用户名: 密码: 验证码:
低渗透岩石非线性渗流机理与变渗透率数值方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低渗透岩石非线性渗流机理及其数值计算方法的研究是当前渗流力学研究的一个前沿课题,对水利工程、石油工业、矿山开采、废料填埋等国民生产有着重要的意义。本论文作为国家自然科学基金资助项目“低渗透弱胶结岩石非线性渗流机理研究”的一个组成部分,通过对低渗透岩石系列渗流实验结果进行深入研讨并结合数值分析的方法,对该课题开展了研究。
     基于岩样铸体技术和压汞实验获取的实验岩样孔隙结构参数,论文首先分析得出了低渗透岩石普遍存在的孔隙结构特征,以从微观结构的角度建立起岩石与其低渗透性表征以及非线性渗流之间的联系。
     分析以砾岩和砂岩为对象的单相饱和渗流实验表明,岩石低速渗流运动偏离了达西定律,且渗流曲线不通过坐标原点,岩石渗透率也随着压力梯度的变化而变化。论文通过数值拟合得到了拟合精度高的非线性饱和渗流运动方程,并从边界层的力学特征出发,揭示出了方程非线性项的物理意义,分析了边界层因素对形成非线性渗流的机理作用。
     非饱和渗流实验更为明显地表现出了低渗透岩石渗流的非线性特征。基于毛细管模型并结合边界层理论,论文推导了等径毛管非饱和渗流运动模型,得到了非线性渗流速度及启动压力梯度的解析式,从而对毛管压力在形成低渗透岩石非线性渗流的机理作用方面进行了论证。并且通过归纳实验现象发现,当岩体非饱和带中液体的饱和度不小于85%时,渗流的宏观运动特性接近于饱和渗流,可以采用与饱和渗流类似形式的运动方程进行描述。
     流固耦合渗流实验证明岩石具有弹塑性特征,应力历史对岩石渗透性能有着重要影响。在耦合渗流分析中,论文对岩石渗透率与有效应力的函数关系进行了研究,并运用岩石渗透率对有效应力敏感系数的概念,将复杂的渗流耦合影响因素进行归一化处理。通过分析求证了渗透率敏感系数与有效应力之间存在幂函数关系,并给出了基于敏感系数的渗透率与有效围压之间的函数关系式。在综合以上各项渗流实验结果的基础上,论文还通过渗流现象对比以及理论分析,对非线性渗流机理进行研讨,总体上将低渗岩石非线性渗流机理归纳为岩石的孔隙结构特点、流体性质及孔隙结构与流体之间相互作用等几个方面。根据非线性渗流运动规律的研究成果,论文建立了体现变渗透率的非线性渗流模型,提出了求解非线性渗流数值方程的变渗透率数值方法,开发了相应的计算系统,并用算例对模型及数值方法的可行性进行了说明。
Non-linear seepage mechanics in low permeability rock and its numerical analytical method is one leading task of seepage research, which acts as an important role to hydraulic engineering, petroleum industry, mining project, waste landfill, and so on. This doctoral dissertation is pertaining to the research subject concerning the non-linear seepage mechanism in low permeability incompetent rock, which is supported by National Science Fund of China. The task mentioned above is studied in this dissertation by delving into the result of a series of seepage experiments and trying to find out some method for numerical analysis.
     Based on the parameters concerning pore structure of conglomerate and sandstone gathered from the rock body of casting and mercury penetration experiments, those stones from Shimenzi Reservoir, Xinjiang province and from Changqing oil field Gansu province respectively are taken as samples in this regards. The common pore structural feature of these low permeability rock is concluded at first, which could be deemed to set up the relation between rock and its low permeability feature as well as non-linear seepage phenomena within.
     It is revealed by the saturated single liquid seepage experiment performed by FDES-641 triaxial system that the movement of low speed seepage in low permeability media departs from the law of Darcy, meanwhile the curve of seepage flow would not pass through the origin of coordinates. Permeability of rock changes with the pressure gradient either. Non-linear seepage formula with high fitting accuracy is achieved by the method of numerical analysis. Starting from the point of the mechanical characteristics of boundary layer, the physical meaning of the non-linear term in formula is revealed, meanwhile the mechanics towards non-linear seepage flow but caused by boundary layer is concluded.
