用户名: 密码: 验证码:
地下径流通道的形成、特征及其探测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下径流是岩石介质中由水头高处向水头低处流动的地下水流,它主要通过断裂带等连通的空隙流动。流动带走空隙中的物质,淘空断裂带,影响断裂带上建筑物的稳定、矿山的安全。掌握地下径流通道的类型、特征和快速、有效探测其位置是矿山防治水和地下水勘探过程中的关键问题之一。本文通过理论分析、野外试验、现场检验等对这一关键技术问题进行了详细研究,主要研究内容如下:
     1.地下径流通道的类型、特征、形成机理和影响因素。介绍了地下径流通道的主要类型、特征,分析了每种类型的形成机理、影响因素及其与地下水运移的关系,提出了与矿山防治水、地下水开发等关系密切的地下径流通道的类型(亚类)及其作用方式。
     2.天然电场选频法的信息特征及其形成机理。提出对天然电场选频法接收到的信息进行分类,分析了每种信息的特征、形成机理和影响因素,介绍了每种信息在地下径流通道探测中的工作方式和资料解释,特别是对天然电场选法动态信息的发现、形成机理研究和在工程中成功应用,解决了以往勘探中主要依据静态信息探测断裂带等地质问题精度较低的不足,为探测地下径流通道中流动水等流体找到了一种准确、经济、快速的方法。
     3.地下径流通道中流动水及其地表电磁响应特征。介绍了地下径流通道中流动的地下水的运动和特征,分别就地下径流通道中孔隙水、裂隙水、岩溶水的分布、动力性质、径流方向以及在流动过程中与周围环境发生的化学、物理和动力的相互作用,导致地下水的流速、流量、温度、矿化度、化学类型等变化进行了阐述。并与常见的导电性良好的固态导体比较,认为它具有地下动态导体特征,分析了地下径流通道中流动水在地表形成动态电磁响应的机理,提出通过天然电场选频法动态信息直接反映地下流动水,进而确定地下径流通道位置的勘探新思路。
     4.在矿山注浆堵水工程中,以石下江煤矿注浆堵水为例,介绍了石下江矿区的地质和水文地质特征,分析了石下江煤矿区采矿前后水文地质条件变化、上覆土层的物理力学性质变化、矿井水的来源、矿井涌水通道的类型、矿山注浆堵水的特点和技术关键,首次提出利用天然电场选频法动态信息确定注浆堵水孔位置、了解地下浆液的流向和检查注浆效果。
     5.在城区断裂的勘探中,以湘潭城区杨梅洲-木湖断裂的勘探为例,分析了城区断裂探测的特殊性,首次提出利用天然电场选频法确定断裂带的范围、断裂带中流动水的位置和断层的大致倾向。
     6.在地下水开发中,以湖南科技大学2号水源井的勘探和成井为例,分析了地下水开发的特点及其技术关键,首次提出根据天然电场选频法动态信息找到流动水,进而确定径流通道,再在径流通道上布孔成井的工作思路,解决了地下水开采中成井率低、成本高的难题。
Groundwater runoff is the subsurface flow which flows from highhydraulic head to low hydraulic head in rock medium. It streams throughcommunicating interstices of fractured zones mostly. The Groundwaterrunoff can carry off substance in interspaces, scouring fractured zone,influence the stabilization of constructions and security of mines on thosefractured zones. To find out the type, characteristics of groundwaterrunoff and detect its position expeditious and availability is a pivotalquestion in the process of prospect for ground water, prevention and curewater in mines. The author had finished particular research on this pivotalquestion based on the theoretical analysis, field tests and spot inspectionin the article. The sum total of study on the subject is contained in thispaper as follows:
     1. The type, characteristics, forming mechanism, factors that affectof flowing path of under ground water. Introducing the type,characteristics of flowing path of under ground water, analysis formingmechanism and factors that affect of each type under ground water andthe relations of them in this paper, the author propound a well connectedtype (subgroup) and the means of flowing path of under ground wateraction during the process of preventing and curing water in mines andground water developing.
