用户名: 密码: 验证码:
引信侧进气涡轮发电机气动优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
引信侧进气涡轮发电机作为引信电源的一种,其所具有的良好稳定的性能特点能够满足现代电子时间引信对电源的要求,成为引信电源发展的重要方向之一,对于我军现役和在研弹药引信都具有重要的应用价值。为适应引信电源的发展和现代战争的要求,本文以引信侧进气涡轮发电机研制工作为背景,围绕其气动优化所涉及到的各项理论及技术展开了系统的研究。
     本文首先以绝对坐标系和旋转坐标系下积分形式三维可压缩雷诺平均Navier-Stokes方程为控制方程,建立了基于非结构网格条件下的三维隐式有限体积数值求解格式,给出了三维可压缩粘性流场的计算方法、定解条件和源项处理技术;研究了阵面推进法生成三维非结构网格的方法。此外,采用所建立的流场数值求解方法对二维NACA0012翼型跨音速流场和三维ONERA M6机翼跨音速绕流流场进行了详细的数值计算和分析,计算结果与实验结果吻合良好。
     深入研究了引信涡轮发电机气动优化的策略和方法。提出了基于自学习响应面模型的气动优化方法,并对该方法所涉及到的关键技术即试验设计技术、响应面模型的寻优以及响应面模型的构造进行了详细研究,选择了一组典型解析函数对本文所提出的基于自学习响应面模型的气动优化算法进行了验证,验证结果表明,该方法具有良好的精度和适应性,能够满足引信侧进气涡轮发电机气动优化的要求。
     在本文对流场数值求解方法及气动优化方法研究的基础之上,对引信涡轮发电机进气道的气动优化问题进行了详细研究。分别对两种进气道的气动优化流程、参数化定义方法、气动优化的目标函数等进行了分析和研究。然后在一定背景下,完成了两种进气道的气动优化设计,并对优化设计结果进行了分析。
     详细研究了引信侧进气涡轮发电机整体三维气动优化所涉及到的相关技术问题。分析了引信侧进气涡轮发电机整体三维气动优化的方法及流程;论述了高速永磁发电机的结构、电磁特性和输出参数求解,分析了电机涡轮的运动特征;提出了结合电机涡轮运动特性分析及电磁特性分析的整体三维流场数值计算方法,与给定涡轮旋转角速度条件下三维流场的数值计算相比,该方法解决了三维流场数值计算时初始边界条件确定困难的问题,提高了流场数值计算的精度。本文最后完成了某引信侧进气涡轮发电机整体三维气动优化设计。
     通过本文的研究可在一定程度上填补国内外引信侧进气涡轮发电机气动优化研究的空白,为进一步开展引信侧进气涡轮发电机的型号研究奠定了坚实的基础。
The turbine alternator with side intake ducts for the fuze, one of the important types ofthe fuze power, whose fine stable function characteristic can satisfy power demand ofmodern electricity fuze, has currently become the most important development direction offuze power and has important application value to our serving and studying ammunitionfuze. To cater for the development of fuze power and the demand of modern warfare, inthe present dissertation, the theory and the technology of aerodynamic optimization designof the turbine alternator with side intake ducts for-the fuze was studied in detail.
     The dissertation builds the finite volume method for solving the compressibleReynolds average Navier-Stokes equations in absolute coordinates and in relative rotatingcoordinates on unstructured meshes; conducts a detailed analysis of Advancing FrontMethod (AFM) which is used to generate 3D unstructured grids; describes the types ofboundary conditions of numeric calculation of 3D flow field of the turbine alternator withside intake ducts for the fuze; and provides an explanation of how to set boundaryconditions. In addition, the 2D airfoil NACA 0012 and 3D ONERA M6 wing arecalculated to verify the above numeric method. The results show calculations match theexperimental results well.
     In the dissertation, the author conducts a detailed analysis of the method ofaerodynamic optimization design; and puts forward a new method of aerodynamicoptimization design based on the Self-study Response Surface Methodology (SRSM). Thetheory and technology of SRSM, namely design of experiment (DOE), construction ofSRSM and finding optimum of SRSM are lucubrated. Then some representative functionsare chosen to verify the accuracy and adaptability of SRSM. The results show the SRSMhas fine accuracy and adaptability and is able to satisfy the request of aerodynamicoptimization design of the turbine alternator with side intake ducts for the fuze.