     Unsaturated seepage experiments in low permeability rock present more obvious non-linear seepage characteristics. One numerical model of unsaturated seepage flow in constant diameter capillary is established based on the simplified model of capillary and the theory of boundary layer, meanwhile the analysis formulas of seepage velocity and threshold gradient of non-Darcy seepage flow are deduced accordingly. The mechanics towards non-linear seepage flow but caused by capillary pressure is analyzed by this way. When summing up the unsaturated experimental phenomena above, it can be concluded that the macroscopical movement characteristics of unsaturated seepage flow would behave much close to that of the saturated infiltration when the degree of liquid saturation in rock comes up to 85%. Similar formula used to describe the movement of saturated seepage can also be applied to characterize the unsaturated flow in this regard.
     It is proved by the liquid-solid coupling seepage experiment that rock owns elastoplasticity, loading would bring rock with plastic deformation beyond retrieve, and the loading history would play a significant effecting role in the change of permeability of rock. The functional relationship between the permeability and the effective confirming pressure is analyzed through experiment. Due to great complexity of the coupling factors affecting the permeability of rock, the coefficient of sensitiveness between the permeability of rock and the effective pressure is defined accordingly as to generalize those factors. Power function can be used to describe the relation between the permeability of rock and the effective pressure based on the coupling seepage experiments, and the function between the permeability of rock and the effective pressure but based on the conception of coefficient of sensitiveness is established hereafter.
     With the help of not only the summary of the experimental findings mentioned above, but also some further contradistinctive experiments together with some corresponding theoretical deduction as well, the mechanics towards non-linear seepage flow are delved into and totally classified into three categories, those are, the pore characteristics of rock, the feature of liquid and the interaction between liquid and rock.
     According to the research findings of non-linear seepage flow, one variable permeability non-linear seepage numerical model is established in this dissertation. The corresponding solution for the non-linear equation is developed either. Calculation program based on the model is developed hereby and the feasibility of the non-linear model as well as its solution is illuminated by the designed examples.
引文
[1] 田开铭. 开展对低渗透介质的水文地质学研究. 水文地质工程地质,2000 年,27(2): 27~28
    [2] 长江流域办公室. 岩石坝基工程地质. 北京: 水利电力出版社,1981: 255
    [3] 李道品. 低渗透砂岩油田开发. 北京: 石油工业出版社,1997: 39~152
    [4] 闵茂中主编. 放射性废物处置原理. 北京: 原子能出版社,1998: 177
    [5] Φ.И.卡佳霍夫著(俄译本). 油层物理基础. 北京: 中国工业出版社,1958
    [6] Φ.А.Τребин,нефтепрость Полпекторов,Гостолтехиздат,1965
    [7] D. Zaslavsky, S. Irmay. Physical Principles of Water Percolation and Seepage, UNESCO, Paris, 1968
    [8] W. Von Englehardt and W. L. M. Tunn. The flow of fluids through sandstones. Circ. State. Geol. Surv. 1955,194: 1~17
    [9] J. F. Lutz and W. D. Kemper. Intrinsic permeability of clay as affected by clay-water interaction. Soil Sci. 1959,88(2): 83~90
    [10] S. Hansbo. Consolidation of clay with special reference to influence of vertical sand drains. Swedish Geotech.. Inst.Proc.,1960,18: 41~159
    [11] R.J. Miller and L.W. Low. Threshold gradient for water flow in clay systems. Proc.Soil Sci. Soc. Am., 1963,27(6): 605-609
    [12] Alvaro Prada, Faruk Civan. Modification of Darcy’s law for the threshold pressure gradient. Journal of Petroleum Science and Engineering,1999,22(4): 237–240
    [13] 黄延章. 低渗透袖层非线性渗流特征. 特种油气藏报,1997,4(1): 9~14
    [14] 姚约东,葛家理. 低渗透油层非达西渗流规律的研究. 新疆石油地质报,2000,21(3): 213~217
    [15] 阮敏, 何秋轩. 低渗透非达西渗流综合判据初探. 西安石油学院学报,1999,14(4): 46~49
    [16] 吴景春,袁满, 张继成等. 大庆东部低渗透油藏单相流体低速非达西渗流特征. 大庆石油学院学报,1999,23(2): 82~84
    [17] 宋付权,刘慈群. 低渗透多孔介质中新型渗流模型. 新疆石油地质报,2001,22(1): 56~59
    [18] 肖鲁川,甄力,郑岩. 特低渗透储层非达西渗流特征研究. 大庆石油地质与开发, 2000,19(5): 27~31
    [19] Boit M A. General theory of three dimensional consolidation. J. Appl. Phys.,1941,12: 155-164
    [20] Boit M A. Willis D G. The elastic coefficients of the theory of consolidation. ASME J. Appl. Mech.,1957,24: 594-601
    [21] Louis C. Rock hydraulics. In: Flow Through Porous Media, 1974: 287-299.
