用户名: 密码: 验证码:
上海地区人群甲型流感的传播与病毒抗原变异的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流感病毒长期以来一直是威胁人类健康的重要病原体之一,以流行病学监测为基础和重点,对易感人群进行免疫保护是目前降低流感发病率和死亡率的重要措施。本研究借助近几年对上海地区的流感监测及全球范围的流感监测网络信息,对近几年全球流感动态以及上海地区人群免疫状况和流感病毒抗原变异状况进行了系统研究,主要包括以下内容:
     1.鉴于对人群免疫状况的了解结合流感病毒变异情况,可对流感的流行形势进行估计和预测,首先对上海市人群(包括接触禽、畜类动物的职业人群和非接触人群)甲型流感病毒HAI抗体水平进行了调查,结果显示:2004年上海市人群对A/闽/411/2002(H3N2)流感毒株HAI抗体阳性率为52.1%,人群中已有较好的免疫屏障;对A/沪/7/1999(H1N1)流感病毒HAI抗体阳性率仅为8.5%,大部分人群对其具有易感性;接触人群中存在H5亚型流感病毒HAI抗体;一般人群和接触人群中均存在H9亚型流感病毒HAI抗体,后者阳性率较高:接触人群H1、H3、H5、H9亚型流感病毒HAI抗体阳性率均较一般人群高。
     2.及时掌握最新的流感动态有助于防治工作的顺利进行,因此借助世界卫生组织(WHO)流感监测网络,分析近几年全球流感流行概况,同时在上海地区开展人群流感病毒病原学监测,结果表明全球流感动态与以往相似,每年流行强度存在差别,在北半球通常在11月至翌年3月间暴发流行,上海地区流感发生相对较晚,流行暴发多集中在翌年的1月至4月间;人群中同时存在H1,H3N2和乙型流感病毒,多数国家或地区以H3N2为主,H1N1和乙型流感病毒多呈低水平流行。
     3.为进一步了解近几年上海地区流感病毒抗原变异状况,推测可能的发展趋势,在流感病毒病原学监测的基础上对甲型流感病毒分离株HA片段进行分析,发现H3亚型病毒株似乎尝试多方向进化途径,但新旧变异株系间存在着明确的变异继承关系,基本呈现出在A/Fujian/411/2002、A/Wyoming/3/2003相同类别毒株基础上变异,逐渐接近A/Wellington/1/2004、A/Califomia/7/2004,再向A/Wisconsin/67/2005相同类别株发展,并已开始出现抗原性不同的病毒株;上海市H1N1亚型流感病毒在A/New Caledonia/20/99基础上继续变异,2006年分离株与之相比抗原性差别较大,而与2007-2008年WHO新推荐的疫苗株A/SolomonIslands/3/2006位于同一分枝。
     4.近年来H5N1亚型流感病毒人间感染不断发生,了解动物中H5N1高致病性禽流感病毒的情况,有助于及时发现人间病例并掌握H5N1亚型流感病毒抗原变异状况及其对人类的威胁,故借助世界动物卫生组织(OIE)禽流感更新信息,分析近几年全球H5N1高致病性禽流感动态,同时与上海市畜牧兽医站等动物部门合作,对上海市H5亚型禽流感病毒分离株HA片段进行分析,结果表明H5N1亚型高致病性禽流感病毒在某些国家和地区的家禽中形成地方性流行,地域范围不断扩大,人间病例不断增加,但尚未发现有效的人-人传播;上海市H5亚型禽流感病毒株与中国其他省市禽类中感染的禽流感病毒株同源性比较高,而与H5N1亚型流感病毒人间病例分离株差别比较大,但存在跨越宿主屏障直接感染人类的可能性。
     综合上述分析结果,我们认为上海地区人群虽然对原有的H3亚型参考病毒株有较高的免疫保护,但H3亚型病毒HA已出现新的抗原漂移,人群现在对新变异株的保护水平尚未知,有可能在未来引起局限性暴发甚至地方性流行;人群对H1亚型流感病毒免疫保护水平低,同时H1亚型流感病毒株部分与原推荐疫苗株抗原性差别较大,并在现推荐疫苗株基础上继续变异,需警惕发生流行的可能性;H5N1亚型高致病性禽流感地域范围扩大,人间病例不断发生,存在演变成大流行株的威胁,上海市H5亚型禽流感病毒株存在跨宿主屏障感染人类的可能性,而且已发现人群尤其禽、畜类动物接触人群中存在H5、H9亚型流感病毒的既往感染,应警惕禽流感病毒的变异和人间病例的发生。
     通过本研究的开展,我们进一步完善了实验室流感病原学及HA变异监测流程,同时补充更新了甲型流感病毒基因数据库,有助于甲型流感病毒基因进化和抗原变异规律的系统研究。因此,还须继续不间断地开展流感监测,及时地掌握流感最新动态,并系统研究甲型流感病毒抗原变异规律。
Influenza viruses have threatened the human health for a long time as an important pathogen, and at the present time, epidemic surveillance and protection of high-risk population are the major measures to decrease the morbidity and mortality caused by influenza. With the help of WHO global influenza programme and the development of influenza surveillance in Shanghai, we explored the global influenza activity, especially the antigenic variation of influenza A viruses and the human condition of immune to influenza in Shanghai region. The details were as follows:
     Whereas the human immune condition, combining the variation of influenza viruses, can help to estimate and even forecast the trend of influenza activity, we investigated HAI antibodies of influenza A viruses in the population of Shanghai including the common population and the professional population contacting with avian or domestic animal. The results showed that the population had have strong immune barrier to A/Fujian/411/2002(H3N2) with a 52.1% positive rate of HAI antibody, while most were susceptible to A/Shanghai/7/99(H1N1) for the positive rate of HAI antibody was only 8.5%, the H5 HAI antibody was exist in the contacting population, while the H9 HAI antibody was found in both populations with higher positive rate in the contacting population, and all the positive rates of HAI antibody to H1, H3, H5, H9 were higher in contacting population than in common population.
     As it is helpful to master the updating influenza activity, we analyzed the general situation of global influenza in recent years with the help of WHO global influenza surveillance net, and carried out influenza virus surveillance in Shanghai region. Data showed that the epidemic of influenza was similar to the past while generally mild to moderate though reported in Africa, the Americas, Asia, Europe and Oceania, and outbreaks usually occurred from November to next March in the northern hemisphere while it came late in Shanghai from January to April; H1, H3N2 and B co-circulated, but H3N2 predominated in most countries and H1 and B viruses circulated at low levels in most time.
     Based on the influenza virus surveillance in Shanghai region, the phylogenetic analysis of HA segment was applied to know the antigenic variation of influenza A virus and consequently to conjecture its direction. We found that H3 viruses evolved towards multiplex directions, but showed a tend from A/Fujian/411/2002-like and A/Wyoming/3/2003-like to A/Wellington/ 1/2004-like and A/California/7/2004-like strains and then closing to A/Wisconsin/67/2005 while an emergence of the isolates distinguishable from vaccine strains. The recent H1 isolates in Shanghai were found some variation occurred on the vaccine strains A/New Caledonia/20/99-like and isolates of 2006 was distinguishing from it while was on the same cluster of the new vaccine strain A/Solomon Islands/3/2006.
     For human cases of H5N1 viruses are continuing to occur in recent years and to master the epidemiology of H5N1 HPAI in animals is helpful to find human cases in time and to know the updating antigenic variation of the virus, we analyzed the global H5N1 HPAI activities in recent years with the help of OIE global surveillance net and applied phylogenetic analysis to the HA segment of avian H5 isolates in Shanghai with collaborating with center for animal disease control, Shanghai. Data showed that the H5N1 virus is now endemic in the poultries in parts of some countries and has expanded its geographical range to include new countries as well as human cases continue to emerge though an efficient human-to-human transmission hasn't been established. We found the H5 isolates in Shanghai was similar to those isolated from avian in other province in China and distinguishable from the human isolates, but the isolated might break the host barrier and infect human.