     2. Characteristics of information and formation mechanism on thenatural electrical field frequency-selection method. Based on thecategorizing of information which signal is received when using naturalelectric field frequency-selection method and analyzing each informationcharacteristics, formation mechanism, modifying factor, the authorintroduced the detect workings and information interpretation on theflowing path of under ground water. The discoved and the study on formation mechanism of the natural electrical field frequency-selectionmethod dynamic information especially and its applications inengineering successfully had solved the the lower accuracy geologicalproblem that followed the static information to detect fracture. Anaccurated and economical and speedy method to detect the flowing waterin the path of under ground water had been propounded.
     3. The characteristics of moving water in flowing path of underground water and its earth surface magnet response. The authorintroduced the moving process and characteristics of moving water andexpanded his views about the distribution and dynamic properties andrunoff direction on pore water, fissure water and Karst water in flowingpath of under ground water. To explore the possibilities Chemistry,physics and the power occurs of moving water to the environmentmutually do, causes change and so on ground water speed of flow, currentcapacity, temperature, hardness index, chemistry type. Then the authorcompared with usual fine solid state conductors, regarded that the movingwater in flowing path of under ground water bears the imprint ofunderground dynamic conductor, analysis the formation mechanism onthe earth surface magnet response of the moving water in flowing path ofunder ground water, propound a new ideas that we can use the dynamicinformation of natural electric field frequency-selection method to reflectthe moving under ground water then pin down the path of under groundwater.
     4. During the mine injecting mud and plugging water engineering,the author introduced the characteristics of geological andhydro-geological in Shixiajiang Mine Area, analysis the shift ofhydro-geological condition after mining and before mining, the shift ofphysical and mechanical properties of cover soil, source of mine water,type of mine groundwater flow, the characteristics and key technique during the process of mine injecting mud and plugging water engineeringin Shixiajiang Mine Area. Proposed a way of using the application ofnatural electric field frequency-selection method to definite shutoff holesite and detect the flowing and inspect effection for the first time.
     5 During the process of inner fault exploration, the YangmeiContinent-Muyu Lake fracture in Xiangtan City as a example.Based onthe analysis to the particularity of inner fault exploration, the authorproposed a way of using the application of natural electric fieldfrequency-selection method to determine the fractured zones range, theposition of moving water, the roughly trend of fault in the paper for thefirst time.
     6. In the ground water development, the 2~# water source well inHunan University of Science and Technology as a example. Based on theanalysis to the characteristics and key technology of developing groundwater, the author propound a working thoughts of using dynamicinformation of natural electric field frequency-selection method to findthe moving water, determine the flowing path and how to set drill holesfor the first time.All of these results have solved the staggering problemof too high cost, low percentage of drilling.
