用户名: 密码: 验证码:
低孔隙度岩石细观本构模型及损伤—渗流耦合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多场耦合问题的研究近年来成为现代岩石力学的一个重要分支,其原因是该领域的研究涉及到诸多工程应用,如核废料处置、石油二次开采、二氧化碳地下封存、高坝坝基安全性评估等等。目前该领域在数学模型、原位实验、计算程序三个方面取得了一定的进展,对岩石、结构面、岩体耦合机制的研究仍需进一步完善。就岩石而言,学者们致力寻求一个可以完全描述应力-应变全过程中渗透率种种变化规律的模型,尤其希望模型能够正确反映出岩石损伤引起的渗透率各向异性演化。本文选择低孔隙度岩石作为研究对象,采用细观力学作为研究工具,全面展开本构模型和渗透率演化模型的研究。论文的主要研究成果和研究工作归纳如下:
     (1)对当前岩石力学中常用建模理论、荷载(变形)引起的渗透率演化模型、数值方法进行综述。对比损伤力学中的两个分支:连续损伤力学和细观损伤力学,陈述本文选用细观损伤力学建立本构模型和渗透率演化模型的因由。指出现有的岩石和岩体渗透率演化模型的不足之处,在此基础上提出本文的研究思路和研究方法。
     (2)选用基于应变的数学格式建立岩石的细观本构模型。在归纳出低孔隙度岩石三轴试验各种现象的基础上,提出了建模的预期目标。叙述了建模的步骤、REV尺度的确定以及所采用的岩石概念模型:将岩石视为岩石基质和微裂纹系统组成的二元介质。把微裂纹分为张拉/压剪两类,建立了张拉/压剪微裂纹的判别准则,在应变空间中对判别准则进行表达。对张拉微裂纹进行细观力学分析,推导了张拉微裂纹扩展的判别准则和演化方程。应用能量原理推导了张拉微裂纹的四阶均匀化刚度张量和四阶切线均匀化刚度张量。
     (3)在评述当前常用的微裂纹滑移准则的基础上,提出了本文的滑移准则,考虑了微裂纹滑移引起的裂纹面法向膨胀,以及由法向膨胀引起的微裂纹进一步扩展,阐明了滑移-扩展相互影响的细观力学机制。推导了压剪微裂纹的四阶切线均匀化刚度张量,通过球面积分推导了含微裂纹系统的增量本构表达式。编制了相应的程序模拟三轴拉伸试验以及三轴压缩试验,对模型的各个参数进行敏感性分析。从细观机理上对计算结果的进行详细的分析和解释。
     (4)总结低孔隙度岩石三轴压缩过程中渗透率的变化规律,在此基础上提出岩石的4阶段渗透率演化概念模型,以此作为渗透率演化模型的建模目标。对影响岩石渗透率的两个因素:单条微裂隙开度和微裂隙系统的连通率展开讨论,将单裂隙隙宽变化拆分为弹性压缩、剪切滑移引起的法向膨胀、裂隙扩展引起的法向膨胀三个部分,推导了应变空间描述的隙宽演化表达式;推导了损伤过程中连通度的演化方程。编制了相应的程序用对渗透率演化模型的参数进行敏感性分析,从微裂隙的细观运动机制上对数值模拟的结果做出详细的解释。
     (5)通过试验验证提出的本构模型和渗透率演化模型。选取南京大理石试样进行三轴试验,采用提出细观本构模型对试验进行数值模拟,将模拟的结果和试验的结果进行对比,验证模型的正确性。对其他文献中的花岗岩、砂岩试验成果进行数值模拟,验证模型的普适性。分析两组深部花岗岩的渗透率演化试验成果,用提出的渗透率模型对试验成果进行模拟,并与Souley的数值模拟结果进行对比,给出两种渗透率模型的评述。定性分析洛古玄武岩三轴压塑过程中的渗透率演化的规律,采用本文的渗透率演化模型对其进行数值模拟,并给出评述。
     (6)借助于ABAQUS的二次开发功能,将提出的细观模型和渗透率演化模型嵌入其中。用提出的模型模拟加拿大的地下原位试验室420m深处的3条峒室,对模拟的结果给出解释,并与现场观测的结果进行对比。
Coupled THM problem has become an important branch of modern rock mechanics, this issue related to many project applications, such as: disposal of nuclear waste, secondary exploitation of petroleum, underground sealing of carbon dioxide, and safety assessment of high dam foundation etc. Though certain advance has been made on mathematic model, in situ experiment and computer code at present, the coupling process of intact rock, fracture rockmass and signle fracture still need proceed. Scholars still work on the coupling model that could describe the deformation and permeability chang during triaxial compression especially hoped the model could describe the load induced permeability anisotropic chang. In this thesis, we study a special kind of rock: low porosity rock, the constitutive model and permeability change model is investigated by using micromechanical theory. The main research content and result is as follows:
     (1) The constitutive modeling theory, permeability change model and numerical method in rock mechanics are summarized. Continue damage theory and micromechanical damge theory is compared; the reason of choosing micromechanical damage theory to establish constitutive model and permeability evolution model is stated. The deficiency in the current permeability change model is pointed out, then, the research thought and method in the thesis is put forward.
     (2) The micromechanical model for low porosity rock is established in strain-based formulation. Firstly, the main character of rock deformation in triaxial compression is summaried and a explanation in micro structure level is given as a goal of micromechanical. The procedure of modeling, determination of REV scale and conceptual model of rock: low porosity rock composed of rock host and microcracks is represented. According to stress condition, the microcracks are divided into two classes: tensile microcrack and shear microcrack. The criterion of tensile/shear is established and expressed in the strain space. The criterion of tensile microcrack propagation and evolution equation is deduced based on micromechanics analysis. The fourth order homogeneous stiffness tensor and tagent homogeneous stiffness are deduced by using energy theory.