     As showed above, we could draw the conclusion that H3 viruses could cause outbreaks or local epidemics in Shanghai for the immune of population to the new emerging antigenic drift was still unknown though there was strong immune barrier to the previous vaccine strain, H1 viruses also may caused epidemics as the population had a weak immune protection to the previous reference strains A/New Caledonia/20/99-like and part of the recent isolates were distingwishing from them and continued to evolute on the new reference strain, and H5N1 HPAI activities has expanded its geographical range thus increasing the size of the population at risk as the continuing emergence of human cases which give the virus an opportunity to evolve towards a fully transmissible pandemic strain. We should keep eyes on the human cases of avian influenza virus an its variation for the H5 isolates in Shanghai also has the possibility to infect human directly and the infection of H5, H9 viruses had previously occurred in the population especially in those contacting with animals.
     While carrying out the above work, the surveillance system of influenza virus and its variation of HA antigen is also consummated, and the database of HA segment is complemented, which could be used to explore the genetic evolution and antigenic variation rule of influenza A viruses. So we should continue to carry out the influenza surveillance and master the updating influenza activity so that we could study the law of antigenic variation of influenza A viruses systematically.
引文
1. Cox NJ, Subbarao K. Influenza[J]. The Lancet, 1999, 354(9186): 1277-1282.
    2. Cox NJ, Subbarao K. Global epidemiology of influenza: past and present[J]. Annu. Rev. Med., 2000, 51: 407-421.
    3. Pales P. Influenza: old and new threats[J]. Nature Medicine Supplement, 2004, 10(12): S82-S87.
    4.闻玉梅.现代微生物学[M].北京:人民卫生出版社,2000:1005-1020.
    5.金奇.医学分子病毒学[M].北京:科学出版社,2001:633-658.
    6.杨春,余佳.甲型流感病毒抗原变异的机理[J].国外医学病毒学分册,1999,6(3):88-90.
    7. Wilson IA, NJ Cox. Structural basis of immune recognition of influenza virus hemagglutinin[J]. Annu. Rev. Immunol, 1990, 8: 737-771.
    8.张文彤,姜庆五.全球历年人甲型流感病毒H3A1抗原的分子进化研究[J].中华流行病学杂志,2005,26(11):843-847.
    9. Plotkin JB, Dusboff J, Levin SA. Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus[J]. Proc. Natl. Acad. Sci. U.S.A., 2002, 99(9): 6263-6268.
    10. Eric CJ Claas, Yoshihiro Kawaoka, Jan C de Jong, et al. Infection of Children with Avian-Human Reassortant Influenza Virus from Pigs in Europe[J]. Virology, 1994, 204(1): 453-457.
    11. Zhou NN, Senne DA, Landgraf JS, et al. Genetic reassortment of avian, swine, and human influenza A viruses in American pigs[J]. J. Virol., 1999, 73(10): 8851-8856.
    12. Gorman OT, Bean W J, Kawaoka Y, et al. Evolution of the nucleoprotein gene of influenza A virus[J]. J. Virol., 1990, 64(4): 1487-1497.
    13. Kawaoka Y, Krauss S, Webster RG.. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics[J]. J. Virol., 1989, 63(11): 4603-4608.
    14. Subbarao K, Klimov A, Katz J, et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness[J]. Science, 1998, 279(5349): 393-396.
    15. Eric CJ Claas, Albert DME Osterhaus, Ruud van Beek, et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus[J]. The Lancet, 1998, 351(9101): 472-477.
    16. Hatta M, Gao P, Halfmann P, et al. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses [J]. Science, 2001,293(5536):1840-1842.
    17. Elbers AR, Koch G, Bouma A. Perfomance of clinicalsigns in poultry for the detection of outbreaks during the avian influenza A (H7N7) epidemic in the Netherlands in 2003 [J]. Avian Pathol, 2005, 34(3): 181-187.
    18. Webby RJ, Webster RG. Are we ready for pandemic influenza [J]? Science, 2003, 302(28):1519-1522.
    19. Periris M, Yuen KY, Leung CW, et al. Human infection with influenza H9N2 [J]. The Lancet, 1999, 354(9182):916-917.
    20.郭元吉,李建国,程小雯.禽H9N2亚型流感病毒能感染人的发现[J].中华实验和临床病毒学杂志,1999,13(2):105-108.