引文
[1] 蔡耀军.裂隙岩体三维空间非均质各向异性渗透性评价.地质科技情报,1989年第2期
    [2] 陈崇希.岩溶管道-裂隙-孔隙三重空隙介质地下水流模型及模拟方法研究.地球科学,1995,20(4):361~366
    [3] 何雪洲.国外水文地质和工程地质近年来的发展.水文地质工程地质,1999(2)
    [4] 刘金禄.地下水径流带模糊划分方法.勘察科学技术,2004(1):48~51
    [5] 雷明堂.岩溶塌陷研究现状、发展趋势及其支撑技术方法.中国地质灾害与防治学报,1998,9(3):1~6
    [6] 田开铭.各向异性裂隙介质渗透性的研究与评价.北京:学苑出版社,1989
    [7] 谢渊,王剑等.鄂尔多斯盆地下白垩统含水层储水岩石特征与介质结构研究.水文地质工程地质,2005(2):11~19
    [8] 杨荣兴.水-岩反应研究的现状与进展.现代地质,1995年第4期
    [9] 杨勇.后寨河流域岩溶含水介质结构与地下径流研究.中国岩溶,2001,20(1):17~20
    [10] 尹尚先,武强,煤层底板陷落柱突水模拟及机理分析,岩石力学与工程学报,2004,23(15):2551~2556
    [11] 尹尚先,武强,王尚旭.北方岩溶陷落柱的充水特征及水文地质模型.岩石力学与工程学报,2005,24(1):77~82
    [12] 尹尚先.煤矿区突(涌)水系统分析模拟及应用[博士学位论文].北京:中国矿业大学(北京校区),2002
    [13] 余业雄,欧阳振华.地下水位下降引起地表塌陷的作用机理研究.露天采矿技术,2005(3):20~22。
    [14] 中国科学院地质研究所.中国煤矿岩溶水突水机理的研究.北京:科学出版社,1992
    [15] 朱寿增.桂林市西城区岩溶塌陷形成条件及主要影响因素.桂林工学院学报,2000,201(2):100~105
    [16] 张伟.抽水岩溶地面塌陷的形成及防治.河北地质学院学报,1996,19(1):46~51
    [17] Byerl E.J. Model for episodic flow of high2, pressure water in fault zones before earthquakes. Geology, 1993, 21: 303
    [18] H. Elhatip.The influence of karst features on environmental studies inTurkey, Environmental Geology, Environmental Geology, 1997, 31 (1): 27~31
    [19] J.A.Anderson stochastic model of a fractured rock conditional by measured information. Water Resour.Res, 20(1), 1984
    [20] S.K.Nag, Nabanita Ray, et.al.Hydrogeomorphic and fracture studies for groud-water investigation in and around Balarampur Purulia district, west Bengal. The thirteenth intermational conference on applied geologic remote sensing , Canada, 1~3March 1999.
    [21] T. Abel, M Hinderer, M. Sauter. Karst genesis of Swabian Alb, south Germany, since the Pliocene[J]. Acta Geolonic Polonica, 2002, 52(1): 43~45
    [22] Tian Kaiming, Hu Fusheng, Wan Li. Discontinuous flow of fracture water:a new technique ofkarst collapse prevention , Environmental Geology, 2001, 40, (11): 1347~1352
    [23] W.Dreybrodt, Dynamics of karstification: A Model Applied To Hydraulic Structures In karst Terranes, Hydrogeology Journal, 1992, 3:22~32
    [24] Toth J.Groundwater as a geological agent:an overview of the causes, prosess, and manifestations. Hydrogeology Journal 1999, 7:1~14
    [25] 李金凯.华北型煤矿床陷落柱作为导水通道突水的水文地质环境及预测.中国岩溶,1989年3期
    [26] 王经明.岩溶型煤矿底板岩体质量分级及其在突水评价上的应用.中国岩溶,2000年3期
    [27] 王明玉.华北型煤田矿井突水灾害的防治.地质论评,1995(6):553~558
    [28] 王延福.岩溶矿井煤层底板突水的非线性动力学模型.中国岩溶,2000年1期
    [29] 武强.地下水渗流系统灰色数值仿真模拟研究.中国科学(D)2002,32(1):43~53
    [30] 武强,周英杰等.煤层底板断层滞后型突水时效机理的力学试验研究.煤炭学报,2003,28(6):561~565
    [31] White W.B, Conceptual models for carbonate aquifer;in:Dilamarter R.R.(eds), Hydrogeologic prolem in Karst Regiems, western Kentucty unir, 1977.