    [22] Snow D T. Anisotropic permeability of fractured media. Wat. Resour. Res.,5 (6):1273~1289.
    [23] Jones F O. A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks. J. Petrol. Tech., 1975, 9(2): 21-27
    [24] Mckee C R, Bumb A C, Koenig R A. Stress-dependent permeability and porosity of coal and other geologic formations. SPE Formation Evaluation, 1988, (1): 81~91.
    [25] M. Gutierrez. The effect of fluid content on the mechanical of fractures in chalk. Int. J. Rock Mech. Min. Sci. & Geomech. Sbstr., 2000, 33(2): 93-117
    [26] 刘继山. 单裂隙受正应力作用是的渗流公式. 水文地质河工程地质,1988,(2): 22~28
    [27] 陈祖安,伍向阳,孙德明等. 砂岩渗透率随静压力变化的关系研究. 岩石力学与工程学报,1995,14(2): 155~159
    [28] 速宝玉等. 光滑裂隙水流模型实验及其机理初探. 水利学报,1994,5: 19~24
    [29] 詹美礼,速宝玉. 接触型裂隙水力等效张开度研究. 岩石力学,1997,18(1): 40~46
    [30] 张金才,张玉卓. 应力对裂隙岩体渗流影响的研究. 岩土工程学报,1998,20(2): 19~22
    [31] 赵阳升, 杨栋,郑少河. 三维应力作用下岩石裂缝水渗流物性规律的实验研究. 中国科学(E 辑),1999,29(1): 82~88
    [32] 吉小明. 孔隙裂隙岩体中渗流场与应力场的耦合分析: [博士学位论文]. 中国科学院武汉岩土力学研究所,2002
    [33] Oda M. An equivalent model for coupled stress and fluid flow analysis in jointed rock masses. Water Resources Res., 1986, 22(3): 1845-1856
    [34] 周创兵. 不连续面渗流与变形的机理研究. 水文地质和工程地质,1996,3: 14-17
    [35] Bai M. Numerical modeling of coupled flow and deformation in fractured rock specimens. Int. J. Numer. Anal. Meth. Geomech, 1999, 23: 141-160
    [36] Noorished. J, Ayatollahi. M. S, Witherspoon. P. A. A finite-element method for coupled stress and fluid flow analysis in fractured rock masses. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr., 1982, 19: 185-193
    [37] 王媛等. 三维裂隙岩体渗流耦合模型及其有限元模拟. 水文地质与工程地质,1995,3: 1~5
    [38] 郑少河. 裂隙岩体渗流场-损伤场耦合理论研究及工程应用: [博士学位论文]. 中国科学院武汉岩土力学研究所,2000
    [39] 薛强,梁冰,李宏艳. 可压缩流体渗流的流固耦合问题数值模拟研究. 地下空间,2001,21(5): 386~391
    [40] 柴军瑞. 考虑渗透动水压力时等效连续岩体渗流场与应力场耦合分析的数学模型. 四川大学学报(工程科学版),2001,33(6): 14~17
    [41] 李培超, 孔祥言,卢德唐. 饱和多孔介质流固耦合渗流德数学模型. 水动力学研究与进展(A 辑),2003,18(4): 419~426
    [42] 杨天鸿等. 岩石破裂与渗流耦合过程细观力学模型. 固体力学学报,2005,26(3): 333~337
    [43] T.S.Nguyen etc.. Coupled thermal-mechanical-hydrological behavior of sparsely fractured rock: implication for nuclear fuel waste disposal. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1995, 32: 481-512
    [44] V. Guvanasen etc.. A Three-dimensional numerical model for thermo-hydro-mechanical deformation with hysteretic in a fractured rock mass. J. Rock Mech. Min. Sci. & Geomech. Abstr., 2000, 37: 89-106
    [45] 李定方等. 裂隙岩体渗流新模型. 水利水运科学研究,1996,4: 283~293
    [46] 王媛等. 复杂裂隙岩体渗流与应力弹塑性全耦合分析. 岩石力学与工程学报,2000,19(2): 177~181