    21.郭元吉,谢健屏,王敏,等.从我国人群中再次分离到H9N2亚型流感病毒[J].中华实验和临床病毒学杂志,2000,14(3):209-212.
    22.邹毅,李永龄,叶建洲,等.韶关市发现禽(H9N2)流感病毒感染人的监测报告[J].中华流行病学杂志,2000,21(4):303.
    23. Sims LD, Domenech J, Benigno C, et al. Origin and evolution of highly pathogenic H5N1 avian influenza in Asia [J]. Vet. Rec., 2005, 157(6): 159-164.
    24. WHO. The Weekly Epidemiological Record (WER). Available from http://www.who.int/wer/en/.
    25. OIE. Daily Update on Avian Influenza Situation in Birds. Available from http://www.oie.int/.
    26. WHO. Update on human cases of avian A (H5N1) infection. Available from http://www.who.int/.
    27. Kilbourne. Influenza [M]. New York:Plenum Medical Book Co, 1987:1-20.
    28.孙虹,马洪波,杨卫路,等.禽类养殖场人员禽流感病毒抗体水平调查[J].中国公共卫生,2004,20(8):989-990.
    29.张敬平,尤凤兴,董美华,等.无锡地区家禽接触人群与一般人群中甲型流感病毒H1、H3、H5、H7、H9抗体血清学调查[J].中国卫生检验杂志,2004,14(5):621-622.
    30.张秋丽,谭志熹,黄嘉盈.芳村区禽类接触人群H5N1型禽流感抗体检测结果[J].国际医药卫生导报,2006,12(13):112-113.
    31.于康震,付朝阳,崔尚金,等.我国禽流感防制研究进展[J].中国兽医学报,2001,21(1):103-106.
    32.梁庆,李景东,陈庞洲,等.潮汕地区健康青年H9、H6、H5亚型甲型流感病 毒血清抗体调查[J].汕头大学医学院学报,2003,16(2):107-108.
    33.李美霞,周秀珍,杨卫路,等.广州地区家禽接触人群及一般人群禽H9N2亚型流感病毒血清学监测[J].疾病控制杂志,2005,9(6):664-665.
    34. Guan Y, Shortridge KF, Krauss S, et al. Molecular characterization of H9N2 influenza viruses: were they the donors of the "internal" genes of H5N1 viruses in Hong Kong [J]? Proc. Natl. Acad. Sci. U.S.A., 1999, 96(16):9363-9367.
    35. YK Choi, H Ozaki, RJ Webby, et al. Continuing evolution of H9N2 influenza viruses in southeastem China [J]. J. Virol., 2004, 78(16):8609-8614.
    36. Jinhua L, Katsunori O, Hiroichi O, et al. H9N2 influenza viruses prevalent in poultry in China are phylogenetically distinct from A/quail/Hong Kong/G1/97 presumed to be the donor of the internal protein genes of the H5N1 Hong Kong/97 virus [J]. Avian Pathology, 2003, 32(5):551-560.
    37.李玉青,潘浩,祖荣强,等.禽畜养殖与甲型流感病毒抗体水平关系研究[J].中国公共卫生,2003,19(1):45-46.
    38.谭兆营,潘浩,朱凤才,等.自然人群甲型流感病毒抗体水平与养殖家禽家畜之间的关系研究[J].中华流行病学杂志,2005,26(9):706.
    39. Anna T, Max P, Nguyen TKC, et al. Is exposure to sick or dead poultry associatied with flulike illness? A population-based study from a rural area in vietnam with outbreaks of highly pathogenic avian influenza [J]. Arch. Intern. Med., 2006, 166(1):119-123.
    40. Unqchusak K, Anewarakul P, Dowell SF, et al. Probable person-to-person transmission of avian influenza A (H5N1) [J]. N. Engl. J. Med., 2005, 352(4):333-340.
    41. Thijs K, Guus R, Debbyvan R, et al. Avian H5N1 influenza in cats [J]. Science, 2004, 306(5694):241.
    42. Songsermn T, Amonsin A, Jam-on R, et al. Avian influenza H5N1 in naturally infected domestic cat [J]. Emerging Infect. Dis., 2006, 12(4):681-683.