    [32] 陈文俊.中国南方岩溶地下水.地质学报,1981(2)
    [33] 陈雨孙.岩溶水的介质和运动.中国岩溶,1988(3)
    [34] 邹成杰.岩溶管道水汇流理论研究.中国岩溶,1992年2期
    [35] 何宇彬,徐超.喀斯特隙流水与管流水的耦合与转化研究.中国岩溶,1995年2期
    [36] 何宇彬,徐超.论喀斯特塌陷的水动力因素.水文地质工程地质,1993(5)
    [37] 梁永平,韩行瑞.对鄂尔多斯盆地周边岩溶含水介质结构类型和量化统计分析. 地质通报,2005,24(10、11):1048~1051
    [38] White W.B.The Role of Solution Kinetics in the development of Karst Aquifers, In J.S.Tolson, and Doyle, F.L, eds.Internat Assoc.Hydrogeol, Mem. 12, 503~517
    [39] J.F.Quinlan Special problems of groundwater Monitoring in Karst Terrains, Groundwater and Vadose Zone Monitoring , ASIM STP 1053 1990
    [40] 徐卫国、赵桂荣.试论岩溶矿区地面塌陷的真空吸蚀作用.地质论评,1981(2)
    [41] 艾万钰.关于岩溶“气爆”作用问题的初步探讨.(第二届岩溶学术会议论文集),北京:科学出版社,1982年
    [42] 左平怡.论岩溶地面塌陷的形成过程和机理.中国岩溶,1987(1)
    [43] 陈国亮.岩溶地面塌陷的成因与防治.北京:铁道出版社,1994
    [44] 康彦仁.论岩溶塌陷形成的机制.水文地质与工程地质,1992(4)
    [45] 杨立中.国外岩溶塌陷研究的发展及我国的研究现状.中国地质灾害与防治学报,1997(8):6~10
    [46] 胡伏生.岩溶裂隙介质的壳状渗透结构与矿山排水.水文地质工程地质,2000(2):38~40
    [47] 冯佐海.桂林市岩溶塌陷成因类型与时空分布特征.自然灾害学报,2001,10(3):92~97
    [48] 韩宝平.微观喀斯特作用机理研究.北京:地质出版社,1998年7月
    [49] 韩宝平、何宇彬.采矿诱发塌陷的研究.勘察科学技术,1994(3):29~32
    [50] 张永波.水工环研究的现状与趋势.北京,地质出版社,2001年3月
    [51] 易兵,曾昭发,李恩泽等.电法探测城市活断层的应用.吉林士学学报(地球科学版),2005,35(专辑):115~118
    [52] 朱自强、戴亦军.高密度电阻率法在高速公路岩溶探测中的应用.工程地球物理学报,2004,1(4):309~312
    [53] 焦鹏程,刘成林,白大明等.应用自然电场法寻找地下富钾卤水的探讨.地球学报,2005,26(4):381~385
    [54] 朱德斌,邓世坤,覃建波.探地雷达探测潜在喀斯特地面塌陷区的可行性研究.工程勘察,2005(5):65~68
    [55] 邓居智,莫撼,刘庆成.探地雷达在岩溶探测中的应用.物探险与化探,2001,25(6):474~476
    [56] 万乐、潘玉玲.利用核磁共振方法探查岩溶水.CT理论与应用研究,1999(3):15~19
    [57] 曹光奇,周仲华.地面核磁共振找水方法在花岗岩地区的应用.水文地质工程地质,2006(2).108~113
    [58] 邓靖武,潘玉玲,熊玉珍.探查地下水的新方法——地面核磁共振找水方法的应用研究.现代地质,2004,18(1):121~126
    [59] 崔霖沛.国外物探工作概况及其发展趋势.国外地质科技,1999年2期
    [60] 何继善.地电磁场探测及其研究前沿.中国科学基金,1995(2):47~52
    [61] 孔祥儒,曾治权译校,万扬(俄罗斯)著.电磁测深.海洋出版社,2001年
    [62] 王亚会,王永江,孟琪等.电阻率层析成像在沈阳市地震活断层探测中的应用.东北地震研究,2006,22(1):32~40
    [63] 冯锐.电磁波层析成像-图像的一致性及地下水探测.地震学报,1997,19(3):524~534
    [64] 万乐.我国南方岩溶石山地区地下水勘查的新方法新技术.[博士学位论文],武汉:中国地质大学,2000年4月
    [65] 巨天乙.遥感水文地质回顾与展望.水文地质工程地质,1998(3),
    [66] 徐光辉,黄力军,刘瑞德.应用可控源音频大地电磁测深于北京水文地质勘查.物探与化探2005,29(4):523~525
    [67] Amit K. Bhattacharya, Pankaj K. Srivastava. Groundwater modeling of a typical drought prone area with remote sensing approach through database creation and 3D-GIS development:a case study from Bargarh district, Orissa India. The thirteenth international conference on applied geologic remote sensing , Canada, 1-3March 1999, 5~15