     (3) A comment of criterions of microcrack sliding is given; then a new sliding criterion in this thesis is put forward. Crack sliding induced microcrack surface normal dilation and normal dilation induced microcrack further self-similar propagation are considered, the ineracting of sliding and propagation is clarified. The fourth-order tangent homogeneous stiffness tensor of shear microcrack is deduced, and at last the constitutive model of low porosity is expressed in increment formulation though unit sphere surface integral. The computer code that simulates the triaxial experiment of tension and compression is developed, and sensibility of each model parameter is analyzed, the computation result is analyzed and explained in detail.
     (4) The regularity pheonomenon of permeability change in the triaxial compression process is generalized, and the conception model that describes the four stage of permeability evolution is presented, which is the goal of modeling. The two factor influencing rock permeability: aperture of micro fracture and connectivity of micro fracture system is discussed. The change fracture aperture is considered consis of three parts: elastic compression, shear sliding induced normal dilatation and fracture propagation induced normal dilatation. The evolution equation of fracture aperture in the strain space is deduced, and the evolution equation of connectivity in the damage process is derived. The code that analyzes the sensibility of model parameters in the permeability change model is programmed, and computation result is explained with micro fracure kinesis.
     (5) The constitutive model and permeability change model is verified through rock sample experiment. Marble sample in Nanjing area is selected to triaxial test, and the test result is simulated by the micro constitutive model suggested in the thesis. The simulation confirms the correct of the model. The universality of the model is proved by simulation of test of granite and sandstone in other literatures. Experiment results of granite permeability in triaxial compression is analyzed and simulated by the permeability change model in the thesis. The simulation result is compared with the result of Souley, and the commentary is given. The experiment result of basalt in Luogu area during the triaxial compression is analyzed and simulated, and the commentary is given.
     (6)Developed the calculation code of constitutive and permeability change model by using ABAQUS's user define material routine interface. Three tunnel's excavation about 420 meters below underground which located in URL Canada is simulated using promoted model. Results of simulation is discussed and compared with measured.
引文
[1] 陈顒,黄庭芳.岩石物理学[M].北京大学出版社,2001.
    [2] 特科特,舒伯特.地球动力学.连续介质在地质问题中的应用[M].北京:地震出版社,1986.
    [3] 耶格和库克.岩石力学基础[M].科学出版社:1981.
    [4] Walter Wittke.曾国熙等译.岩石力学[M].杭州:浙江大学,1996.
    [5] Rebecca Renner.实践碳封存技术[J].Scientific American(中文版),2006,2(11):11-12.
    [6] 仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社,1995.
    [7] 卢世宗.我国露天矿山边坡研究概况与展望[C].第四届全国工程地质大会论文集,1992:
    [8] 井兰如,冯夏庭.反射性地质处置中的主要岩石力学问题[J].岩石力学与工程学报,2006,25(4):833-841.
    [9] Tsang C-F, Jing L, Stephansson O, Kaulsky F. The DECOVALEX Ⅲ project: a summary of activities and lesson learned [J]. Int J Rock Mech Min Sci, 2005, 42(5):710-730.
    [10] Rutqvist J, Chijimatsu M, Jing L, Millard A, Nguyen Ts, Rejeb A, Sugita Ya, Tsang C-F. Numerical study of THM effects on the near-field safety of a hypothetical nuclear waste repository-BMT1 of the DECOVALEX Ⅲ project. Part 3: effects of THM coupling in sparsely fractured rocks [J]. Int J Rock Mech Min Sci, 2005, 42(5):745-755.
    [11] Jing L, Stephansson O, Bo" Rgesson L, Chijimatsu M, Kautsky F, Tsang C-F. DECOVALEX Ⅱ, Technical Report-Task 2C [R]. 1999.
    [12] Chijimatsu M, Nguyen Ts, Jing L, De Jonge J, Kohlmeier M, Millard A, Rejeb A, Rutqvist J, Souley M, Sugita Y. Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository—BMT1 of the DECOVALEX Ⅲ project. Part 1: conceptualization and characterization of the problems and summary of results[J]. Int J Rock Mech Min Sci, 2005, 42(5):731-744.
    [13] A. Millarda, A. Rejebb, M. Chijimatsuc, L. Jingd, J. De Jongee, M. Kohlmeierf, T. S. Nguyeng, J. Rutqvisth, M. Souleyi, Y. Sugita. Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository—BMTl of the DECOVALEX Ⅲ project. Part 2: Effects of THM coupling in continues and homogeneous rocks [J]. Int J Rock Mech Min Sci, 2005, 42(5): 731-744.
    [14] R. S. Read. 20 years of excavation response studies at AECL's Underground Research Laboratory [J]. Int J Rock Mech Min Sci, 2004, 41(5): 1251-1275.
    [15] J. Rutqvista, D. Barrb, R. Dattac, A. Gensd, A. Millarde, S. Olivellad, C. F. Tsang, Y. Tsanga. Coupled thermal-hydrological-mechanical analyses of the Yucca Mountain Drift Scale Test-Comparison of field measurements to predictions of four different numerical models [J]. Int J Rock Mech Min Sci, 2005, 42(5):680-697.
    [16] Sobolik St, Finley Re, Ballard S. Post-test comparison of thermal mechanical measurements vs. Analyses for the in-situ single Heater Test, Yucca Mountain, Nevada [J]. Int J Rock Mech Min Sci, 1998, 35(4): 694-712.
    [17] Rutqvist J, Tsang Cf. Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain [J]. Int J Rock Mech Min Sci, 2003, 38(7): 649-657.