    43. Yingst SL, Saad MD, Felt SA. Qinghai-like H5N1 from domestic cats, northern Iraq [J]. Emerging Infect. Dis., 2006, 12(8): 1295-1297.
    44. Songserm T, Amonsin A, Jam-on R, et al. Fatal avian influenza A H5N1 in a dog [J]. Emerging Infect. Dis., 2006, 12(11):1744-1747.
    45. Alongkom A, Sunchai P, Apiradee T, et al. Genetic characterization of H5N1 influenza A viruses isolated from zoo tigers in Thailand [J]. Virology, 2006, 344(2):480-491.
    46. Akira Y, Lap-yee L, John ST. Typing and subtyping of influenza viruses and respiratory syncytial viruses by multiplex RT-PCR[J]. Int. Congr. Ser., 2004, 1263: 381-385.
    47. Saibal KP. Influenza virus types and subtypes detection by single step single tube multiplex reverse transcription-polymerase chain reaction (RT-PCR) and agarose gel electrophoresis[J]. J. Virol. Methods, 2002, 99: 63-70.
    48.杨式芹,沈晓娜,谢剑锋,等.2003-2004年福建省流感暴发监测分析[J].海峡预防医学杂志,2005,11(4):17-19.
    49.吴海燕,余佳,龙波,等.四川省2001-2004年流感监测结果分析[J].公共卫生与预防医学,2005,16(5):19-23.
    50.刘运芝,龙智钢,张红,等.2004年湖南省流行性感冒病原学监测结果与分析[J].中国卫生检验杂志,2005,15(12):1487-1488.
    51.刘维斯,周秀珍,杨卫路.广州市2004年流感监测结果分析[J].热带医学杂志,2006,6(1):67-68.
    52.霍细香,张险峰,陈丽,等.湖北省2004年流感监测结果分析[J].公共卫生与预防医学,2005,16(5):16-18.
    53.潘家兴,马焱,曾祥洁,等.海南省2004-2005年流行性感冒病原学监测分析[J].中国热带医学,2006,6(12):2158-2159.
    54.刘运芝,龙智钢,张红,等.2005年湖南省流行性感冒病原学监测结果与分析[J].实用预防医学,2006,13(6):1521-1522.
    55.吴少慧,于伟,张眉眉,等.辽宁省1999-2005年度流感病原学监测[J].中华流行病学杂志,2006,27(3):238-240.
    56.梅玉发,徐磊,易显明,等.2004-2005年十堰市冬春季流感监测实验室结果分析[J].疾病监测,2006,21(2):61-63.
    57.吴燕平,许爽,朴东风,等.2004-2006年吉林省流行性感冒病原学变化特点[J].中国卫生工程学,2006,5(6):366-368.
    58.詹军,孙晓强,刘明智,等.全国流感监测网络宁夏监测点2004-2005年度流行性感冒监测结果分析[J].宁夏医学杂志,2006,28(2):108-110.
    59.李燕婷,陈健,孔利群,等.上海市1999-2003年流行性感冒流行特征分析[J].中国公共卫生,2005,21(1):127-128.
    60. Gunther I, Glatthaar B, Doller G, et al. A Hl hemagglutinin of a human influenza A virus with a carbohydrate-modulated receptor binding site and an unusual cleavage site[J]. Virus Res., 1993, 27(2): 147-160.
    61.郭元吉,程小雯.流行性感冒病毒及其实验技术[M].北京:中国三峡出版社, 1997:21-106.
    62. Webster RG, Bean W J, Gorman OT, et al. Evolution and ecology of influenza A viruses [J]. Microbiol. Rev., 1992, 56(1):152-179.
    63. Reid AH, Fanning TG, Hultin JV, et al. Origin and evolution of the 1918 "Spanish" influenza virus hemagglutinin gene [J]. Proc. Natl. Acad. Sci. U.S.A., 1999, 96(4):1651-1656.
    64. Taubenberger JK, Reid AH, Krafft AE, et al. Initial genetic characterization of the 1918 "Spanish" influenza virus [J]. Science, 1997, 275(5307): 1793-1796.