    [47] 仵彦卿,柴军瑞. 裂隙网络岩土三维渗流场与应力场耦合分析. 西安理工大学学报,2000,16(1): 1~5
    [48] 杨栋等. 广义双重介质岩体水力学模型及有限元模拟. 岩石力学与工程学报,2000,19(2): 182~185
    [49] M.Bai. etc.. Modeling of subsidence and stress-dependent hydraulic conduvtivity for intact and fractured porous media. Rock mech. Rock enging. 1994, 27(4): 209-234
    [50] M.Bai. Dual-porosity porelastic porous medium of generalized plane strain. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1999, 36: 1087-1094
    [51] Hamid R. Ghafouri etc.. A finite element double porosity for heterogeneous deformable porus media. Int. J. Numer. Anal. Mech. Geomech, 1996, 20: 831-844
    [52] 王恩志等. 双重裂隙系统渗流模型研究. 岩石力学与工程学报,1998,17(4): 400~406
    [53] 黎水泉等. 双重孔隙介质非线性流固耦合渗流. 力学季刊,2000,21(1): 96~101
    [54] Noorished. J, Ayatollahi. M. S, Witherspoon. P. A. A finite-element method for coupled stress and fluid flow analysis in fractured rock masses. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr., 1982, 19: 185-193
    [55] Millard A. etc.. Discrete and continuum approaches to simulate the thermo-hydro-mechanical coupling in a large, fractured rock mass. Int. J. of Rock Mech. & Mining. Sci., 1995, 32(5): 409-434
    [56] 孔祥言,李道伦,徐献芝等. 热-流-固耦合渗流的数学模型研究. 水动力学研究与进展(A 辑),2005,20(2): 269~275
    [57] N. Katsube. The modified mixture theory for fluid-filled porous materials: theory. J. appl. Mech, 1987, 54: 35-40
    [58] J. F Lutz and W. D. Kemper. Intrinsic permeability of clay as affected by clay-water interaction. Soil Science, 1959, 88(2): 83-90
    [59] Raymond J. Miller, Philip F. Low. Threshold gradient for water flow in clay systems. Soil Science Society of America Proceeding, 1963, 27(6): 605-609
    [60] Raymond J. Miller, Allen R. Overman, John H Peverly. The absence of threshold gradients in clay-water systems. Soil Science Society of America Proceedings, 1969, 33(2): 183-187
    [61] Harold W. Olsen. Derivations from Darcy’s law in saturated clays. Soil Science Society of America Proceedings,1965,29(2):135~140
    [62] Harold W. Olsen. Liquid movement through kaolinite under hydraulic, electric and osmotic gradients. The American Association of Petroleum Geologist Bulletin, 1972, 56(10): 2022~2028
    [63] Remy J. P. The measurement of small permeabilities in the laboratory. Geotechnique, 1973, 23(3): 454~458
    [64] J. S. Younger, C. I. Lim. An investigation into the flow behavior through compacted saturated fine-grained soils with regard to fines content and over a range of applied hydraulic gradients. In: International Association for Hydraulic Research, eds. Fundamentals of transport phenomena in porous media—Developments in soil science 2. New York: Elsevier Publishing Company Amsterdam, 1972:312~326