    [18] Cappa F, Guglielmi Y, Fenart P, Merriensoukatchoff V, Thoraval A. Hydromechanical interaction in a fracture carbonate reservior inferrred from hydraulic and mechanical measurement [J]. Int J Rock Mech Min Sci, 2005, 42(2): 287-306.
    [19] Cappa F, Guglielmi Y, Gaffet S, Lancon H, Lamarque I. Use of in situ fiber opticsensors to characterize highly hetergeneous elastic displacement field in fractured rocks [J]. Int J Rock Mech Min Sci, 2006, 43(6): 647-655.
    [20] Chin-Fu Tsang, Peter Biumling, Fredric Bernier. Coupled Hydro-mechnical processes in crystalline rock and in indurated and plastic clays: a comparative discussion[C]. International conference of Thermo-Hydro-mechanical-chemical processes in geosystems and engineering(GeoProc 2006), Nanjing: Science Press, 2007:1-13.
    [21] 任青文.岩土力学前沿2004[M].南京:河海大学出版社,2004.
    [22] L. Jing. A review of techniques, advances and outstanding issues in numerical modelling for rock mechnicas and rock engineering [J]. Int J Rock Mech Min Sci, 2003, 40(3): 283-353.
    [23] Singh B. Continuum characterization of jointed rock masses Part 1—the constitutive equations [J]. int J Rock Mech Min Sci Geomech Abstr, 1973, 22(4):197-213.
    [24] Gerrard Cm. Equivalent elastic moduli of a rock mass consisting of orthorhombic layers [J]. int J Rock Mech Min Sci Geomech Abstr, 1982, 19(1): 9-14.
    [25] Fossum Af. Effective elastic properties for a random jointed rock mass [J]. int J Rock Mech Min Sci Geomech Abstr, 1985, 22(6): 467-470.
    [26] Yashinaka R, Yamabe T. Joint stiffness and the deformation behaviour of discontinuous rock [J]. int J Rock Mech Min Sci Geomech Abstr, 1986, 1986(23): 19-28.
    [27] Wei Zq, Hudson Ja. The influence of joints on rock modulus Proceedings of the International Symposium Rock Engineering in Complex Rock Formations[M]. Beijing: 1986.
    [28] Wu Fq. A 3D model of a jointed rock mass and its deformation properties [J]. int J Rock Mech Min Sci Geomech Abstr, 1988, 6(1): 169-176.
    [29] Mukarami H, Hegemier Ga. Development of a non-linear continuum model for wave propagation in jointed media: theory for single joint set [J]. Mech Mater, 1989, 8(2): 199-218.
    [30] Chen Ep. A constitutive model for jointed rock mass with orthogonal sets of joints [J]. J Appl Mech, 1989, 56(1): 25-62.
    [31] Singh M. Applicability of a constitutive model to jointed block mass [J]. Rock Mech Rock Eng, 2000, 33(2): 141-147.
    [32] Wu Fq, Wang Sj. A stress-strain relation for jointed rock masses [J]. Int J Rock Mech Min Sci, 2001, 28(5): 591-598.
    [33] 郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].中国建筑工业出版社,2002.
    [34] 谢守义.多孔岩石力学性质实验研究与模拟:[D].南京:河海大学,2006.
    [35] Hoek E, Brown Et. Underground excavations in rock[M]. London, UK: Institute of Mining and Metallurgy, 1982.
    [36] Hoek E, Brown Et. Practical estimates of rock mass strength [J]. Int J Rock Mech Min Sci, 1997, 34(8): 1165-1186.
    [37] Dragon A, Mroz Z. A continuum model for plastic-brittle behaviour of rock and concrete [J]. Int J Eng Sci, 1979, 17(2):
    [38] Nemat-Nasser S. On finite plastic flowof crystalline solids and geomaterials [J]. J Appl Mech Trans ASME, 1983, 50(11): 1114-1126.
    [39] Zienkiewicz Oc, Mroz Z. Generalized plasticity formulation and applications to geomechanics[C]. Mechanics of engineering materials, New York: 1984: 655-679.
    [40] Read He, Hegemier Ga. train softening of rock, soil and concrete—reviewarticle [J]. Mech Mater, 1984, 3(2): 194-271.
    [41] Gerrard Cm, Pande Gn. Numerical modelling of reinforced jointed rock masses [J]. Comput Geotech, 1985, 1 (2):293-318.
    [42] Desai Cs, Salami Mr. Constitutive model for rocks [J]. J Geotech Eng'Trans ASCE, 1987, 113(5):407-423.
    [43] Rowshandel B, Nemat-Nasser S. Finite strain rock plasticity: stress triaxiality, pressure, and temperature effects [J]. J Soil Dyn Earthquake Eng, 1987, 6(4):203-219.
    [44] Kim Mk, Lade Pv. Single hardening constitutive model for frictional materials [J]. Comput Geotech, 1988, 6(4): 307-324.
    [45] Sterpi D. An analysis of geotechnical problems involving strain softening effects [J]. Int Numer Anal Meth Geomech, 1999, 23(12): 1427-1454.
    [46] Rice Jr Rudnicki Jw. Conditions for the localization of deformation in pressure-sensitive dilatant materials [J]. J Mech Phys Solids, 1975, 23(3): 371-394.
    [47] Fang Z. A local degradation approach to the numerical analysis of brittle fracture in heterogeneous rocks:[D]. London: University of London, 2001.
    [48] Kachanov Lm. Time of the rupture process under creep conditions [J]. Izv Akad Nauk SSR Otd Tekh Nauk, 1958, 8(1): 26-31.
    [49] 易顺民,朱珍德.裂隙岩体损伤力学导论[M].北京:科学出版社,2005.