     The dissertation also makes research with aerodynamic optimization design of theintake ducts based on the research of the numeric solving method and aerodynamicoptimization method; Conducts a detailed analysis of the parameterized method andoptimization objective function of the straight and side intake ducts; and carries out theaerodynamic optimization design of two types of the intake ducts.
     The dissertation gives an in-depth study of the technology which 3D aerodynamicoptimization design involves. In this section of the dissertation, the method and the flow chart of the whole 3D aerodynamic optimization design are analyzed. Then the structure,electromagnetic characteristic, equivalent magnetogram, and equivalent calculation of thehigh-speed permanent magnet aero-synchronous alternators are studied. An iterativemethod of numerical calculation of 3-D flow-field of the turbine alternator with side intakeducts for the fuze is put forward, based on the interaction between flow-field and turbinerotational speed. This method solved the problem caused by the uncertainty of theboundary conditions, and improved the accuracy of numerical simulation ofthree-dimensional flow field of the turbine alternator with side intake ducts for the fuze.The dissertation also carries out the whole 3D aerodynamic optimization design of thealternator with side intake ducts for a certain fuze.
     The finish of this dissertation has great help for the deeper research of the alternatorwith side intake ducts for the fuze, which is an important type of the fuze power and hasimportant application value to our serving and studying ammunition fuze.
引文
1 施鹤集.21世纪高科技与人类—高科技武器篇[M].上海:华东理工大学出版社,2000.
    2 张景玲,纪永祥.引信试验鉴定技术[M].北京:国防工业出版社,2006:3-4.
    3 马宝华.网络技术时代的引信[C].中国兵工学会第十四届学术年会,2005:1-7.
    4 薛维清.引信专用物理电源的应用与发展[J].现代引信,1994,(1):8-13.
    5 Carl J, et al. Present Capability of Ram Air-Driven Alternators Developed at HDL as Fuze Power Supplies[R]. AD-A132005, 1983.
    6 Peter Becket, et al. Optronic Mortor Proximity Fuze PX581[Z]. Pesentation for 45th Annual Fuze Conference 2001.
    7 陆瑞生,刘效疆.热电池[M].北京:国防工业出版社,2005:3-4.
    8 高学林,袁新.叶轮机械全三维粘性气动优化设计系统[J].中国电机工程学报,2006,26(4):88-92.
    9 Pierret S, Van den Braembussche R A. Turbomachinery Blade Design Using a Navier-Stokes Solver and Artificial Neural Network[J]. Journal of rurbomachinery, 1999, 121(4): 326-332.
    10 Carlo Poloni, Andrea Giurgevich, Luka Onesti, et al. Hybridization of a Multi-Objective Genetic Algorithm, a neural network and classical optimizer for a complex design problem in fluid dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2-4): 403-420.
    11 Eleshaky M E, Baysal O. Aerodynamic Shape Optimization Using Preconditioned Conjugate Gradient methods. AIAA Journal, 1994, 32(11): 2145-2152.
    12 Kroo I, Altus S, Braun R, Gage P and Sobieski I. Multidisciplinary Optimization Methods for Aircraft Preliminary Design[R]. AIAA Paper94-4325, 1994.
    13 Jameson A, Vassberg J C. Computational Fluid Dynamics for Aerodynamic Design: Its Current and Future Impact[El. AIAA Paper2001-0538, 2001.
    14 Nadarajah S, Jameson A. Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization[R]. AIAA Paper 2001-2530, 2001.
    15 Reuther J, et al. Aerodynamic ShaDe Optimization of Supersonic Aircraft Configurations via an Adjoint Formulation on Distributed Memory Parallel Computers[J]. Computers & Fluids, 1999, 28: 675-700.
    16 Eyi S, Lee K D. Turbomachinery Blade Design via Optimization. AIAA Paper 2000-0740, 2000.
    17 Antony Jameson. Aerodynamic Design via Control Theory. AGARD-CP-463, 1989.
    18 杨旭东.基于控制理论的气动优化设计技术研究[D].西北工业大学博士学位论文,2002.
    19 黄勇,陈作斌,刘刚.基于伴随方程的翼型数值优化设计方法研究[J].空气动力学学报,1999,17(4):413-422.
    20 Reuther J, Jameson A. Aerodynamic Shape Optimization of Wing and Wing-body Configurations Using Control Theory[R]. AIAA 95-0123, 1995.
    21 Jameson A, Pierce N A, Martinelli L. Optimum Aerodynamic Design Using the Navier-Stokes Equations. AIAA 97-0101, 1997.