    [68] Bedrosian P A, Unsworth MJ, Wang F. Structure of the Altyn Tagh Fault and Daxue Shan from magnetotelluric surveys: impli2 cations for faulting associated with the rise of the Tibetan Plateau. Tectonics, 2001, 20: 474~486
    [69] Berdichevsky M.N, Dmitriev V. I.Magnetotell urics i n the Context of the Theory of Ill2Posed Problems. Tulsa, Oklahoma , USA: Soc Exploration Geophysicists, 2002
    [70] Bedrosian P. A, Unsworth M. J. Egbert G. D., Magnetotelluric imaging of the creeping segment of the San Andreas Fault near Hollister. Geophys Res Lett, 2002, 29: 124
    [71] Dias C A.Developments in a model to describe low-frequency electrical polarization of rocks. Geophysics, 2000, 65(2):437~451
    [72] Karen Rae Christopherson Chinook Geoconsulting, Inc. EM in the 21 st Century-Looking for Oil, Gas andWater[R]. 16 thWorkshop on Electromagnetic Induction in the Earth, Santa Fe, New Mexico.June 16~22, 2002
    [73] Marquis , Hynedman. Geophysical support for aqueous fluids in the deep crust: seismic and electrical relationships.. GJI, 1992, 110: 91.
    [74] Stanley, H.Ward.Geotechnical and Environmental eophysics, 1990, Vol. Ⅰ, Ⅱ , Ⅲ
    [75] Martyn Unsworth. Studying Continental Dynamics with Magnetotelluric Exploration , Earth Science Frontiers of Geosciences, 2003, 10(1):25~38
    [76] Mehanee S., Zhdanov M.S. Magnetotelluric inversion of blocky geoelectrical structures using the minimum support method.Journal of Geophysical Research, Solid earth, 2002, 107 (B4): 1~11
    [77] T.Sigurdsson and T, Ovrgaard.Application of GPR for 3-D visualization of geological and structural variation in a limestone formation. Joural of applied geophysics, 1998, 40(1~3).
    [78] 陈鸿志.天然电场法及TGE-1型天然电场仪.地学仪器,1991年4期
    [79] 王建军,强建科,李成香等.高密度电法在地面塌陷勘察中的应用.工程地球物理学报,2005,2(3):232~234
    [80] 王文祥 杨武洋.天然场电磁波法勘探研究的新进展.煤炭科学技术,2005年1期:18~20
    [81] 王宇,李丽辉.德国岩溶水勘查技术与开发利用概况.水文地质工程地质,2005(6):91~95
    [82] 杨长福,徐世浙.国外大地电磁研究现状.物探与化探,2005,29(3):243~247
    [83] 祝卫东,钱勇峰,李建华.高密度电阻率法在采空区及岩溶探测中的应用研究.工程勘察,2006(4):69~73
    [84] J.E.Moore, S.Jitprasithsiri, H.Lee.Geographic Information System Technology and its Application in Civil Engineering, Civil Engineering System, Vol. 12.1, (1995): 23~26
    [85] Monteiro Santos, Fernando A. et al. Hydrogeological investigation in Santiago Island (Cabo Verde) using magnetotellurics and VLF methods, Journal of African Earth Sciences; Aug2006, Vol. 45 Issue 4/5, 421~430
    [86] 石昆法.可控源音频大地电磁法理论与应用.北京:科学出版社,1999年10月
    [87] Zhdanov M. S, Dmitriev V.I., Fang S.h. et al. Quasi-analytical approximation and series in 3D electromagnetic modeling. Geophysics, 2000b, 65:1746~1750.