    65. Gorman OT, Bean WJ, Kawaoka Y, et al. Evolution of influenza A virus nucleoprotein genes: implications for the origins of H1N1 human and classical swine viruses [J]. J. Virol., 1991, 65(7):3704-3714.
    66. Ursula Schultz, Walter M Fitch, Stephan Ludwig, et al. Evolution of pig influenza viruses [J]. Virology, 1991, 183(1):61-73.
    67. Yhanawongnuwech R, Amonsin A, Tantilertcharoen R, et al. Probable tiger-to-tiger transmission of avian influenza H5N1 [J]. Emerging Infect. Dis., 2005, 11(5):699-701.
    68. Webster RG, Peiris M, Chen H, et al. H5N1 outbreaks and enzootic influenza [J]. Emerging Infect. Dis., 2006, 12(1):3-8.
    69. Dennis N. Avian influenza: evidence points to migratory birds in H5N1 spread [J]. Sicence, 2006, 311 (5765): 1225.
    70. Ninomiya A, Takada A, Okazaki K, et al. Seroepidemiological evidence of avian H4, H5, and H9 influenza A virus transmission to pigs in southeastern China [J]. Vet. Microbiol., 2002, 88(2):104-114.
    71. Young KC, Tien DN, Hiroichi O, et al. Studies of H5N1 influenza virus infection of pig by using viruses isolated in Vietnam and Thailand in 2004 [J]. J. Virol., 2005, 79(16):10821-10825.
    72. Hong-Chao Ma, Ji-Ming Chen, Ji-Wang Chen, et al. The panorama of the diversity of H5 subtype influenza viruses [J]. Virus Genes, 2007, 34(3):283-287.
    73. Campitelli L, Ciccozzi M, Salemi M, et al. H5N1 influenza virus evolution: a comparison of different epidemics in birds and humans (1997-2004) [J]. J. Gen. Virol., 2006, 87(Pt 4):955-960.
    74. G.J.D. Smith, T.S.P. Naipospos, T.D. Nguyen, et al. Evolution and adaptation of H5N1 influenza virus in avian and human hosts in Indonesia and Vietnam [J]. Virology, 2006, 350(2):258-268.
    75.许慧琳,张文彤,赵耐青,等.影响H5N1甲型流感病毒对哺乳动物毒力变异的HA序列关键位点的研究[J].复旦学报(医学版),2006,33(5):642-646.
    76. Masuda H, Suzuki T, Sugiyama Y, et al. Substitution of amino acid residue in influenza A virus hemagglutinin affects recognition of sialyl-oligosaccharides containing N-glycolylneuraminic acid[J]. FEBS Lett., 1999, 464(1-2): 71-74.
    77. Suzuki Y, Ito T, Suzuki T, et al. Sialyl sugar chains as receptors and determinants of host range of influenza A viruses[J]. Int. Congr. Ser., 2001, 1219: 521-525.
    78.张文彤,姜庆五.全球甲型流感病毒H5A1序列的分子进化研究[J].复旦学报(医学版),2007,34(1):17-23.
    79. Webster RG, Govorkova EA. H5N1 influenza-continuing evolution and spread[J]. N. Engl. J. Med., 2006, 355(21): 2174-2177.
    80. Govorkova EA, Webby RJ, Humberd J, et al. Immunization with reverse-genetics-produced H5N1 influenza vaccine protects ferrets against homologous and heterologous challenge[J]. J. Infect. Dis., 2006, 194(2): 159-167.
    81. Available from http://www.ncbi.nlm.nih.gov/.
    82. Robin M Bush, Catherine A Bender, Kanta Subbarao, et al. Predicting the evolution of human influenza A[J]. Science, 1999, 286(5446): 1921-1925.
    83. Rott R. The pathogenic determinant of influenza virus[J]. Vet. Microbiol., 1992, 33(1-4): 303-310.
    84. Matrosovich M, Zhou N, Kawaoka Y, et al. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties[J]. J. Virol., 1999, 73(2): 1146-1155.
    85.甘梦侯.禽病学(第二版)[M].北京:中国农业出版社,2002:193-205.