    22 唐智礼.应用控制理论的气动优化设计方法研究[D].南京航空航天大学博士学位论文,2000.
    23 宁方飞.叶轮机械的气动数值优化方法[D].北京航空航天大学博士后学位论文,2004.
    24 Anderson M B, Gebert G A. Using Pareto Genetic Algorithms for Preliminary Subsonic Wing Design. AIAA Paper96—4023, 1996: 363-371.
    25 Petrovic M V, Dulikravich G S, Martin T J. Optimization of Multistage Turbine Using a Through-Flow Code[R]. ASME Paper2000-GT-521, ASME Turbo Expo 2000, Munich Germany
    26 Dennis B H, Dulikravich G S, Han Z X. Constrained Optimization of Genetic/SQP Algorithm[R]. ASME Paper 99-GT-441, ASME Turbo Expo 1999, Indiana, USA.
    27 Doorly D J, Peiro J. Supervised parallel genetic algorithms in aerodynamic optimization[g]. AIAA 97-1852, 1997.
    28 王晓鹏.遗传算法及其在气动优化设计中的应用研究[D].西北工业大学博士学位论文,2000.
    29 Deb K, Agrawal S, Pratap A. A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
    30 Anderson M B. The Potential of Genetic Algorithm for Subsonic Wing Design[R].AIAA95-3925, 1995.
    31 Vicini A, QuagliarellaD. Inverse and Direct Airfoil Design using a Multiobjective Genetic Algorithm[J]. AIAA Journal, 1997, 35(9).
    32 Lee J, Hajela P. Parallel Genetic Algorithms Implementation in Multidisciplinary Rotor Blade Design[J]. Journal of Aircraft, 1996, 33(5):962-969.
    33 隋洪涛.基因遗传算法及气动外形最优化设计[D].南京航空航天大学博士学位论文,2001.
    34 张明辉.离心叶轮形状优化设计及遗传算法的改进与应用[D].西安交通大学博士学位论文2002.
    35 周正贵.混合遗传算法及其在叶片自动优化设计中的应用[J].航空学报,2002,23(6):571-574.
    36 隋洪涛,陈红全.基于B样条的气动反设计遗传算法研究[J].南京航空航天大学学报,1999,31(1):18-23.
    37 隋洪涛,陈红全.多目标翼型优化设计基因算法研究[J].空气动力学学,2000,18(2):236-240.
    38 樊会元,席光,王尚锦.基于遗传算法的离心压缩机叶栅多点优化设计[J].工程热物理学报,2000,21(2):174-177.
    39 王晓鹏.优化设计中的遗传算法研究[J].空气动力学学报,2001,19(2):129-134.
    40 樊会元,席光,王尚锦.遗传算法在流体机械优化设计中的应用[J].机械科学与技术,2000,19(6):910-912.
    41 刘沽.基于遗传算法的微型飞行器气动力优化设计[D].上海大学硕士论文,2003.
    42 Booker L B, et al. Classifier Systems and Genetic Algorithms[J]. Artificial Intelligence. 1989, 40:135-282.
    43 Goldberg D E. Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley. Reading, MA. 1989.
    44 Davis L. Handbook of Genetic Algorithms[M]. Van Nostrand Reinhold, New York.
    45 Michalewicz Z. Genetic Algorithms+Datastructures=Evoluti.on Programs[M]. New York,Springer-verlag, 1992.
    46 S Pierret, R A Van den Braembussche. Turbomachinery Blade Design Using a Navier-Stokes 120 Solver and Artificial Neural Network[J]. ASME Journal of Turbomachinery,1999,121:326-332.
    47 Papila N, Shyy W, Griffin L, et al. Shape Optimization of Supersonic Turbines Using Response Surface and Neural Network Methods[R]. AIAA 2001-1065, 2001.
    48 Chan-Sol Ahn, Kwang-Yong Kim. Aerodynamic Design Optimization of an Axial Flow Compressor Rotor[R]. ASME GT-2002-30445, 2002.
    49 王晓锋,席光,王尚锦.离心压缩机叶轮的响应面优化设计Ⅰ:设计方法[J].工程热物理学报,2004,25(3):408-410.
    50 张科施,韩忠华,李为吉,李响.基于近似技术的高亚声速运输机机翼气动/结构优化设计[J].航空学报,2006,27(5):81O-815.
