能。文中对制导系统进行仿真表明:GPS/SINS/MMW制导导弹的圆概率偏差和命中概率比单一的GPS/SINS导引头有较大改进,加装MMW导引头不但使巡航导弹可攻击慢速战略目标,而且降低对SINS硬件的精度要求,仿真表明,GPS/中等精度SINS/MMW制导导弹的CEP和GPS/高精度SINS制导导弹的CEP相当。
This paper mainly researches midcourse navigation, handing-over, terminalhoming tracker design and emulation of the cruise missile attacking the slow velocitytarget. Midcourse navigation and handingover are both sticking points for the MMWtracker to catch the target. Navigation error magnitude decides whether the handingoverbetween midcourse guidance and terminal guidance will be successful or not. The MMWtracker is the key component to attack the slow velocity target. Therefore, the three partsare interdependent and pivotal techniques of GPS/S1NS/MMW compounded controllingand guiding system.
     The paper firstly works over missile-carrying gyro collocation scheme. Basing on thescheme gyro outputting angle increment and the GPS/SINS/MMW missile dynamiccharacteristic, the paper brings forward a kind of angle increment pose arithmetic. Inallusion to GPS/SINS/MMW contolling and guiding cruise missile, strapdown inertialnavigation system initial alignment adopts two-position alignment algorithm. The paperbrings forward an improved two-position alignment algorithm which is different fromtraditional multi-position alignment algorithm. The improved algorithm saves alignmenttime and has the advantage of estimating the vertical gyro drift without three-positionalignment. The simulation verifies that the azimuth error meets the mid-long range cruisemissile precision requirement. From the developing principle of missile, to improve thecontrolling and guiding precision, we should adopt fewness state variables kalman filterat the designing phase and increase the state variables after fixing the missile pneumaticshape by wind tunnel experiments. So the paper researches both the 15 dimensions and 21dimensions kalman filter and simulates the midcourse contolling and guiding precision.The paper designs the Matlab algorithm of calculating terminal homing start pointdistributing field by midcourse controlling and guiding error and gives the simulationresult.
     The handing-over phase firstly researches the relationship between transverse capturefield and mmw tracker parameter, and the paper designs a midcourse guidance law andbrings forward the handing over guidance law which meets the GPS/SINS/MMWcompounded guidance handing over requirement. The simulation verfies that the handingover guidance law can achieve the midcourse and terminal trajectory second rank linked upsmoothly. At the handing over phase, the kalman filter data update frequence should bemuch more than that at the midcourse, so the paper designs compact kalman filter at the handing over phase, whose precision meets the requirement at the handing over phase.
     The last part of the paper researches MMW tracker general technique scheme andpivotal parameters design. The paper brings forward MMW tracker angle trackingalgorithm and antenna stabilization algorithm, which calculates the strap-down posematrix to realize the antenna stabilization. The maths fiat roof can carry out the anglesignal processing in the compounded guidance course, realizing the angle trackingalgorithm. The last part builds a model which reflects the smog decreases the MMWterminal homing missile destroy probability. When the cruise missile attacks target, if theMMW passive jam is severe, the kahnan predictor can provide the target state and outputthe signal to the missile automatic driver to contol the missile attacking the target, whichachieves the control and guidance system anti-jam function.the simulation of the controland guidance system verifies that GPS/SINS/MMW CEP and probability of hitting thetarget is much better than the GPS/SINS'. Not only can the cruise missile attack the slowvelocity strategical target but also decrease the requirement of SINS hardware precision byadding the MMW tracker. The simulation verifies that the CEP of GPS/medium precisionSINS/MMW guidance missile is as good as that of GPS/high precision SINS guidancemissile.
引文
1. J. E. Bortz. A New Mathematical Formulation for Strap-down Inertial Navigation (J). IEEE Transactions on Aerospace and Electronic Systems, 1971, 7(1):61—66.
    
    2. R. B.Miller. A new strap-down attitude algorithm (J). Journal of Guidance, Control, and Dynamics 1983, 6(4):287-291.
    
    3. M. B. Igagni. Optimal Strap-down Attitude Integration Algorithms(J) .Journal of Guidance, control, and Dynamics, 1990, 13(2):363-369.
    
    4. Y. F.Jiang. Improved strap—down coning algorithm(J). IEEE Transaction of Aerospace and Electronic Systems, 1992, 28(2): 484-490.
    
    5. Kalman. R. E, 《A New Approach to Linear filtering and Prediction Theory》, Trans. ASME. Journal of Basic Eng,. 1961, 83D:95-108.
    