    [50] Aubertin M, Simon R. A damage initiation criterion for low porosity rocks [J]. Int J Rock Mech Min Sci, 1997, 34(3): 554-568.
    [51] Grabinsky Mw, Kamaleddine Ff. Numerical analysis of an extended arrangement of periodic discrete fractures [J]. Int J Rock Mech Min Sci, 1997, 34(3):533-542.
    [52] Shao Jf. Poroelastic behaviour of brittle rock materials with anisotropic damage [J]. Mech Mater, 1998, 30(1): 41-53.
    [53] Rudnicki Jw Shao Jr. A microcrack-based continuous damage model for brittle geomechanics[J]. Mech Mater, 2000, 36(6): 607-619.
    [54] Yang C, Daemen Jjk. Temperature effects on creep of Tuff and its time-dependent damage analysis [J]. Int J Rock Mech Min Sci, 1997, 34(3): 283-384.
    [55] Chazallon A, Hicher Py. A constitutive model coupling elastoplasticity and damage for cohesive-frictional materials [J]. Mech Cohes-Frict Mater, 1998, 3(1): 41-63.
    [56] Homand-Etienne F, Hoxha D, Shao Jf. A continuum damage constitutive lawfor brittle rocks[J]. Comput Geosci, 1998, 22(2):135-151.
    [57] Basista M, Gross D. The sliding crack model of brittle deformation: an internal variable approach [J]. Int J Rock Mech Min Sci, 1998, 35(4):487-509.
    [58] Zhao Y. Crack pattern evolution and a fractal damage constitutive model for rock [J]. Int J Rock Mech Min Sci, 1998, 35(3):349-366.
    [59] Carmelier J. Optimal estimation of gradient damage parameters from localization phenomena in quasi-brittle materials [J]. Mech Cohes-Frict Mater, 1999, 4(1): 1-16.
    [60] Chen Ep. Non-local:effects on dynamic damage accumulation in brittle solids [J]. 1999, 23(1):1-21.
    [61] Dragon A, Halm D, Desoyer Th. Anisotropic damage in quasibrittle solids: modelling computational issues and applications [J]. Comput Methods Appl Mech Eng, 2000, 183(3): 331-352.
    [62] Jessell M, Bons P, Evans L, Barr T, St. Uwe K. Elle: the numerical simulation of metamorphic and deformation microstructures [J]. Comput Geosci, 2001, 27(1):17-30.
    [63] 谢和平,高峰.岩石材料损伤演化的分形特征[J].岩石力学与工程学报,1991,10(1):1-9.
    [64] 谢和平.混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [65] 周维垣,杨延毅.节理岩体损伤断裂模型及验证[J].岩石力学与工程学报,1991,10(1):43-54.
    [66] 陈卫忠.节理岩体损伤断裂时效机理及工程应用:[D].武汉:中科院武汉岩土所,1997.
    [67] 朱珍德,孙均.裂隙岩体非稳态渗流场与损伤场耦合分析模型[J].四川联合大学学报,1999,3(4):73-80.
    [68] 李广平,陶振宇.真三轴条件下的岩石细观损伤力学模型[J].岩土工程学报,1995,17(1):24-31.
    [69] 江涛.基于细观力学的脆性岩石损伤-渗流耦合本构模型研究:[D].南京:河海大学,2006.
    [70] 杨圣奇.岩石流变力学特征的研究及其工程应用:[D].南京:河海大学,2006.
    [71] J. J. Zhou, J. F. Shao, W. Y. Xu. Coupled modeling of damage growth and permeability variation in brittle rocks [J]. Mechanics Research Communications, 2003, 33(4):450-459.
    [72] Souley M, Homand F, Pepa S, Hoxha D. Damage-induced permeability changes in granite: a case example at the URL in Canada [J]. Int J Rock Mech Min Sci, 2001, 38(2): 297-310.
    [73] 李新平,朱维申.多裂隙岩体的等效弹性损伤模型及有限元分析[C].第四届全国岩土数值分析与解析方法研讨会论文集,武汉:武汉测绘大学出版社,1991:1-7.
    [74] 徐靖南.压剪应力作用下多裂隙岩体的力学特征-理论分析与模型试验:[D].武汉:中科院武汉岩土所,1993.
    [75] 徐靖南,朱维申.压剪作用下多裂隙岩体的力学特征-本构模型[J].岩土力学,1993,14(4):15-23.
    [76] Yang R, Bawden Wf, Katsabanis Pd. A new constitutive model for blast damage [J]. Int J Rock Mech Min Sci, 1996, 33(3): 245-254.
    [77] Liu L, Katsabanis Pd. Development of a continuum damage model for blasting analysis [J]. Int J Rock Mech Min Sci, 1997, 34(2): 217-231.
    [78] Ma Gw, Hao H, Zhou Yx. Modeling of wave propagation induced by underground explosion [J]. Comput Geotech, 1998, 22(3): 283-303.
    [79] Sellers E, Scheele F. Prediction of anisotropic damage in experiments simulating mining in Witwatersrand quartzite blocks [J]. int J Rock Mech Min Sci Geomech Abstr, 1996, 33(7): 659-701.
    [80] Cerrolaza M, Garcia R. Boundary elements and damage mechanics to analyze excavations in rock mass[J]. Eng Anal Boundary Elements, 1997, 20(1): 1-16.
    [81] Elata. Modeling wellbore breakouts [J]. Int J Rock Mech Min Sci, 1997, 33(3): 419-431.
    [82] Nazimko Vv, Peng Ss, Lapteev A, Alexandrov S, Sazhnev V. Damage mechanics around a tunnel due to incremental ground pressure [J]. Int J Rock Mech Min Sci, 1997, 33(3): 655-662.