    [65] Dale Swartzendruber. Modification of Darcy’s law for the flow of water in soils. Soil Science, 1962, 93: 22-29
    [66] Dale Swartzendruber. Non-Darcy behavior and the flow of water in unsaturated soils. Soil Science Society of America Proceedings, 1963, 27(5): 491-495
    [67] 冯文光. 非达西低速渗流的研究现状与进展. 石油勘探与开发, 1986, 13(4): 76~80
    [68] Alvaro Prada, Faruk Civan. Modification of Darcy’s law for the threshold pressure gradien. Journal of Petroleum Science and Engineering, 1999, 22(4): 237-240
    [69] 闫庆来,何秋轩,尉立岗等. 低渗透油层中单相液体渗流液体特征的实验研究. 西安石油学院学报,1990,5(2): 1~6
    [70] 陈永敏,周娟,刘文香等. 低速非达西渗流现象的实验论证. 重庆大学学报(自然科学版),2000,23(增): 59~61
    [71] Kutilek M. Non-Darcian flow of water in soils-Laminar region. In: International Association for Hydraulic Research, eds. Fundamentals of transport phenomena in porous media—Developments in soil science 2. New York: Elsevier Publishing Company Amsterdam, 1972: 327-339
    [72] H. W. Olsen, R. W. Nichols. Low gradient permeability measurements in a triaxial system. Geotechnique, 1985, 35(2): 145-157
    [73] 罗蛰潭. 油层物理. 北京: 地质出版社,1985: 24~48, 130~187
    [74] 何更生. 油层物理. 北京: 石油工业出版社,1994: 10~48, 164~249
    [75] 窦宜,盛数馨,马梅英. 土工实验室测定技术. 北京: 水利电力出版社,1987: 10~56
    [76] Li Seungping. Measuring extremely low flow velocity of water in clays. Soil Science, 1963, 95(6): 410-413
    [77] Allen Young, Philip F. Low, Mclatchie A. S. Permeability studies of argillaceous rocks. Journal of Geophysical research, 1964, 69(20): 4237-4245
    [78] Zhang Ming, Manabu Takahashi, Tetsuro Esaki. Laboratory measurement of low-permeability rocks with a new flow pump system. Material Research Society Symposium-Proceedings, 1998, 506: 889-896.
    [79] 张铭. 低渗透岩石实验理论及装置. 岩石力学与工程学报,2003,22(6): 919~925
    [80] 刘建军,刘光贵,胡雅衽. 低渗透岩石非线性渗流规律研究. 岩石力学与工程学报, 2003,22(4): 556~561
    [81] 韩小妹,王恩志,刘庆杰. 低渗透岩石的单相水非 Darcy 渗流实验. 清华大学学报(自然科学版),2004,44(6): 804~807
    [82] Brace W. F., Walsh J.B., Frangos W T. Permeability of granite under high pressure. Journal of Geophysical Research, 1968, 73(6): 2225-2236
    [83] Hsieh P A, Tracy J V, Neuzil C E, et al. A transient laboratory method for determining the hydraulic properties of right rocks―(I) Theory . International journal of rock mechanics and mining sciences & geomechanics abstracts, 1981, 18(3): 245-252