    6. Hwang P. Y. C. A Near-instantaneous initialization method for attitude determination. Proceedings of the ION GPS-90, Colorado Springs, 1990.
    
    7. David Weiss. Analysis of an upgraded GPS internal kalman filter; IEEEE AES systems magazine, Jan. 1996.
    
    8. Juang. J. C, Huang G S. Development of GPS-based attitude determination algorithms; IEEE Transaction on AES, 1997, 33(4).
    
    9. Juang. J. C, Huang GS. Application of kalman filter and mean field anneal ing algorithms in GPS-based attitude determination. Navigation, ION, 1999, 51(1).
    
    10. J. Wu and S. G. Lin. Kinematic positioning with GPS carrier phases by two types of wide laning. Navigation, ION, 1997/1998, 44(4).
    
    11. Landan. H, Euler. H. J. on-the-fly ambiguity resolution for precise differential positioning. Proceedings of GPS-92, the Institute of navigation. Alexandria, VA, 1992.
    
    12. Ward L Metal. Filter for GPS attitude and baseline estimation. Navigation, ION, 1997, 44(2). ,
    
    13. Weiss. J. D, Kee. D. S. A direct performance comparison between loosely coupled and tightly coupled GPS/INS integration techniques. Proceedings of the 51th annual meeting, ION, Colorado Springs, 1995.
    
    14. Benson. O. J. A comparison of two approaches to pure-inertial and Doppler-inertia error analysis(J). IEEE Transactions on Aerospace and Electronic Systems, 1975, 11(4): 447-455.
    
    15. Bar-Itzhack. I. Y, Goshen-Meskin D. Identity between INS position and velocity error models(J). Journal of Guidance, Control and Dynamics, 1981, 4(5):568-570.
    
    16. Bar-Itzhack. I. Y, Goshen-Meskin D. Identity between INS position and velocity error equations in the true frame(J). Journal of Guidance, Control and Dynamics, 1988, 11(6):590-592.
    
    17. Miller. R. B.A new strapdown attitude algorithm(J). Journal of Guidance, Control and Dynamics, 1983, 6(4):287-291.
    
    18. Bar-Itzhack.I.Y, Berman N. Control theoretic approach to inertial navigation systems(J). Journal of Guidance, Control and Dynamics, 1988, 11(3):237-245.
    
    19. Goshen-Meskin D, Bar-Itzhack. I. Y. Unified approach to inertial navigation system error modeling(J). Journal of Guidance, Control and Dynamics, 1992, 15(3): 648-653.
    
    20. Jiang. Y. F, Lin. Y. P. Improved strapdown coning algorithms(J). IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(2):484-489.
    
    21. Lee. J. G, Park. C. G, Park HW. Multiposition alignment of strapdown inertial navigation system(J). IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(4):1323-1328.
    
    22. Chung. D. Y, Lee. J. G, Park. C. G, Park. EW. Strapdown INS error model for multiposition alignment(J). IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1362-1366.
    
    23. Dmitriyev. S. P, Stepanov. O. A, Shepel. S. V. Nonlinear Filtering Methods Application in INS Alignment(J). IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(1): 260-271.
    
    24. Savage. P. G. Strapdown inertial navigation integration algorithm design, Part I: Attitude algorithms (J). Journal of Guidance, Control and Dynamics, 1998, 21 (2): 19-28.
    
    25. Savage. P. G. Strapdown inertial navigation integration algorithm design, Part II: Velocity and position algorithm(J). Journal of Guidance, Control and Dynamics, 1998, 21(2): 208-221.
    
    26. Litmanovich. Y. A, Lesyuchevsky. V. M, Gusinsky. V. Z. Two New Classes of Strapdown Navigation Algorithms(J).Journal of Guidance, Control and Dynamics, 2000, 23(1): 34-44.
    
    27. Roscoe. K. M. Equivalency between strapdown inertial navigation coning and sculling integrals/algorithms (J). Journal of Guidance, Control and Dynamics, 2001, 24(2): 201-205.
    
    28. Baziw. J, Leondes. C. T. In-flight alignment and calibration of inertial measurement units, Part I: General formulation (J). IEEE Transactions on Aerospace and Electronic Systems, 1972, 8(4):439-449.
    
    29. Baziw. J,: Leondes.C.T. In-flight alignment and calibration of inertial measurement units, Part II: Experimental results(J). IEEE Transactions on Aerospace and Electronic Systems, 1972, 8(4):450-465.
    