    [88] Mackie R.L.Livel Ybrooks D.W. Madden T.R, et al. A magnetotelluric investigation of the San Andreas Fault at Carrizo Plain, California.. Geophys Res Lett, 1997, 24: 1847~1850
    [89] Wannamaker P.E, J iracek G.R, Stodt J A, et al. Fluid generation and pathways beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric data. J Geophys Res, 2002, 107.
    [90] Alumbaugh D. L.Newrnan G.A., Image appraisal for 2D and 3D electromagnetic inversion. Geophysics Soc of Exp 1 Geophys, 2000 65:1455~1467
    [91] Haber E. Ascher U. Aruliah D. et al. Fast modelling of 3D electromagnetic problems using potential. J of Comp Phys, 2000, 6:150~171
    [92] Aruliah D.Ascher U. Haber E. et al. A method for the forward modelling of 3D electromagnetic quasi-static p roblems[J]. Math Modelling App lied Sciences, 2001, 11 (1): 1~21.
    [93] Sasaki K. Full 3D inversion of electromagnetic data on PC J Appl, Geophysics, 2001, 46:45~54
    [94] Eberhart Berhart Phillips D, Michael A. Three 2dimensional velocity structure, seismicity and fault structure in the Parkfield region, Centra California. J Geophys Res, 1993, 98: 15578~15737
    [95] Egbert G.D. Robust multiple2station magnetotelluric data processing. Geophysical Journal International, 1997, 130: 475~496.
    [96] Eliseeva, S V. Sementsov, D. I. Spectrum of Natural Electromagnetic Waves in a Periodic Ferromagnet-Dieleetric Structure. Crystallography Reports; Ju12005, Vol. 50 Issue 4, 673~679
    [97] Hursan G.Zhdanov M.S. Contraction integral equation method in 3D electromagnetic modeling. Radio Science, 2002, 6:98~99
    [98] Ritter O, Sehmidt J, Weckmann U, et al. 32D magnetotellurie study of the Dead Sea transform fault in Jordan[J]. Eos Trans, American Geophysical Union, 2001, 884
    [99] Siripunvarapom, W. et al. Three-dimensional magnetotelluric inversion: data-space method. Physics of the Earth & Planetary Interiors; May2005, Vol. 150 Issue 1~3, 3~14.
    [100] Siripunvaraporn, W. Egbert G.D.An efficient data2subspace inversion for two2dimensional magnetotelluric data. Geophysics 2000, 65: 791~803
    [101] Tournerie, Benoit et al. Three-dimensional magnetotelluric survey to image structure and stratigraphy of a sedimentary basin in Hungary. Physics of the Earth & Planetary Interiors; May2005, Vol. 150 Issue 1-3, 197~212.