    [84] Neuzil C E, Cooley C, Silliman S E, et al. A transient laboratory method for determining the hydraulic properties of right rocks― (II) Application . International journal of rock mechanics and mining sciences & geomechanics abstracts, 1981, 18(3): 253-258
    [85] Thierry Bourbie, Joel Walls. Pulse decay permeability: analytical solution and experimental test. SPEJ, 1982, 22(5): 719~721
    [86] Walder, J., Nur A. Permeability measurement by the pulse-decay method: effects of pore elastic phenomena and nonlinear pore pressure diffuse. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1986, 23 (3): 225-232
    [87] Ahmed Usman, Kuchuk Fikri, Ayestaran Luis. Short-term transient-rate and pressure-buildup analysis of low-permeability reserviors. SPE Formation Evaluation, 1987, 2(4): 611-617
    [88] Wang H. F, Hart D. J. Experimental error for permeability and specific storage from pulse decay measurements. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7): 1173-1179
    [89] E. M. Zeynaly-Andabily, S.S.Rahman. Measurement of permeability of tight rocks. Measurement Science & Technology, 1995, 6(10): 1519-1527
    [90] Jones S. C. A technique for faster pulse-decay permeability measurement in tight rocks. SPE Formation Evaluation, 1997, 12(1): 19-25
    [91] 宋付权,刘慈群,吴柏志. 启动压力梯度的不稳定快速测量. 石油学报, 2001, 22(3): 67-71
    [92] 吕成远,王建,孙志刚. 低渗透砂岩油藏渗流启动压力梯度实验研究. 石油勘探与开发, 2002, 29(2): 86-89
    [93] Sanyal S. K, Pirnie III R. M, Chen G. O, et al. A novel liquid permeameter for measuring very low permeability. SPEJ, 1972, 12(3): 206-210
    [94] 谢彤芳,沈珍瑶. 低渗透性多孔介质渗透性能测定评述. 地下水学报,1997,19(3): 133~135
    [95] 韩式方. 非牛顿流体连续介质力学. 成都: 四川科学技术出版社,1988: 1~7
    [96] 李兆敏,蔡国琰. 非牛顿流体力学. 北京: 石油大学出版社,1998: 216~218
    [97] 黄延章. 低渗透油田渗流机理. 北京: 石油工业出版社,1998: 80~86
    [98] 任长吉,黄涛. 裂隙岩体渗流场与应力场耦合数学模型的研究. 2004,37(2): 8-12
    [99] 黄延章,于大森. 微观渗流实验力学及其应用. 北京: 石油工业出版社,2001: 36~56.
    [100] 沈平平. 油水在多孔介质中的运动理论和实践. 北京: 石油工业出版社,2000: 31~49.
    [101] C.A.米勒尔,P. 尼奥基. 杨承志,金静芷译. 界面现象—平衡和动态现象. 北京: 石油工业出版社, 1992: 5~20
    [102] 葛家理,宁正福,刘月田等. 现代油藏渗流力学原理. 北京: 石油工业出版社,2001: 7~62
    [103] 徐秉业,刘信声. 应用弹塑性力学. 北京,清华大学出版社,1995: 73~88
    [104] 宋兆基 徐流美等. MATLAB6.5 在科学计算中的应用. 北京: 清华大学出版社,2005: 30~99
    [105] 薛定宇,陈阳泉. 高等应用数学问题的 MATLB 求解. 北京: 清华大学出版社,2004: 260~288
    [106] 韩小妹. 低渗透岩石非 DARCY 渗流实验研究: [硕士学位论文]. 清华大学, 2004
    [107] 沈平平. 油层物理实验技术 . 北京: 石油工业出版社,1995: 21~85
    [108] Halex, V. and J. Svec. Groundwater Hydraulics[M]. Elsevier, 1979: 60-61
    [109] 阮敏, 何秋轩. 低渗透非达西渗流临界点及临界参数判别法. 西安石油学院学报,1999,14(3): 9~11