    30. Schneider. A. M. Kalman filter formulation for transfer alignment of strapdown inertial units (J). Navigation: Journal of the Institute of Navigation, 1983, 30(1): 79-88
    
    31. Grewal.M. S, Henderson. V. D, Tazartes D. A. Application of Kalman filtering to the calibration and alignment of inertial navigation systems(J). IEEE Transactions on Automatic Control, 1991, 36(1):4-13.
    
    32. Hecht. N. R. Theory of the back propagation neutral networks proceeding(J). IEEE International Conference Neutral Networks, 1989:593-605.
    
    33. Ham. F. M, Brown. T. G. Observability, eigenvalues, and Kalman filtering(J). IEEE Transactions on Aerospace and Electronic Systems, 1983, 19(2): 269-273.
    
    34. Jiang. Y. F, Lin. Y. P. Error estimation of INS ground alignment through observability analysis(J). IEEE Transactions on Aerospace and Electronic Systems,;1992, 28(1): 92-96.
    
    35. Goshen-Meskin. D, Bar-Itzhack. I. Y. Observability analysis of piece-wise constant system, Part I: Theory(J). IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(4): 1056-1067.
    
    36. Goshen-Meskin.D, Bar-Itzhack.I.Y. Observability analysis of piece-wise constant system. Part II: Application to Inertial navigation in-flight alignment(J). IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(4):1068-1075.
    
    37. Reid. J. G, Tucker. M, Dayan R. An extended Kalman filter for the estimation of transfer alignment errors to an airborne vehicle(A), AIAA Guidance Navigation and Control Conference(C), 1980: 54-61.
    
    38. Kain. J. E, Cloputier. J. R. Rapid transfer alignment for tactical weapon applicatio ns(R).AIAA-89-3581.
    
    39. Rogers. R. M. Velocity-plus-rate matching for improved tactical weapon rapid transfer alignment (A). AIAA Guidance, Navigation and Control Conference (C), 1991:1580-1588.
    