    [83] Nazimko Vv, Lapteev Aa, Sazhnev Vp. Rock mass selfsupporting effect utilization for enhancement stability of a tunnel [J]. Int J Rock Mech Min Sci, 1997, 34(3): 657-664.
    [84] Swoboda G, Shen Xp, Rosas L. Damage model for jointed rock mass and its application to tunnelling [J]. Comput Geosci, 1998, 22(3): 183-203.
    [85] 朱维申,陈卫忠,李术才.加锚节理裂隙岩体的本构关系研究[R].1995.
    [86] Costin L S. Time-dipendent Damage and creep of brittle rock. Damage Mechanics and Continuum Modeling[M]. New York: ASCE, 1985.
    [87] Krajcinovic D. Constitutive theories for solids with defective micro-structure. Damage Mechanics and Continuum Modeling[M]. New York: ASCE, 1985.
    [88] Krajcinovic D, Sumaral D. A mecsomechanics model for brittle deformation process: Part Ⅰ and Part Ⅱ[J]. ASME J Appl. Mech, 1989, 56(1): 51-62.
    [89] Krajcinovic D, Basista M. Micromechanically inspired phenomenolotical damage model [J]. ASME J Appl. Mech, 1991, 58(2): 305-310.
    [90] Atkinson B K, Meredith P G. The theory of subcritical crack growth with application to minerals and rocks. Fracture Mechanics of Rock[M]. London: Academic, 1987.
    [91] Murakami S. Mechanical modeling fo material damage [J]. ASME J Appl. Mech, 1987, 55(2): 280-286.
    [92] Murakami S. Anisotropic aspect of material damage and application to continnue damage mechanics, Continuum Damage Mechanics. Theory and application[M]. New York: Springer, 1987.
    [93] Shen W, Peng L H, Yue Y G, Shen Z, Tang X D. Elastic damage and energy dissipation in anisotropic solid material [J]. Fracture Mech, 1987, 33(2): 247-255.
    [94] Swoboda G, Yang G. An energy based damage model of geomaterials Ⅰ. formulation and numerical results [J]. Int J Rock Mech Min Sci, 1999, 36(11): 1719-1734.
    [95] Yang G Swoboda G. An energy based damage model of geomaterials Ⅱ. Deduction of damage evolution laws [J]. Int J Rock Mech Min Sci, 1999, 36(11): 1735-1755.
    [96] 谢和平.分形几何及其在岩土力学中的应用[J].岩土工程学报,1992,14(1):14-24.
    [97] 谢和平.节理岩体的分形描述[J].岩土工程学报,1995,14(1):1-5.
    [98] 谢和平.脆性材料裂纹扩展的分形运动学[J].力学学报,1994,26(6):759-762.
    [99] 谢和平.动态裂纹扩展的分形效应[J].力学学报,1995,27(1):18-28.
    [100] 凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报,1993,11(4):378-383.
    [101] Jonny Rutqvist, Ove Stephansson. The role of hydromechanical coupling in fractured rock engineering [J]. Hydrogeology Journal, 2003, 11 (1): 7-40.
    [102] 黄克智.材料的损伤断裂机理和宏微观力学理论[M].北京:清华大学出版社,1999.
    [103] Kachanov M. Effective elastic properties of cracked solids: critical review of some basic concepts [J]. App. Mech. Rev, 1992, 45(3): 304-335.
    [104] Bazant Z P. Appl. Mech. Rev [J]. 1986, Mechanics of distributed cracking, 39(6): 675-705.
    [105] J F Shao, D Hoxhab, M Bart. Modelling of induced anisotropic damage in granites [J]. Int J Rock Mech Min Sci, 1999, 36(9): 1001-1012.
    [106] Aliakbar Golshani, Yoshiaki Okui, Masanobu Oda, Takato Takemura. A micromechanical model for brittle failure of rock and its relation to crack growth observed in triaxial compression tests of granite [J]. Mechanics of Materials, 2005, 38(2): 278-303.
    [107] Horii H, Nemat-Nasser S. Overall moduli of solids with microcrack: load-induce anisotropiy [J]. J Mech Phys Solids, 1983, 31(2): 155-177.
    [108] Hoxha D, Homand F. Microstructural approach in damage modeling [J]. Mech of Mater, 2000, 32(3): 377-387.
    [109] Nemat-Nasser S, Hori M. Micromechnics: overall properites of heterogeneous materials[M]. North-Holland: Netherlands, 1993.
    [110] Oda M, Katsube T, Takemura T. Microcrack evolution and brittle failure of Inada granite in triaxial compression test at 140 MPa [J]. Geophy Res, 2002, 107(2): 221-243.
    [111] Takemura T. Experiment study on brittle failure mechanism of granitic rocks based on microcrack evolutiion:[D]. Saitama University, 2002.
    [112] Takemura T, Golshani A, Oda M, Suzuki K. Preferred orientation of open microcrack in granite and their relation with anisotropic elasticity [J]. Int J Rock Mech Min Sci, 2003, 40(3): 443-454.
    [113] Feng X Q, Yu S W. Damage model of domain of microcrack growth for microcrack-weakened brittle solids[C]. Proceedings of the Second International conference on Nonlinear Mechanics, Beijing: 1993:299-302.
    [114] Yu S W, Feng X Q. A micromechanics-based model for microcrack-weakened brittle solids [J]. Mech of Mater, 1995, 20(1):59-76.
    [115] Feng X Q, Yu S W. Micromechanical modeling of tensile response of elastic-brittle materials [J]. Int J Solids and Structures, 1995, 32(22):3359-3374.
    [116] Feng X Q, Yu S W. Micromechanical modeling of strain softening in microcrack-weakened quasi-brittle materials [J]. Acta Mech Solid Sinica, 1995, 8(2):121-132.