    51 Bryan Glaz, Peretz P Friedmann, Li Liu. Surrogate Based Optimization of Helicopter Rotor Blades for Vibration Reduction in.Forward Flight[R]. AIAA 2006-1821, 2006.
    52 Montgomery D C.实验设计与分析[M].北京:中国统计出版社,1998.
    53 Myers R H, Montgomery D C, Response Surface Methodology: Process and Product Optimization Using Designed Experiments[M], Wiley, New York, 1995, 1-78, 351-401.
    54 Kim Y,. Kim J, Jeon Y, et al. Multidisciplinary Aerodynamic-Structural Design Optimization of Supersonic Fighter Wing Using Response Surface Methodology[R]. AIAA 2002-0322, 2002.
    55 Kim Y, Lee D H, Kim Y, et al. Multidisciplinary Design Optimization of Supersonic Fighter Wing Using Response Surface Methodology[R]. AIAA 2002-5408, 2002.
    56 Wakayama S, Kroo I. The Challenge and Promise of Blend Wing Body Optimization[R]. AIAA-98-4736, 1998.
    57 Ahn J, Kim H J, Lee D H, et al. Response Surface Method for Airfoil Design in Transonic Flow[R].Journal of Aircraft, 2001,38(2).
    58 Ahn J, Yee K, Lee D H. Tow-Point Design Optimization of Transonic Airfoil Using Response Surface Methodology, AIAA Paper 99-0403, 1999.
    59 Irian Ordaz, Lee, Kyong Hun, et al. Aerodynamic Optimization Using Physics-Based Response Surface Methodology for a Multi-Mission Morphing Unmanned Combat Air Vehicle[R], AIAA 2004-6336, 2004.
    60 熊俊涛.基于响应面方法的气动优化设计[D].西北工业大学硕士学位论文,2005.
    61 白小涛,李为吉.基于近似技术的协同优化方法在机翼设计优化中的应用[J].航空学报,2006,27(5):847-850.
    62 龚春林,袁建平,谷良贤,苟永杰.基于响应面的变复杂度气动分析模型[J].西北工业大学学报,2006,24(4):532-535.
    63 Montgomery Douglas C.Design and Analysis of Experiments[M].New York:Wiley,1997.
    64 方开泰.均匀试验设计的理论、方法和应用—历史回顾[J].数理统计与管理,2004,(3):11-28.
    65 方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.
    66 李响,李为吉,彭程远.基于均匀试验设计的响应面方法及其在无人机一体化设计中的应用[J].机械科学与技术,2005,24(5):575-577.
    67 Walter C Engelund, Douglas O Stanley, Roger A Lepsch, et al. Aerodynamic Configuration Design Using Response Surface Methodology Analysis[R]. AIAA 93-3967, 1993.
    68 穆雪峰.多学科设计优化代理模型技术的研究和应用[D].南京航空航天大学硕士学位论文,2004.
    69 Batill S M, Stelmack M A. Framework for Multidisciplinary Design Based on Response Surface Approximations[J]. Journal of Aircraft, 1999, 36(1).
    70 Swiler L P, Slepoy R, Giunta A A. Evaluation of Sampling Methods in Constructing Response Surface Approximations[R]. AIAA 2006-1827, 2006.
    71 Krishnamurthy T. Comparison of Response Surface Construction Methods for Derivative Estimation Using Moving Least Squares, Kriging and Radial Basis Functions[R]. AIAA 2005-1821, 2005.
    72 Krishnamurthy T. Response Surface Approximation-with Augmented and Compactly Supported Radial Basis Functions[R]. AIAA 2003-1748, 2003.
    73 McDonald D B, Grantham W J, et al. Response Surface Model Development for Global/Local Optimization Using Radial Basis Functions[R]. AIAA 2000-4776, 2000.
    74 Corana A, Marchesi M, Martini C, et al. Minimizing Multimodal Functions.of Continuous Variables with the Simulated Annealing Algorithm[J]. ACM Transaction on Mathematical Software, 1987, 13(3):262-280.
    75 王晓锋,席光.基于Kriging模型的翼型气动性能优化设计[J].航空学报,2005,26(5):545-549.
    76 Davis, John C. Statistics and Data Analysis in Geology (3rd Edition) [N]. NewYork:John Wiley&Sons Inc, 2002:57-61.
    77 苏姝,林爱文,刘庆华.普通Kriging法在空间内插中的运用[J].江南大学学报(自然科学版),2004,3(1):18-21.