    [102] Roth, M.J.S, Mackey, J.R, Mackey, C, Nyquist, J.E. A case study of the reliability of multielectrode earth resistivity testing for geoteehnieal investigations in karst terrains, Engineering Geology, 2002, 65 (2): 225
    [103] Mackie R.L, Madden T.R, Wannamaker P.E. Three-dimensional magnetotelluric modeling using difference-equations-Theory and comparisons to integral equation solutions.. Geophys, 1993b, 58:215~226
    [104] 王家映.我国石油电法勘探评述.勘探地球物理进展,2006,29(2):77~82
    [105] 韩莱诚.略论天然电场选频法在城市物探工作中的应用.物化探技术在城市工程中应用经验交流论文集,1987
    [106] 李明辉.天然电场选频法推广应用及效果.湖南地质,1991,10(1):84~88
    [107] 董松贵.天然交变电场选频法及在找水中的初步应用.工程物探,1991年第3期
    [108] 莫承彬,陈忠献,陆怀成.自然电场法剧变场的起因初探及其应用.物探与化探,1994,19(4):315~318
    [109] 王齐仁,徐卓荣,钻孔抽水与地面变形关系的研究.焦作工学院学报,2000,19(2):109-112
    [110] 涨瑜麟.天然电场选频法在工程地质勘察快速评价中的应用.地质与勘探,2003,39(3):67~71
    [111] 郑灿堂.应用自然电场法检测土坝渗漏隐患的技术.地球物理学进展,2005,20(3):854~858
    [112] 张明锋,张水根,叶海燕.天然电场选频法在地下水资源探测中的应用.江西煤炭科技,2003(1):24~25
    [113] 何宇彬,韩宝平、徐超等.中国喀斯特水研究.上海:同济大学出版社,1997年
    [114] 袁道先.中国岩溶学.北京:地质出版社,1994年
    [115] 万志清.抽水引起岩溶塌陷的机理及非线性预测研究.[博士学位论文],北京:中国科学院地质与地球物理研究所,2002年6月
    [116] 苏维词.贵州水城盆地的抽水塌陷研究.,灾害学,1998,13(3):47~50
    [117] 许光泉,沈慧珍.疏降地下水引起地面塌陷浅析-以淮南煤矿区为例.中国地质灾害与防治学报,2004,15(4):64~68
    [118] 黄锡荃,李惠明,金伯欣.水文学.北京:高等教育出版社,2005年1月
    [119] 陈梦熊.地下水系统研究与概念模型.城市水资源,1994年2期
    [120] 张人权.关于水文地质学的一些思考.地质科技情报,2002,21(1):3~6
    [121] 张人权,梁杏等.当代水文地质学发展趋势与对策.水文地质工程地质,2005(1):51~56
    [122] Engelen G B , Jones G P.Development in the Analysis of Groundwater. Flow Systems-Amsterdam:IAHS press, 1986
    [123] 李金铭.地电场与电法勘探.北京:地质出版社,2005
    [124] Saraev A.K,Pertel M.I.,Larionov K.A.音频大地电磁测深在金伯利岩勘探中的 应用.石油地球物理勘探;2004,39(增刊):144~145
    [125] 王兴泰.工程与环境物探新方法新技术.北京:地质出版社,1996
    [126] 周天福.工程物探.北京:中国水利水电出版社,1997
    [127] 李志聃.电法探测矿井涌水通道的地质效果.煤田地质与勘探,1994,22,(1):48~52
    [128] 刘晓东.高密度电法在宜春市岩溶地质调查中的应用.中国地质灾害与防治学报,2002,13(1):72~75
    [129] 罗维斌,白宜诚,杨学顺.用交流电阻率法探测煤矿导(含)水构造.物探与化探,2004年2期:139~141
    [130] 龙凡,韩天成.激电法在地下水探测中的应用效果.物探与化探,2002,26(6):422~432
    [131] 王文祥,汤寒松,唐方头.充水巷道的探测与传统电磁波定义的质疑.煤炭学报,1998年1期:12~16
    [132] D.W.Steeples and R.D.Miller.Avoiding pitfalls in shallow-seismic reflection surveys. Geophysics, 1998, 63
    [133] Gasperikova E, Morrison H F. Mapping of induced polarization using natural fields. Geophysics, 2001, 66(1): 137~147
    [134] Goldman, M.Rabinovich et.al.Application of integrated NMR-TDEM method in ground water exploration in Israel. Joural of applied geophysics, 1993, 35
    [135] Glover P. Holemj , Pousj. A. modified Archie as Law for two conducting phases. Earth Planet Sci Lett, 2000, 180: 369~383.