    [117] 朱珍德.裂隙岩体非稳定渗流场与损伤场的研究:[D].上海:同济大学,1997.
    [118] Andrieux S. Un modele de materiiau microfissure-applications aux roches et aux betons:[D]. Paris:ENPC, 1983.
    [119] Andrieux S, Bamberger Y, Marigo J J. Un modele de materiau microfissure pour les roches et les betons [J]. J Mec TheorAppl, 1986, 5(3):478-509.
    [120] Lee X, Ju J W. Micromechanical damage model for brittle solids-Ⅱ compressive loading [J]. J Eng Mech, 1991, 117(7):1515-1536.
    [121] Chaboche J L. Damage induced anisotropy: on the difficulties associated with active/passive unilateral condition [J]. Int J Damage Mech, 1992, 1(1):148-171.
    [122] V Pensee, D Kondo, L Dormieux. Micromechnical analysis of anisotropic damage in brittle materials [J]. Journal of engineering mechnics, 2002, 128(889-897):
    [123] Vincent Pensee, Djimedo Kondo. Micromechanics of anisotropic brittle damage: comparative analysis between a stress based and a strain based formulation [J]. Mech of Mater, 2003, 35(6):747-761.
    [124] V Pensee. Contribution de la micromecanique a la modelisation tridimensionnelle de l'endommagement par mesofissuration:[D]. Universite des Sciences et Technologies de LILLE, France, 2002.
    [125] Goodman Re. The mechanical properties of joints[C]. Proc 3rd Int Congr International Society of Rock Mechanics, National Academy of Sciences, Washington, DC: 1974:127-140.
    [126] Bandis S, Lumsden Ac, Barton Nr. Fundamentals of rock joint deformation [J]. int J Rock Mech Min Sci Geomech Abstr, 1983, 20(2):249-268.
    [127] Evans Kf, Kohl T, Hopkirk Rj, Rybach L. Modeling of energy production from hot dry rock systems. Proj Rep EidgenossischeTechnische Hochschule (ETH). Zurich,Switzerland[R]. 1992.
    [128] Byerlee Jd. Friction in rocks [J]. J Pure Appl Geophys, 1978, 73(5):615-626.
    [129] Kulatilake P H, Wu T H. Estimation of mean trace length of discontinues [J]. int J Rock Mech Min Sci Geomech Abstr, 1984, 21 (2):203-212.
    [130] La Pointe PI, Wallmann Pc, Follin S. Continuum modeling of fracture rock mass[C]. Eurock 96, Barla: 1996:343-350.
    [131] Lama R D, Vutukuri. Handbook on properties of rocks[M]. 1978.
    [132] Hudson J A. Engineering rock mechanics[M]. London:Redwood publishing company, 1997.
    [133] Oda M. Method for evaluating the representative element volume based on joint survey of rockmass [J]. Can Geotech, 1988, 25(3):281-287.
    [134] Ki-Bok Min, J Rutqvist, Chin-Fu Tsang, Lanru Jing. Stress-dependent permeability of fracture rock masses: a numerical study [J]. Int J Rock Mech Min Sci, 2004, 41(10):1191-1210.
    [135] Oda M. Fabric tensor for discontinuous geological materials [J]. soil and Foundation, 1982, 18(3):645-658.
    [136] Oda M. Similarity rule of crack geometry in statistically homogeneous rock mass [J]. Mech of Mater, 1984, 3(1):119-129.
    [137] Oda M. Permeability tensor for discontinuous rock mass [J]. Geotechnique, 1982, 35(4): 483-495.
    [138] Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock mass [J]. Water Resour Res, 1986, 23(13): 1845-1856.
    [139] Min Kb, Jing L. Numerical determination of the equivalent elastic compliance tensor for fracture rock mass using the distinct element method [J]. Int J Rock Mech Min Sci, 2003, 40(6): 795-816.
    [140] Min Kb, Jing L, Stephansson O. Determining the equivalent permeability tensor for fracture rock mass using a stochastic REV approach: Method and application to the field data from Sellafield, UK [J]. Hydrogeology Journal, 2004, 12(4): 497-510.
    [141] Ming Kb, Rutqvist J, Tsang Cf, Jing L. A block-scale stress-permeability realationship of fractured rock determined by numerical experiments[C]. GeoProc 2003, Stockholm: 2003: 257-262.
    [142] J L Auriault. Upscaling heterogeneous media by asymptotic expansions [J]. ASCE J. of Engineering Mechanics, 2002, 128(8): 817-822.
    [143] Claude Boutin. Study of permeability by periodic and self-consistent homogenization [J]. Eur. J. Mech. A/Solids, 2000, 19(5): 603-632.
    [144] 韦立德,徐卫亚,杨松林.考虑裂纹内水压力的节理岩体蠕变柔量分析[J].河海大学学报(自然科学版),2003,31(5):564-568.
    [145] C. Peter Jackson, Andrew R. Hoch, Steve Todman. Self-consistency of a heterogeneous continuum porous medium representation of a fractured medium [J]. Water Resources Research, 2000, 36(1): 189-202.
    [146] Sergey Pozdnizkov. A self-consistent approach for calculating the drrective hydraulic conductivity of a binary, heterogeneous medium [J]. Water Resources Research, 2004, 40(2): 223-241.
    [147] Cai M, Horii H. A constitutive model of highly jointed rock masses [J]. Mechanics of Materials [J]. 1992, 13(2): 217-246.
    [148] J Vychytil, H Horii. Micromechanics-based continuum model for hydraulic fracturing of jointed rock masses during HDR stimulation [J]. Mechanics of Materials, 1998, 28(1): 123-135.