    78 Sacks J, Welch W J, Mitchell W J, et al. Design and Analysis of Computer Experiments [J]. Statistical Science, 1989, 4(4):409-435.
    79 Sasena M J. Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations[D]. University of Michigan. 2002.
    80 Shigeru Obayashi, Shinkyu Jeong, Kazuhisa Chiba. Multi-Objective Design Exploration for Aerodynamic Configurations[R]. AIAA 2005-4666, 2005.
    81 Shinkyu Jeong, Kazuomi Yamamoto, Shigeru Obayashi. Kriging-Based Probabilistic Method for Constrained Multi-Objective Optimization Problem[R].AIAA2004-6437, 2004.
    82 Seongim Choi, Juan J Alonso, Hyoung S Chung. Design of a Low-Boom Supersonic Business Jet Using Evolutionary Algorithms and an adaptive Unstructured Mesh Method[R]. AIAA 2004-1758, 2004.
    83 王晓锋,席光,王尚锦.Kriging与响应面方法在气动优化设计中的应用[J].工程热物理学报,2005,26(3):423-425.
    84 Timothy W. Simpson, Timothy M. Mauery, John J. Korte, Farrokh Mistree. Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization[R]. AIAA 98-4775, 1998.
    85 焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1990.
    86 Katogirou S A, Artificial Intelligence for the Modeling and Control of Combustion Processes:a Review[J]. Progress in Energy and Combustion Science, 2003, 29: 515-566.
    87 Berke L, Patnalk S N, Murthy P L N. Optimum Design of Aerospace Structural Components Using Neural Networks[J]. Computers and Structures, 1993, 48(6): 1001-1010.
    88 Nikolaidis E, Zhu M. Design of Automotive Joints: Using Neural Networks and Optimization to Translate Performance Requirements to Physical Design[J]. Computers and Structures 1996, 60(6): 989-1001.
    89 Jayatheertha C, Webber J P H, Morton S K. Application of Artificial Neural Networks for the Optimum Design of a Laminated Plate[J]. Computers and Structures, 1996, 59(5): 831-845
    90 何芝仙,桂长林.复杂机械系统优化设计研究[J].机械科学与技术,2006,25(2):158-162.
    91 Abdurrahman H. Augmented Genetic Algorithm with Neural Network and Implementation to the Inverse Airfoil Design[R]. AIAA 2004-4633, 2004.
    92 Man Mohan Rai. Three-Dimensional Aerodynamic Design Using Artificial Neural Networks[R]. AIAA 2002-0987, 2002.
    93 Uelschen M, Lawerenz M. Design of Axial Compressor Airfoils with Artificial Neural Networks and Genetic Algrithms[R]. AIAA 2000-2546, 2000.
    94 Rai M M, Madavan N K. Application of Artificial Neural Networks to the Design of Turbomachinery AirFoils[R]. AIAA 98-1003, 1998.
    95 樊会元,席光,王尚锦.一个神经网络结合遗传算法的叶轮逆命题设计方法[J].航空动力学报,2000,15(1):47-50.
    96 王尚锦,樊会元,席光。二维扩压器叶片形线的神经网络设计[J].西安交通大学学报,1999,33(6):39-41.
    97 田国富.神经网络理论及其在汽车设计中的应用研究[D],东北大学博士学位论文,2004
    98 高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003:63
    99 王保国,黄虹宾.叶轮机械跨声速及亚声速流场的计算方法.北京:国防工业出版社,2000.
    100 杨策,施新:径流式叶轮机械理论及设计[M].国防工业出版社,2000:44-46.
    101 魏玲.跨声速压气机转子三维流场Navier-Stokes方程数值模拟[D].南京航空航天大学博士学位论文,2004.
    102 吴国钊.附面层理论[M].北京,航空工业出版社,1989:1-33.
    103 朱自强.应用计算流体力学[M].北京北京航空航天大学出版社,1998.
    104 Choi D, Knight C J. Computations of 3D Viscous Flows in Rotating Turbomachinery Blades[R]. AIAA-89-0323, 1989.
    105 Adamczyk J J, Turbomachinery. Model Equation for Simulating Flows in Multistage Turbomachinery[R]: ASME 85-GT-226, 1985.
    106 Kline S J, et al: Proceeding of AFOSR-IFP-Standford conference on the computation of turbulence boundary layer. Stanford university press, 1968.