    40. Spalding. K, Missouri. S.L. An efficient rapid transfer alignment filter(R).AIAA-92-4598.
    
    41. Maybeck. P. S. Stochastic Models, Estimation, Control. Vol. 1. Acdemic Press, 1979.
    
    42. Wong. R. V. C, Schwarz. K. P, Cannon. M. E. High accuracy kinematic Positioning by GPS-INS Navigation. Journal of The Institute of Navigation, 1988, 35(2): 275-287.
    43. Bierman. G. J. Factorization Methods for Discrete Sequential Estimation. Academic Press, 1977.
    44.王惠南.GPS导航原理与应用.科学出版社.2003.8.
    45.安东,任思聪,郑谔.GPS/INS系统的容错设计.导航.1994,No.1.
    46.顾启泰,周力强,刘学斌.卡尔曼滤波器在定位定向系统中的应用.导航.1992,No.1.
    47.顾启泰.INS/GPS组合导航系统的实现方法及其应用.导航.1992,No.2.
    48.申功勋,孙建峰.信息融合理论在惯性/天文/GPS组合导航系统中的应用.国防工业出版社.1998.1.
    49.黄伟.采用卡尔曼滤波器的GPS/INS组合系统模拟仿真.导航.1994,NO2:57-69.
    50.方有培.对精确制导武器的有郊干扰途径.制导与引信.2000(2).
    51.陈哲.捷联惯导系统原理.北京.宇航出版社.1996.
    52.李辉,王子滨.国外GPS/INS复合制导技术的发展.现代防御技术.2004.3,vol.32.No.2.
    53.董绪荣,华仲春.GPS/INS组合导航研究.国防科技大学出版社.1998.
    54.袁信,俞济祥,陈哲.导航系统.北京.航空工业出版社1993.
    55.以光衢.惯性导航原理.航空工业出版社.1987.12.
    56.王惠南.捷联式惯性导航系统的误差分析.惯性技术.1986.
    57.(美)J.B.Scarborough.陀螺仪理论与应用.国防工业出版社.1964.
    58.周东华,孙优贤.控制系统的故障检测与诊断技术.清华大学出版社.1994.9.
    59.(苏)B.A.Pomahob.误差理论与最小二乘法.高等教育出版社.1985.
    60.(德)P.R.贝尔顿.数据处理与误差分析.知识出版社.1986.
    61.万德钧,房建成,王庆.GPS动态滤波的理论、方法及其应用.江苏科学技术出版社.2000.12.
    62.万德钧,房建成,王庆.惯性导航初始对准.南京.东南大学出版社.1998.12.
    63.邓自立.最优滤波理论及其应用—现代时间序列分析方法.哈尔滨工业大学出版社.2000.8.
    64.钱杏芳等.导弹飞行力学.北京理工大学出版社.2000年.
    65.文仲辉.导弹系统分析与设计.北京理工大学出版社.1989.10.
    66.何友等.雷达自动检测与恒虚警处理.北京.清华大学出版社.1999.3:P16.
    67.丁鹭飞等.雷达原理.西安.西安电子科技大学出版社.1995.6:P46-P49.
    68.李兴国.毫米波近感技术及其应用.北京.国防工业出版社.1991.1:P62.
    69.赵国庆.雷达对抗原理.西安.西安电子科技大学出版社.1999.10:P6-P8.
    70.王国玉等.电子战条件下雷达接收信号模型.国防科技大学学报.1997.2.
    71.邓扬建等.干扰条件下常规雷达效能仿真模型.电子对抗技术.1998.vol.13.NO.5
    72.丁大勇等.电子战环境下雷达探测模型建立方法.空军雷达学院学报.2000.vol.4.No.2.
    73.聂蓉梅等.反坦克导弹攻击区杀伤概率计算.弹箭与制导学报.1997.No.1.
    74.冯忠华.毫米波技术的最近军事应用.2001年全国微波毫米波会议论文集.
    75.淦元柳.毫米波无源干扰技术及其发展现状.航天电子对抗.2001(6).
    76.付伟.烟幕的遮蔽、施放及测试技术.航天电子对抗.2002(3).
    77.裴鹿成等.蒙特卡洛方法及其应用.海洋出版社.1998.
    78.方再根.计算机模拟和蒙特卡洛方法.北京工业出版社.1988.
    79.姚姚.蒙特卡洛非线性反演方法及应用.冶金工业出版社.1997.
    80.屈剑明.复合制导体制中的若干关键技术研究.北京航空航天大学博士论文.2002年.
    81.屈晓光.干扰条件下中末制导交班精度分析.航天总公司第二研究院博士论文.1999年.
    82.程国采.战术导弹导引方法.国防工业出出版社.1996年.
    83.史震,赵世军.导弹制导与控制原理.哈尔滨工程大学出版社.2002.
    84.王艳东,范跃祖.捷联惯导系统多位置对准仿真研究.计算机仿真.2001.No.2.
    85.周明著.MATLAB图形技术:绘图及图形用户接口.西北工业大学,1999.1.
    86.韩利竹,王华编著.MATLAB电子仿真与应用.国防工业出版社,2001.1.
    87.范影乐编著.MATLAB仿真应用祥解.人民邮电出版社,2001.3.
    88.尚涛等著.工程计算可视化与MATLAB实现.武汉大学出版社,2002.1.
    89.刘则毅主编.科学计算技术与MATLAB.科学出版社,2001.9.
    90.刘邦本著.3ds max 6效果图制作教程.清华大学出版社,2004.4.
    91.刘宏友,李莉,彭锋编著.MATLAB 6基础及应用.重庆大学出版社,2002.4.