    [149] H Yoshida, H Horri. Micromechanics-based continuum model for a jointed rock mass and excavation analyses of a large-scale cavern [J]. Int J Rock Mech Min Sci, 2004, 41(1): 119-145.
    [150] Tsang C F Tsang Yw. Channel model of flow, stress and damage(FSD) in rock failure [J]. Int J Rock Mech Min Sci, 1987, 23(3): 467-479.
    [151] Gentier S, Billaus D, Van Vliet L. Laboratory testing of the void of a fracture [J]. Int J Rock Mech Min Sci, 1989, 22(1): 149-151.
    [152] 速宝玉,詹美礼.充填裂隙渗流特征试验研究[J].岩土力学,1994,15(4):46-51.
    [153] 速宝玉,詹美礼.交叉裂隙水流的模型研究[J].水利学报,1997,5(1):1-6.
    [154] 速宝玉,詹美礼.[J].岩土工程学报,1995,17(5):19-24.
    [155] Witherspoon P A, Wang J S. Validity of cubic law for fluid flow in deformable rock fracture [J]. Water Resour Res, 1980, 6(1): 112-118.
    [156] Barton Nr, Bandis S, Bakhtar K. Strength, deformation and conductivity coupling of rock joints [J]. int J Rock Mech Min Sci Geomech Abstr, 1985, 22(1): 121-140.
    [157] Elliot Gm, Brown Et, Boodt Pi, Hudson Ja. Hydromechanical behavior of joint in the Garmenelis granite, SW England[C]. Proc Int Sytemp Fundamentals of Rock Joints, Borkliden, Sweden: 1985: 249-258.
    [158] Rutqvist J. Coupled stress-flow properties of rock joints from hydraulic field testing:[D]. Royal Instutite of Technology, Sweden, 1995.
    [159] Brown Dw. Recent flow resting of the HDR reservoir at Fenton Hill [J]. Geotherm Resour Council Bull, 1993, 22(1): 208-214.
    [160] Boitnott Gn. Mechanical and transpor properties of joints: [D]. New York: Columbia University, 1991.
    [161] Louis C. Rock hydrolics. Rock Mechanics[M]. New York: Elsevier Science, 1974.
    [162] Snow D T. Anisotropic permeability of fractured media [J]. Water Resour. Res, 1969, 5(11): 1273-1289.
    [163] Jones F O. A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks [J]. J. Petrol. Technol, 1975, 21(2): 151-159.
    [164] Nelson. Fracture permeabily in porous reservoirs: experimental and field approach:[D]. Texas: Texas A and M University, 1975.
    [165] Gale J E. The effects of fracture type (induced versus natural) on the stress-fracture closure- fracture permeabity relationships[C]. Proc. 23rd Symp. on Rock Mech, Berkeley: 1982:
    [166] Kranz R L, Frankel a D, Engelder T. The permeability of whole and jointed Barre granite [J]. int J Rock Mech Min Sci Geomech Abstr, 1979, 16(2): 225-234.
    [167] 仵彦卿,张倬元.裂隙岩体应力与渗流关系研究[J].水文地质工程地质,1995,12(2):30-35.
    [168] 陈祖安,伍向阳.砂岩渗透率随静压力变化的关系研究[J].岩石力学与工程学报,1995,15(2):155-159.
    [169] 王媛 速宝玉.詹美礼.裂隙渗流与应力耦合特性的试验研究[J].1997,19(4):73-77.
    [170] Alm P. Hydro-mechanical behavior of a pressurized sigle fracture: an in situ experiment: [D]. Swenden: Chalmers Unversity, 1999.
    [171] Witherspoon Pa Tsang Yw. Hydromechanical behavior of a deformation rock fracture subject to normal stress [J]. Geophy Res, 1981, 86(13): 9287-9298.
    [172] Walsh Jb. Effects of pore pressure and confining pressure on fracture permeability [J]. int J Rock Mech Min Sci Geomech Abstr, 1981, 18(3): 429-435.
    [173] Makurat A, Barton N, Rad Ns. joint conductivity variation due to normal and shear deformation, Rock joints. [M]. Balkema: Rotterdam, 1990.
    [174] Esaki T, Du S, Mitani Y, Lkusada K, Jing L. Development of a shear-flow test apparatus and determination of coupled properties for a single rock joint [J]. int J Rock Mech Min Sci Geomech Abstr, 1999, 36(5): 641-650.
    [175] Olsson O. Site characterization and validation-final report: Stripa Project [R]. 1992.
    [176] Olsson R, Barton N. An improved model for hydromechanical coupling during shearing of rock joints [J]. Int J Rock Mech Min Sci, 2001, 38(3): 317-329.
    [177] Bieniawski Zt. Mechanism of brittle fracture of rock [J]. Int J Rock Mech Min Sci, 1967, 4(4): 407-423.
    [178] Paterson S. Experiment deformation of rock: the brittle field[M]. Berlin: Springer, 1978.
    [179] M Souley, F Homand, S Pepa, D Hoxha. Damage-induce permeability change in granite: a case study at the URL in canada [J]. Int J Rock Mech Min Sci, 2001, 38(2): 297-310.
    [180] Yang T. H., Tham L. G., Li R K. K. Coupled analysis of flow, stress and damage in hydraulicfracturing [J]. Int J Rock Mech Min Sci, 2004, 37(4): 251-275.
    [181] 杨天鸿,唐春安,梁正召.脆性岩石破裂过程损伤与渗流耦合数值模型研究[J].力学学报,2003,35(5):533-541.
    [182] J F Shao Jj Zhou, W Y Xu. Coupled modeling of damage growth and permeabiliyt variation in brittle rocks [J]. Mechanics Research Communications, 2006, 33(4): 450-459.