    86. Subbarao EK, London W, Murphy BR. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range[J]. J. Virol., 1993, 67(4): 1761-1764.
    87. Amonsin A, Payungporn S, Theamboonlers A. Genetic characterization of H5N1 influenza A viruses isolated from zoo tigers in Thailand[J]. Virology, 2006, 344(2): 480-491.
    1. Cox N. J., Subbarao K.. Influenza[J]. The Lancet, 1999, 354: 1277-1282.
    2. Earn J. D., Dushoff J., Levin S. A.. Ecology and Evolution of the Flu[J]. TRENDS in Ecology and Evolution, 2002, 17(7): 334-340.
    3. Pales P.. Influenza: old and new threats[J]. Nature Medicine Supplement, 2004, 10(12): S82-S87.
    4. Virus taxonomy. Seventh Report of the International Committee on Taxonomy of viruses. New York: Academic Press(in press).
    5.金奇主编。医学分子病毒学[M]。北京:科学出版社,2001,633-658。
    6. Webster R. G., Dean W. J., German O. T., et al. Evolution and ecology of influenza A viruses[J]. Microbiological Reviews, 1992, 56: 152-179.
    7. Borrego-Diaz E, Peeples M. E., Markosyan R. M., et al. Completion of trimeric hairp in formation of influenza virus hemagglutinin promotes fusion pore opening and enlargment[J]. Virology, 2003, 316(2): 236-244.
    8.杨春,余佳,徐凤琴等。甲型流感病毒抗原变异的机理[J]。国外医学病毒学分册,1999,6(3):88-90。
    9. Wilson I. A., N. J. Cox. Structural basis of immune recognition of influenza virus hemagglutinin[J]. Ann Rev Immunol, 1990, 8: 737-771.
    10. Robertson J. S.. Clinical influenza virus and the embryonated hen's eggs[J]. Rev. Med. Virol. 1993, 3: 97-106.
    11. Gambaryan A. S., Tuzikov A. B., Piskarev V. E., et al. Specification of receptor binding phenotypes of influenza virus isolated from different hosts using synthetic sialylglycopolymers: nonegg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6'-sialyl(N-acetyllac-tosamine)[J]. Virology, 1997, 232, 345-350.
    12. Gambaryan A. S., Roberston J. S., Matrosovich M. N.. Effects of egg-adaptation on the receptor: binding properties of human influenza A and B viruses[J]. Virology, 1999, 258: 232-239.
    13. Both G. W., Sleigh M. J., Cox N. J., et al. Antigenic drift in influenza virus H3 hemagglutinin from 1968to 1980: Multiple evolutionary pathways and sequential amino acid changes at key antigenic sites[J]. J Virol, 1983,48: 52-60.
    14. Munk K., Pritzer E., Kertzschmar B., et al. Carbohydrate masking of antigenic epitope of influenza virus hemagglutinin independent of oligosacharidesize[J]. Glycobiology, 1992, 2: 233-240.
    15. Ohuchi M., Orlich M., Ohuchi R., et al. Mutations at cleavage site of the hemagglutinin alter the pathogenicity of influenza virus A/Chics/Penn/83(H5N2)[J]. Virology, 1989, 168: 274-280.
    16. Scholtissek C., Burger H., Kistner O., et al. The nucleoprotein as a possible major factor in determining host specificity of influenza H3N2 viruses[J]. 1985, 147: 287-294.
    17. Webster R. G., Bean W. J., Gorman O. T., et al. Evolution and ecology of influenza A viruses[J]. Microbiol, 1992, Rev. 56, 152-179.
    18. Gorman O. T., Bean W. J., Kawaoka Y., et al. Evolution of the nucleoprotein gene of influenza A viruses[J]. J Virol, 1990, 1487.
    19. Reid A. H., Fanning T. G., Hultin J. V., et al. Origin and evolution of the 1918 "Spanish" influenza virus hemagglutinin gene[J]. Proc. Natl. Acad. Sci. USA, 1999, 96: 1651-56.
    20. Taubenberger JK, Reid AH, Krafft AE, et al. Initial genetic characterization of the 1918 "Spanish" influenza virus[J]. Science, 1997, 275:1793-96.