    107 Baldwin B, Lomax H. Thin-Layer approximation and algebraic model for separated flows. AIAA Paper 78-257, 1978.
    108 Cebeci T, Smith A M O. Analysis of turbulent boundary layers. Apply Math Mech, 15, 1974.
    109 Crawford M E and Kays W M.A program for numerical computation of two-dimensional internal and external boundary layers flows. NASA CR-2742,1976.
    110 Mellor G L, Herrig H J. A survey of mean turbulent field closure methods. AIAA journal, 1973, 11:590.
    111 Wilcox D C. Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal, 1988, 26:1299.
    112 Johnson D A, King L S. A mathematically simple turbulence closure model for attached and separated turbulent boundary layers. AIAA Journal, 1985, 23:1684.
    113 Chen H C, Patel V C. Near wall turbulence models for complex flows including separation. AIAA Journal. 1988, 26: 641-648.
    114 Rodi W. Experience with two-layer models combining the κ-ε model with a one-equation model near the wall. AIAA Paper 91-0216, 1991.
    115 Chien K-Y. Predictionsof Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model [J]. AIAA J., 1982, 20(1): 33.
    116 Wilcox D C. Reassessment of the Scale-Determining Equation for Advanced Turbulence Models [J]. AIAA J., 1988, 26(11): 1299.
    117 Coakley T J. Turbulence Modeling Methods for the Compressible Navier-Stokes Equations [R]. AIAA Paper 83-1693, 1983.
    118 袁新.可压缩粘性流动中双方程湍流模型的选择[J].工程热物理学报,1998,19(4):427-432.
    119 Jameson A, et al. Numerical Solutions of Euler Equations by Finite Volume Methods with Runge-Kuta Time Stepping Schemes [R]. AIAA Paper 81-1259, 1981.
    120 Volpe G, Jameson A. An Efficient Solution for Computing Transonic and Supersonic Flows about Aircraft[R]. ICAS-88-4.8.3, 1988.
    121 李人宪.有限体积法基础[M].北京:国防工业出版社,2005.
    122 王平.非结构网格技术研究及复杂流场的数值模拟[D].北京航空航天大学博士学位论文,2000.
    123 Mansour N N, Kim J, Moin P. Near-wall κ-ε turbulence modeling[R]. AIAA88-39027, 1988.
    124 Merci B, Steelant J, and Vierendeels J, et al. Computational Treatment of Source Terms in Two-Equation Turbulence Models. AIAA J, 2000, 38(11): 2085-2093.
    125 Mohammad R K, Mohammad T R. Numerical Simulation of Jets in a Crossflow Using Different Turbulence Models. AIAA J, 2001, 39(12): 2268-2277.
    126 Jin H, Wiberg N E. Two-dimensional mesh generation, adaptive remeshing and Refinement[J]. International Journal for Numerical Methods in Engineering, 1990, 29(1): 1501-1526.
    127 Lohner R, Parikh P. Generation of three dimensional unstructured grids by the advancing front method. AIAA 88-0515, 1988.
    128 Weatherill N P, Hassan O. Efficient Three Dimensional Delaunay Triangulation with Automatic Point Creation and Imposed Boundary Constraints[J]. Int J Num Meth Eng, 1994, 37: 2005-2039.
    129 Merry M A, Shephard M S. A Modified Quadtree Approach to Finite Element Mesh Generation. IEEE Computer Graphics Appl, 1983: 3(1).
    130 张来平,呙超,张涵信,高树椿.任意平面域的三角形网格和混合网格生成[J].空气动力学学报,1999,17(1):8-14.
    131 张来平,杨永健,呙超,张涵信,高树.三维复杂外形的非结构网格自动生成技术与应用[J].计算物理,1999,16(5):552-558.
    132 Lohner R. Some Useful Data Structures for the Generation of Unstructured Grids[J]. Comm Appl Num Meth, 1988, (4): 123-135.
    133 Parikh P, Pirzadeh S, Lohner R. A Package for 3D Unstructured Grid Generation[R]. Finite Element Flow Solution and Flow Field Visualization, NACA CR-182090, 1990.
    134 Golias N A, Tsiboukis T D. An Approach to Refining Three Dimensional Tetrahedral Meshes Based on Delaunay Transformations[J]. Int J Num Meth Eng, 1994, 37: 793-812.
    135 冯锦良.非结构网格生成及自适应技术研究[D].南京航空航天大学硕士学位论文,2000.