    92.张友安,胡云安.导弹控制和制导的非线性设计方法国防工业出版社.北京2003.7
    93.张航,黄攀译.精通MATLAB 6.清华大学出版社,2002.6.
    94.孟秀云.导弹制导与控制系统原理.北京理工大学出版社.北京.2003.2.
    95.颜庆津.数值分析.北京航空航天大学出版社.北京.2000.1.
    96.邓建中等.计算方法.西安交通大学出版社.西安.1985.5.
    97.汪荣鑫.随机过程.西安交通大学出版社.西安.1987.12.
    98.王瑛等.GPS/INS复合制导技术在武器中的应用及发展.装备与技术.2005.No.11.
    99.孙玉明.巡航导弹的基本制导体制.制导与引信.2006.3.No.1
    100.王艳军等.巡航导弹制导方式及其电子对抗途径分析.航天电子对抗.2006.No.3.
    101.蒋正新,施国梁.矩阵理论及其应用.北京航空学院出版社.1988.3.
    102.廖瑛等.基于Matlab/Simulink的某型号巡航式靶弹弹道设计与仿真.航空计算技术.2001.3.No.1.
    103.张平等.导弹动力学建模与BTT解耦控制.系统仿真学报.2006.8.
    104.陶江等.巡航导弹制导技术研究.飞航导弹.2006.No.3.
    105.黎玉刚.DSP在INSGPS组合导航系统中的应用.西北工业大学硕士学位论文.2005.3.
    106.程向红.捷联惯导系统初始对准中Kalman参数优化方法.中国惯性技术学报.2006.8.
    107.姬占礼.捷联惯导GPS组合导航在弹箭上的应用研究.南京理工大学硕士学位论文.2004.6.
    108.周鹏等.陆基巡航导弹四组合制导系统仿真研究.中国惯性技术学报.2002.8.
    109.刘毅等.初始对准误差对惯性制导误差影响的简化算法.航天控制.2006.4.
    110.刘准,陈哲.PINS静基座对准中的理论与算法的研究.北京航天航空大学学报.2002,12.
    111.王冠军.中远程空空导弹复合制导研究.西北工业大学硕士学位论文.2004.3.
    112.李海平等.导弹末制导精度分析的协方差方法研究.战术导弹技术.2004.1.
    113.孙玉明.巡航导弹的基本制导体制.制导与引信.2006.3.
    114.陶江,孙继银.巡航导弹制导技术研究.控制与制导.2006.No.3.
    115.张纯学.复合制导技术的进展.控制与制导.2004.No.9.
    116.刘准.巡航导弹制导系统中的对准与信息融合技术研究.北京航空航天大学博士学位论文.2001.9.
    117.刘危等.捷联惯导系统的圆锥误差补偿算法研究.南京航空航天大学学报.2004.6.
    118.傅勇.弹道导弹INS/GPS/RSM组合导航研究.航天科工集团第二研究院硕士学位论文.2002.3.
    119.姜复兴.导弹一体化发射平台中的组合导航系统的研究.哈尔滨工业大学硕士学位论文.2000.9.
    120.王宇飞.信息融合技术在巡航导弹组合导航系统中的应用研究.哈尔滨工业大学博士学位论文.2000.3.
    121.高洪民.机载布撒器制导方案与信息优化处理技术研究.北京理工大学博士学位论文.2002.7.
    122.张煜烽.捷联惯导/GPS误差控制技术.北京理工大学博士学位论文.2001.2.
    123.于伟华.锥扫脉冲多普勒/频率步进复合制导系统测角方法研究.雷达与对抗.2004.No.1.
    124.卫东,刘鼎臣.毫米波雷达制导反舰导弹作战性能研究.战术导弹技术.2004.9.
    125.孙卫东,林晖.毫米波制导技术对反舰导弹作战性能的主要影响.控制与制导.2004.9.
    126.秦玉亮,王宏强,黎湘.多模复合制导数据处理仿真平台的研究.计算机仿真.2005.7.
    127.刘苏杰.多模复合导引头信息融合关键技术初探.制导与引信.2004.9.
    128.秦玉亮等.多模复合制导数据融合处理仿真系统开发中的若干关键技术.电光与控制.2005.4.
    129.任宏光,周桢.复合制导空空导弹快速仿真研究与应用.飞行力学.2004.3.
    130.何立萍.超高速导弹毫米波/红外复合导引头研究.红外与激光工程.1996.8.
    131.潘大利.PAC-3导弹的毫米波导引头.飞航导弹.1998.1.
    132.沈心雄.导引头天线的研究方向.上海航天.1995.3.
    133.贺志毅.固态毫米波导引头距离性能分析.制导与引信.2000.3.
    134.马明.毫米波导引头的技术特点.上海航天.1999.No.5.
    135.沈吉.目标运动对步进频率毫米波雷达锥扫测角的影响研究.电子学报.2004.6.
    136.吕久明.毫米波雷达导引头性能研究.战术导弹控制技术.2005.No.4.
    137.张伟等.毫米波脉冲多普勒雷达导引头锥扫测角算法.现代雷达.2006.4.
    138.史峰译,启朝佩校.自主毫米波雷达制导系统.飞航导弹.1994.1.
    139.沈亮,宋龙.自适应卡尔曼滤波算法在雷达导引头中的应用.航空兵器.1994.No.6.
    140.李德纯.主动雷达导引头研究中的几个关键问题.航空兵器.1996.No.3.
    141.高倩.用于战斧巡航导弹自主末段制导的集成式导引头信号处理器.飞航导弹.2005.12
    142.刘隆和,王晓红.毫米波寻的制导技术研究.制导与引信.1998.4.
    143.李德纯.战术导弹的毫米波导引头.制导与引信.1994.No.2.
    144.EuropeanPatent,0636898,刘菊艳译,毕世龙校.三维成像毫米波跟踪和制导系统.飞航导弹.1997.No.5.
    145.谢文冲等.目标三维转动对弹载毫米波SAR成像分析.现代雷达.2004.1.
    146.陈保辉.毫米波技术在精密制导中的应用.上海航天.1993.1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700