    21. Kawaoka Y., Krauss S., Webster R.G.. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics[J]. J. Virol, 1989, 63:4603-8.
    22. Subbarao K., Klimov A., Katz J., et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness[J]. Science, 1998,279:393-96.
    23. Claas E.C., Osterhaus A.D,, van Beek R., et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus[J]. Lancet, 1998, 351:472-77.
    24. Hatta M., Gao P., Halfmann P., et al. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses[J]. Science, 2001, 293:1840-1842.
    25. Periris M., Yuen K.Y., Leung C.W., et al. Human infection with influenza H9N2[J]. Lancet, 1999, 354:916-17.
    26. Webby R.J., Webster R.G.. Are we ready for pandemic influenza[J]? Science, 2003, 302(28):1519-22.
    27. Kida H., Ito T., Yasuda J., et al. Potential for transmission of avian influenza viruses to pigs[J]. J. Gen. Virol, 1994, 75:2183-2188.
    28. Gorman O.T., Bean W.J., Kawaoka Y., et al. Evolution of influenza A virus nucleoprotein genes: Implications for the origins of H1N1 human and classical swine viruses[J]. J. Virol, 1991, 65:3704-3714.
    29. Schultz U., Fitch W M., Ludwig S., et al. Evolution of pig influenza viruses[J]. Virology, 1991, 183:61-73.
    30. Castrucci M.R., Donatelli I., Sidoli L., et al. Genetic reassortment between avian and human influenza A viruses in Italian pigs[J]. Virology, 1993, 193:503-506.
    31. Claas E.J.C., Kawaoka Y., De Jong J.C., et al. Infection of children with avian-human reassortant influenza virus from pigs in Europe[J]. Virology, 1994, 204:453-457.
    32. A Varki, Essentials of Glycobiology[J]. Cold Spring Harber Laboratory Press, New York, 1999.
    33. Suzuki Y., Ito T., Suzuki T., et al. Sialyl sugar chains as receptors and determinants of host range of influenza A viruses[J]. International Congress Series, 2001, 1219:521-525.
    34. Xu G.Y, Horiike G., Suzuki T., et al. A novel strain, B/Gifu/2/73, different from other influenza B viruses in the receptor binding specificities toward sialo-sugar chain linkage[J]. Biochem. Bilphys. Res. Commun, 1996, 224:815-818.
    35. Ito T., Suzuki Y., Mitnaul L., et al. Receptor specificity of influenza A virus correlates with the hemagglutinin of erythrocytes from different animal species[J]. Virology, 1997, 227:493-499.
    36. Suzuki T., Horiike G., Yamazaki K., et al. Swine influenza virus strains recognize sialylsugar chains containing the molecular species of sialic acid predominately present in the swine tracheal epitherium[J]. FEBS Letters, 1997, 404:192-196.
    37. Masuda H., Suzuki T., Sugiyama Y., et al. Substitution Of amino acid residue in influenza A virus hemagglutinin affects recognition of sialyl-oligosaccharides containing N-glycolylneuraminic acid[J]. FEBS Letters, 1999, 464:71-74.
    38. Matro sovich M.N., Gambaryan A.S., Teneberg S., et al. Avian influenza A virus differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higer conservation of the HA receptor-binding site[J]. Virology, 1997, 233:224-234.
    39. Shental-Bechor D., Danieli T., Henis Y.I., et al. Long-range effects on the binding of the influenza HA to receptors are mediated by changes in the stability of a metastable HA conformation[J]. Biochimca et Biophysica Acta, 2002, 1565:81-90.
    40. Oxford J.S., Schild G.C., Corcoran T., et al. A host-cell-selected variant of influenza B virus with a single nucleotide substitution in HA affecting a potential glycosylation site was attenuated in virulence for volunteers[J]. Arch. Virol, 1991, 110:37-46.
    41. Newman R.W., Jennings R., Major D.L., et al. Immune response of human volunteers and animals to vaccination with egg-grown influenza A(H1N1) virus is influenced by three amino acid substitutions in the haemagglutinin molecule[J]. Vaccine, 1993, 11:400-406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700