    136 Yakhot A, Shalman E, Igra O. An Algebraic-Q4 Turbulence Model for Transonic Airfoil Flow[R]. AIAA95-0358, 1995.
    137Harris D H. Two-Dimensional Aerodynamic Characteristics of NACA0012 Airfoil in Langley 8-foot Transonic Pressure Tunnel[R]. NACA TM 81927, 1981.
    138 Schmitt.V, Charpin F. Pressure Distributions on the ONERA-M6-Wing at Transonic Mach Numbers[R]. Experimental Data Base for Computer Program Assessmen, Report of the Fluid Dynamics Panel Working Group 04, AGARD AR 138, May 1979.
    139 Slater J W. M6 ONERA Wing Study for Wind Validation[R]. WWW SITE: http://www, lerc. nasa. gov/www/wind/valid/m6wing/m6wing, html.
    140 黄国平.基于CFD的气动优化设计方法研究[D].南京航空航天大学博士论文,2000.
    141 尉涵,袁新.轴流压气机多叶片排的气动优化设计[J].热能动力工程,2005,20(6):604-606.
    142 周正贵.混合遗传算法及其在叶片自动优化设计中的应用[J].航空学报,2002,23(6):571-574.
    143 曲爱民.模拟退火算法在三维气动优化设计中的应用[J].汽轮机技术,2006,48(3):171-173
    144 Weishyy, Nilay Papila et al. Global Design Optimization for Aero-dynamics and Rocket Propulsion Components[J] Progress in Aerospace Sciences, 2001, 37: 59-118.
    145 Jason B Pleming, Randall D Manteufel. Replicated Latin Hypercube Sampling[R], AIAA 2005-1819, 2005.
    146 Micchelli C A. Interpolation of scattered data: Distance Matrices and Conditionally Positive Definite Functions. Constructive Approximation, 1986, 2:11-22.
    147 潘正君,康立山,陈毓屏.演化计算[M].北京:清华大学出版社,1998.
    148 廖美英,张勇军.灾变算子在遗传算法中的作用研究[J].计算机工程与应用,2005,(13):54-56.
    149 DeJong K A. Analysis of Behavior of a Class of Genetic Adaptive Systems. PH.D thesis, University of Michigan, 1975.
    150 杨迪雄,李刚,程耿东.非线性函数的混沌优化方法比较研究[J].计算力学学报,2004,21(3):257-262.
    151 Kreinovicb V, Quintana C and Fuentes O. Genetic Algorithms—What Fitness Scaling is Optimal[J]. Cybern and Systems, 1993, 24(1):9-26.
    152 马宏,李晓磊,张承进.多模函数的一种全局优化策略研究[J].系统仿真学报,2006,18(10):2782-2785.
    153 Anoop A. Mullur, Achille Messac. Extended Radial Basis Functions: More Flexible and Effective Metamodeling[R]. AIAA 2004-4537, 2004.
    154 朱继南.引信涡轮发电机的数学模型及计算机仿真[D].南京理工大学硕士论文,1990.
    155 毛立志,石宣泉.引信侧进气涡轮发电机的设计[C].第十届引信学术年会论文集下册,1997,162-169.
    156 施法中.计算机辅助几何设计与非均匀有理B样条(CAGD&NURBS)[M].北京航空航天大学出版社,1994.
    157 隋洪涛,陈红全,唐智礼.基因算法在喷管反设计中的应用[J].南京航空航天大学学报,1999,31(2):127-132.
    158 张连河,范洁川.三元收缩段优化设计研究[J].空气动力学报,2003,21(4):417-423.
    159 唐任远.现代永磁电机理论与设计[M].机械工业出版社,1997.
    160 刘景林.航空稀土永磁同步发电机研究[J].西北工业大学学报,2001,19(4):592-595.
    161 陈波,高学林,袁新.采用NURBS的某级透平叶片全三维气动最优化设计[J].动力工程,2006,26(2):201-206.
    162 薛晓滨.基于NURBS的工程可视化建模技术[J].计算机应用,2003,23(5):115-117.
    163 Piegl L.On NURBS:A Survey[C].IEEE CG&A,1991,(1):55-71.
    164 陈波,高学林,袁新.基于NURBS的叶片全三维气动优化设计[J].工程热物理学报,2006,27(5):763-765.
    165 孔令军.风力发电专用低转速稀土永磁发电机设计与性能实验[D].内蒙古农业大学硕士论文,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700