    [110] Van Genuchten M Th. A close-form equation for predicting the hydraulic conductivity of unsaturared soils. Soil Sci. Am. J. 1980, 44(5): 892-898
    [111] Pruess and Wang. Numerical modeling of isothermal and nonisothermal flow in unsaturated fractured rock: a review, in Flow and Transport Through Unsaturated Rock, Heritage, New York, 1987
    [112] Reitsma S, Kueper B H. Laboratory measurement of capillary pressure-saturation relationships in a rock fracture. Water Resource Res., 1994, 30(4): 865-878
    [113] 虞维平,王补宣,施明恒等. 多孔介质非饱和渗流德阀梯度理论. 工程热物理学报,1992,13(1): 74~76
    [114] 孙役,王恩志,陈兴华. 降雨入渗下的单裂隙非饱和渗流实验研究. 清华大学学报,1999,38(8): 31-36
    [115] 韩冰,叶自桐,周创兵. 岩体裂隙饱和/非饱和渗流机理初步研究. 水科学进展,1999,10(4): 375~381
    [116] 陈卫忠等. 粘土岩饱和-非饱和渗流机理研究. 岩石力学与工程学报,2004,23(21): 3689~3694
    [117] 翟云芳. 渗流力学. 北京: 石油工业出版社,2003: 124~130
    [118] 宋晓晨,徐卫亚. 非饱和带裂隙岩体渗流的特点和概念模型. 岩土力学,2004,25(3): 408~411
    [119] Tokunaga T K, Wan J. Water film flow along fracture surface of porous rock. Water Resource Res., 1997, 33(6): 1287-1295
    [120] Dragila M I, Wheatcraft S W. Free-surface films. CGER, Conceptual Models of Flow and Transport in the Fractured Vadose Zone. Washington D C: National Academy Press, 2001, 217-242
    [121] Glass R J, Nicholl M J. Physics of gravity fingering of immiscible fluids within porous media: An overview of current understanding and selected complication factors. Geoderma, 1996(70): 133-163
    [122] 吴凡, 孙黎娟, 何江. 孔隙度、渗透率与净覆压的规律研究和应用. 西南石油学院学报, 1999, 21(4): 23~25
    [123] 刘建军, 刘先贵. 有效压力对低渗透多孔介质孔隙度 、渗透率的影响. 地质力学学报, 2001, 7(1): 41~44
    [124] 熊伟. 流固耦合渗流规律研究: [硕士学位论文]. 中国科学院渗流力学研究所, 2002
    [125] 刘斌,王宝善,季卫国等. 围压作用下岩石样品中微裂纹的闭合. 地球物理学报, 2001, 44(3): 421~428
    [126] 吴凡, 孙黎娟, 何江. 孔隙度、渗透率与净覆压的规律研究和应用. 西南石油学院学报, 1999, 21(4)23~25
    [127] J.Bear 著,李竟生、陈崇希译. 多孔介质流体动力学. 北京: 中国建筑工业出版社,1983: 97;
    [128] 王恩志,韩小妹,黄远智. 低渗岩石非线性渗透机理讨论. 岩土力学,2003,24(10): 120~125
    [129] 任长吉, 黄涛. 裂隙岩体渗流场与应力场耦合数学模型的研究. 武汉大学学报, 2004, 37(2): 8~12
    [130] 阎庆来、马宝岐、邓英尔,界面分子力作用与渗透率的关系及其对渗流的影响. 石油勘探与开发,1998,25(2): 46~51;
    [131] TerzghiK. Theoretical soil mechanics. New York: Wiley, 1943
    [132] Verrijt. Elastic storage of aquifers. In: Flow Through Porous media. New York: Wiley, 1969: 5-65
    [133] 苑莲菊、李振栓、武胜忠等. 工程渗流力学及应用. 北京: 中国建材工业出版社,2001: 17~18
    [134] 郎兆新. 油气地下渗流力学. 山东: 石油大学出版社,2001: 135~136
    [135] 詹美礼,胡云进,速宝玉. 裂隙概化模型的非饱和渗流试验研究. 水科学进展,2002,13(2): 172~178
    [136] Anthony F G. Variation of whole and fractured porous rock permeability with confining pressure. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1978, 15(2): 249-257