    [136] Ingham M., Brown C. A. magnetotelluric study of the Alpine Fault , New Zealand. Geophys J Int, 1998, 135: 542~552
    [137] Jones A.G, Chave A.D.Egbert G.D. et al. A comparison of techniques for magnetotelluric response function estimates. J Geo2 phys Res, 1989, 94: 14201~14213
    [138] Unsworth M.J, Egbert G.D, Booker J.R. High resolution electromagnetic imaging of the San Andreas Fault in Central California. J Geophys Res, 1999, 104:1131~1150
    [139] Wei W., Unsworth M. J, Jones A.G., et al. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Sci2 ence, 2001, 292: 716~718
    [140] 郭高轩.应用GPR获取水文地质参数研究初探.水文地质工程地质,2005(1):89~93
    [141] 葛双成.坝体渗漏探测的雷达和电阻率综合法.工程勘察,2005.(5):69~72
    [142] 张荣,胡祥云.地面核磁共振技术发展述评.地球物理学进展,2006,21(1):284~289
    [143] 何裕盛.地下动态导体充电法探测概论.物探与化探,2000,24(1、2):62~68、105~118
    [144] 何裕盛.地下动态导体充电法探测.北京:地质出版社,2001年4月
    [145] 何裕盛.地下动态导体充电法高精度定量解释.物探与化探,2001,25(3):215~223
    [146] 杨荣丰,张可能等.利用天然电场选频法动、静态信息确定地下径流通道的对比研究.煤炭科学技术,2003年第4期
    [147] 杨荣丰,张可能等.天然电场选频法的动态信息在注浆堵水工程中的应用研究.工程勘察,2003年第2期
    [148] 范业活,关继腾,王克文.离子导电岩石自然电位特性的机理研究.物探与化探,2005,29(3):239~242
    [149] 汤洪志,刘庆成,苏兆锋等.可地浸层间氧化带砂岩型铀矿自然电场形成机理及自然电位异常模拟与应用.铀矿地质,2006,22(3):168~176
    [150] 王君恒,邓明胜,潘竹平等.油气藏自然电位勘探原理及在开发中的应用.石油勘探与开发,2000,27(3):96~102
    [151] 王勋弟译.陆架自然电场及其与地质作用关系.海洋地质,1993年第1期
    [152] 傅良魁.电法勘探教程.北京:地质出版社,1987
    [153] 傅良魁.应用地球物理教程-电法、放射性、地热.北京:地质出版社,1991
    [154] 张胜业,潘玉玲等.应用地球物理学原理.武汉,中国地质大学出版社,2004年4月
    [155] 马根和.场论.北京:原子能出版社,1995年
    [156] 王齐仁.天然交变电场动态特征的研究.煤田地质与勘探2001,29(2):52~55
    [157] 卜昌森.综合水文地质勘探在煤矿岩溶水害防治中的应用.煤炭科学技术,2001,29(3):32~34
    [158] 刘汉湖.郭家庄煤矿井下突水突出物特征研究.中国矿业大学学报,199715(1):82~87
    [159] 刘海滨.碳酸盐岩地区电磁波场的特性分析.世界地质,1996年2期
    [160] 刘俊杰,陈雄.地下开采条件下水资源流失机理与环境影响研究.中国地质灾害与防治学报,2003,14(4):71~74
    [161] 刘菁华,王祝文,朱士等.煤矿采空区及塌陷区的地球物理探查.煤炭学报,2005,30(6):715~720
    [162] 武强.煤层底板断裂突水时间弱化效应机理的仿真模拟研究—以开滦赵各庄煤矿为例.地质学报,2001,75(4):554~561
    [163] 杨米加.注浆理论的研究现状和发展方向.岩石力学与工程学报,2001,20(6):839~841
    [164] 黄小广.注浆效果检测方法的评价.煤矿安全,2001年10期,38~39
    [165] 王水强,黄永进,唐坚.一个应用综合物探方法检测地下注浆效果的实例.上海地质,2005,96(4):38~41
    [166] 邓起东,徐锡伟,张先康等.城市活动断裂探测的方法和技术.第10卷第1期地学前缘,2003,10(1):93~104
    [167] 郭卫英,柔洁,王翠.遥感技术在乌鲁木齐市活断层探测中的应用.内陆地震,2006,20(1):57~64
    [168] 姜早峰.高密度电法CT成像技术在活断层探测中的应用.东北地震研究,2004,20(2):40~43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700