    [183] Wladis D, Jonsson P, Wallroth T. Regional characterization of hydraulic properties or rock using well test data.[R]. 1997.
    [184] King M. S, Chaudhry, N. A. Shakeel. A. Experimental ultrasonic velocities and permeability for sandstones with aligned cracks [J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr, 1995, 32(2):155-163.
    [185] Alvarez T A, Cording E J, Mikhail R. Modeling of subsidence and stress-dependent hydraulic conductivity for intact, and fractured porus media[C]. Proc. 35th U.S. Symposium on Rock Mechanics, Lake Tahoe, Nevada. Balkema: 1995:655-671.
    [186] Bai M Meng, M.Elsworth D. Analysis of stress-dependent permeability in nonorthogonal flow and deformation field [J]. Rock Mechanics and Rock Engineering, 1999, 32(3): 195-219.
    [187] Liu J, Elsworth D. Three-dimensional effects of hydraulic conductivity enhancement and desaturation around Mined Panels [J]. int J Rock Mech Min Sci Geomech Abstr, 1997, 34(8):1189-1152.
    [188] Zienkiewicz Oc, Kelly Dw, Bettess P. The coupling of the finite element method and boundary solution procedures [J]. Int J Numer Methods Eng, 1977, 1(1):355-375.
    [189] Brady Bhg, Wassyng A. A coupled finite element-boundary element method of stress analysis [J]. int J Rock Mech Min Sci Geomech Abstr, 1981, 18(4):475-485.
    [190] Beer G. Finite element, boundary element and coupled analysis of unbounded problems in elastostatics [J]. Int J Numer Methods Eng, 1983, 19(5):567-580.
    [191] Lorig Lj, Brady Bhg. A hybrid discrete element-boundary element method of stress analysis[C]. Proceedings of the 23rd US Symposium Rock Mechanics, Berkeley: 1982:628-636.
    [192] Lorig Lj, Brady Bhg, Cundall Pa. Hybrid distinct element-boundary element analysis of jointed rock [J]. int J Rock Mech Min Sci Geomech Abstr, 1986, 23(4):303-312.
    [193] Wei L. Numerical studies of the hydromechanical behaviour of jointed rocks:[D]. Imperial College of Science and Technology, University of London, 1992.
    [194] Wei L, Hudson Ja. A hybrid discrete -continuum approach to model hydro-mechnical behavior of jointed rocks [J]. Eng Geol, 1998, 49(3):317-325.
    [195] Dusan Krajcionvic, Sreten Mastilovic. Some fundamental issues of damage mechanics [J]. Mech Mater, 1995, 21(2):217-230.
    [196] Kachaov M. A microcrack model of rock inelastic-Part Ⅰ: frictional sliding on microcrack-part Ⅱ: propagation of microcrack [J]. Mech Mater, 1982, 1 (1): 19-41.
    [197] Sumarac D, Krajcinvic D. A self-consistent model for microcrack weakedned solids [J]. Mech Mater, 1987, 6(39-52):
    [198] Krajcinovic D. Damage mechanics [J]. Mech Mater, 1989, 8(117-197):
    [199] Nemat-Nasser S, Obata M. A microcrack model of dilatancy in brittle material [J]. App. Mech, 1998, 35(1):24-35.
    [200] Vincent Pensee, Djimedo Kondo. Micromechanics of anisotropic brittle damage: comparative analysis between a stress based and strain based formulation [J]. Mech of Mater, 2003, 35(7):747-761.
    [201] Andrieux S, Y Bamberger, J J Marigo. Un modele de materiau microfissure pour les roches et les beton [J]. de Mecanique theorique et appliquee, 1986, 5(3):471-513.
    [202] J R Willis. The stress field around an elliptical crack [J]. Int J Eng Sci, 1965, 128(8):889-897.
    [203] Gambarotta L, Lagomarsino. A microcrack damage model for brittle materials [J]. Int J Solids and Structures, 1988, 30(2): 177-198.
    [204] D Halm, A Dragon. An anisotropic model of damge and friction sliding for brittle materials [J]. Eur J Mech A/Solids, 1998, 17(3):439-460.
    [205] J F Shao, H Zhou, K T Chau. Coupling between anisotropic damage and permeability variation in brittle rocks [J]. Int J Numer Anal Mech Geomech, 2005, 29(11): 1123-1247.
    [206] 卢应发,刘德富,吴延春,邵建富.岩石与水相互作用的正交各向异性损伤数值模拟[J].岩石力学与工程学报,2007,26(2):323-320.
    [207] R a Everitt, E Z Lajtai. The influence of rock fabric on excavation damge in the Lac du Bonnet granite [J]. Int J Rock Mech Min Sci, 2004, 41(11): 1277-1303.
    [208] R. S. Read, N. A. Chandler, E. J. Dzik. In situ strength criteria for tunnel design in highly-stressed rock masses [J]. Int J Rock Mech Min Sci, 1998, 35(3): 261-278.
    [209] Martin C D, Chandler N A. The progressive facture of Lac du Bonnet granite [J]. int J Rock Mech Min Sci Geomech Abstr, 1994, 31(6): 643-695.
    [210] Hock E. Rock fracture under static stress condition: [D]. University of Cape Town, 1965.
    [211] S C Maxwell, R P Young, R S Read. Technical Note A Micro-velocity tool to assess the excavation damage zone [J]. Int J Rock Mech Min Sci, 1998, 35(2): 235-347.
    [212] D O Potyondy, P a Cundall. A bonded-particle model for rock [J]. Int J Rock Mech Min Sci, 2004, 41(11): 1329-1364.
    [213] Bauer C, Homand F, Henry Jp. In situ low permeability pluse test measurements [J]. Int J Rock Mech Min Sci, 1995, 32(3): 357-363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700