    [137] 常宗旭,赵阳升,胡耀青等. 裂隙岩体渗流与三维应力耦合的理论与实验研究. 岩石力学与工程学报,2004,23(增 2): 4907~4911
    [138] 常宗旭,赵阳升等. 三维应力作用下单一裂隙渗流规律的理论与实验研究. 岩石力学与工程学报,2004,23(4): 620~624
    [139] 李广信. 高等土力学. 北京: 清华大学出版社,2004: 291~293
    [140] 冉启全,李士伦. 流固耦合油藏数值模拟众物性参数动态模型研究. 石油勘探与开发,1997,24(3): 61~65
    [141] 王媛. 多孔介质渗流与应力的耦合计算方法. 工程勘探,1995, 2: 33~37
    [142] 张玉军,康永华. 岩体渗流与应力耦合理论及在近水体采煤的应用. 煤矿开采,2005,10(5): 18~21
    [143] 梁冰,刘晓丽,薛强. 低渗透地下环境中水-岩作用的渗流模型研究. 岩石力学与工程学报,2004,23(5): 745~750
    [144] 叶源新,刘光廷. 岩石渗流应力耦合特征研究. 岩石力学与工程学报,2005,2(14): 2518~2525
    [145] 王恩志,王洪涛,孙役. 三维裂隙网络渗流数值模型研究. 工程力学,1997(增 2): 520~525
    [146] 韦立德 杨春和. 考虑饱和-非饱和渗流、温度和应力耦合德三维有限元程序研制. 岩土力学,2005,26(6): 1000~1004
    [147] 张电吉,汤平,白世伟. 节理裂隙岩体渗流场与应力耦合分析. 武汉化工学院学报,2004,26(4): 44~48
    [148] 李世平,李玉寿,吴振业等. 岩石全应力应变过程对应的渗透率-应变方程. 岩土工程学报,1995,17(2): 13~19
    [149] 陈卫忠,劭建富,G. Duveau. 粘土岩饱和-非饱和渗流应力耦合模型及数值模拟研究. 岩石力学与工程学报,2005,24(17): 3012~3016
    [150] 刘晓丽,梁冰,王思敬. 水气二相渗流与双重介质变形的流固耦合数学模型. 2005,36(4): 405~412
    [151] Terzghi K. Theoretical soil mechanics. New York: Wiley, 1943
    [152] 曾溅辉,王捷等. 油气运移机理及物理模拟. 北京: 石油工业出版社,2002: 105~107
    [153] 韩吉田,施明恒,虞维平等. 非饱和含湿多孔介质在考虑毛细滞后影响时的传热传质理论. 土壤学报,1994,31(3): 244~248
    [154] 刘新荣,刘立平,姜德义. 裂隙岩体非饱和渗流问题的研究. 矿业安全与环保,2000,27(6): 12~15
    [155] 项彦勇. 裂隙岩体忠非饱和渗流与运移德概念模型及数值模拟. 工程地质学报,2002,10(2): 204~209
    [156] 姚约东,葛家理. 低渗透油层非达西渗流规律德研究. 新疆石油地质,2000,21(3): 213~215
    [157] 张辉. 裂隙孔隙岩体非饱和渗透率德探讨. 云南水力发电,2002,18(1): 54~62
    [158] 朱伟,程南军,陈学东等. 浅谈非饱和渗流的几个基本问题. 岩土工程学报,2006,28(2): 235~240
    [159] 石京平,向阳,张丽萍等. 俞树林油田低渗透储层微观孔隙结构特征及渗流特性. 2003,23(1): 90~94
    [160] 许浚远,彭大钧,罗蛰潭. 围压对构造裂缝孔隙度的重要影响. 石油学报,1995,16(3): 44~47
    [161] 谢彤芳,沈珍瑶. 低渗透性多孔介质渗透性能测定评述. 地下水,1997,19(3): 133~134
    [162] 张烈辉,李允. 低渗透气藏流-固耦合渗流数值模拟. 天然气工业,2004,24(10): 80~82
    [163] 张文杰,周创兵,李俊平等. 裂隙岩体渗流特性物模实验研究进展. 岩石力学,2005,26(9): 1518~1522
    [164] 高旺来. 安塞低渗油田孔隙结构对渗流特征曲线的影响. 石油勘探与开发,2003,30(1): 79~80
    [165] 宋付权,刘慈群,李凡华. 低渗透介质含启动压力梯度一维瞬时压力分析. 应用数学和力学,1999,20(1): 25~32
    [166] 宋付权. 低渗透多孔介质和微管液体流动尺度效应. 科技进展,2004,26(3): 128~131
    [167] 毛宗原. 低渗透介质非达西渗流数值模拟方法及应用: [硕士学位论文]. 清华大学, 2004
    [168] Morrow CA.Byerlee JD. Permeability Of core Samples from Coajon Pass scietific drill ho1e;results from 2100 to 3500 m depth. Journal of Geophysical Research,1992,97(B4): 5145-5151
    [169] Neuzil.C.E. Groundwater flow in low-permeability Environments. Water Reasources Research. 186,22(8): 1163-1195
    [170] 李顺才,缪协兴,陈占清. 破碎岩体非达西渗流的非线性动力学分析. 煤炭学报,2005,30(5): 557~561
    [171] 王恩志,龙腾,黄远智. 油藏非线性渗流数值模拟系统研制. 中国力学学会, 2005 年 第八届渗流力学学术讨论会论文集, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700