用户名: 密码: 验证码:
水稻rFCA基因编码的两个RRM结构域的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真核细胞中,在基因的表达转录后调控的过程中涉及到多种蛋白质的参与,其中最重要的是RNA结合蛋白。已知的RNA结合蛋白中,研究的较多的是具有RNA识别基序的结构域(RNA recognition motif,RRM)、富含亚精氨的结构域(the arginine motif,ARM)和KH结构域(K homology motif,KH)的这几类RNA结合结构域(RNA binding domain,RBD)。
     RRM结构域是迄今研究得最多的一类RNA结合结构域,在真核生物基因表达调控中发挥着重要的功能。在拟南芥自主开花过程中,基因FCA编码的蛋白起着非常重要的作用,FCA蛋白具有两个RRM结构域和一个WW蛋白互作域。我们已报道克隆的水稻rFCA基因与拟南芥FCA基因同源,编码两个RRM结构域。为了研究RRM结构域的功能,将RRM1、RRM2片段分别克隆到植物表达载体pCAMIBIA 1304、pBY520,通过基因枪转化法转化籼稻9311、粳稻中花11。结果显示,RRM1、RRM2过表达转基因阳性植株表型都发生了相似的改变,与对照植株相比较,生育期延迟两周左右、转基因植株的叶片较对照植株叶片增厚、坚硬、加宽且呈深绿色;转基因水稻种子体积增大,千粒重增加;转基因植株花粉、柱头细胞较对照植株细胞增大。由此,推测水稻rFCA基因编码的两个RRM结构域,RRM1、RRM2在转基因水稻中行使相似的生物功能。参与调控转基因水稻的生育期:导致转基因水稻细胞增大;并且对水稻种子大小这一受多基因控制的重要的产量性状产生影响。
     为了进一步研究RRM结构域的过表达在转基因水稻中的生物功能,选取了粒型较籼稻9311、粳稻中花11要大的水稻品种南京大粒稻作为转化受体,构建了RRM1∶GFP融合蛋白植物表达载体,通过基因枪法转化水稻品种南京大粒稻。实验初步检测到转基因南京大粒稻的种子体积增大、千粒重增加,表明RRM的过表达影响转基因水稻种子的发育进程。RRMs结构域的过表达在不同的水稻转化受体籼稻9311、粳稻中花11以及南京大粒稻中呈现出相似的表型变化,说明水稻rFCA基因编码的两个RRM结构域,RRM1、RRM2所行使的生物功能的分子机制相似,而且这种分子机制在不同的遗传背景下相对稳定。
In eukaryotic cells, regulation of gene expression at the post-transcriptional level is mainly achieved by proteins, which containing well defined sequence motifs involved in RNA binding. Most RNA-binding proteins contain one or several conserved domains, such as the RNA recognition motif (RRM), the K-homology (KH) motif, RGG (Arg-Gly-Gly) boxes, and double-stranded RNA-binding domains (dsRBDs)
     RNA recognition motifs as important regulators of gene expression are highly conserved in animals and plants. The FCA floral promotion gene in Arabidopsis encodes a protein, containing two RNA recognition motifs (RRM) and a WW protein interaction domain. Here we isolated rFCA cDNA from rice. FCA in rice (rFCA) was homologous to FCA-gamma of Arabidopsis and contained conserved two RRM domains. To investigate the function of RRM domain, fragment RRM1 and RRM2 of rFCA were introduced into rice subspecies Oryza sativa L. subsp. Indica var. 9311 and another rice subspecies Oryza sativa L. subsp. Japonica var. zhonghua11 transformation. We examined whether RNA recognition motif domains, rFCA-RRM1 and rFCA-RRM2 would cause any similar effect on the development of the transgenic plants by regulating the rice gene expression. In transgenic lines, pCAM-RRM1 and pBY-RRM2, the vegetative stage and growth of transgenic rice plants were retarded about two weeks compared with the wild type rice. Transgenic plants showed relatively dark green and thicker leaves. It was indicated that the two transgenic lines plants had larger seeds and pollen. Two transgenic lines exhibited similar phenotypes, flowering time delay, seed size and cell volume of transgenic plants was increased. These results showed that constitutive overexpression of RRM domains could regulate transgenic rice cellular size. The patterns of overexpression of two RRM domains and their similar morphologies indicate they may play a similar role.
     To test the function of RRM domain in increasing the transgenic rice seed mass, RRM1: GFP was introduced into another rice subspecies Nanjing Dalidao, and the similar phenotypes were obtained. We also found that the weight of seed increased in the transgenic rice. Thus, the overexpression of RRM1 may have involved into regulate seed development.
     These results indicated that the same phenotypic characteristics of late flowering and increased rice seed mass, were associated with the overexpression of the rFCA RRMs.
引文
1. Adam S.A., Nakagawa T., Swanson M.S., Woodruff T.K., Dreyfuss G. (1986) mRNA polyadenylate-binding protein: gene isolation and sequencing and identification of a ribonucleoprotein consensus sequence. Mol.Cell Biol. 6: 2932-2943.
    2. Amasino RM (2003) Flowering time: a pathway that begins at the 3' end. Curt. Biol. 13: 670-672.
    3. Antic D., Keene J.D.(1997) Insights from model system: Embryonic lethal abnormal visual RNA-binding proteins involved in growth, differentiation, and posttranscriptional gene expression gene expression. Am. J. Hum. Genet. 61: 273-278.
    4. Baer B.W., Kornberg R.D. (1983) The protein responsible for the repeating structure of cytoplasmic poly(A)-ribonucleoprotein. J. Cell Biol. 96: 717-721.
    5. Belostotsky D.A. and Meagher R.B. (1993) Differential organ-specific expression of three poly(A)-binding-proteins from Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 90: 6686-6690.
    6. Belostotsky D.A. and Meagher R.B. (1996) A pollen-, ovule- and early embro-specific poly(A) binding protein from Arabidopsis complements essential functions in yeast. Plant cell 8: 1261-1275.
    7. Birney E., Kumar S. and Krainer A.R. (1993) Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res. 21: 5803-5816.
    8. Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, and Smyth DR (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Devolopment 119:721-743.
    9. Bowman JL, Drews GN, and Meyerowitz EM (1991a) Expression of the Arabidopsis floral hometic gene AGAMOUS is restricted to specific cell types late in flower development. Plant Cell 3: 749-758.
    10. Bowman JL, Smyth DR, and Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1: 37-52.
    11. Bowman JL, Smyth DR, and Meyerowitz EM (1991b) Genetic interactions among floral homeotic genes of Arabidopsis. Devolopment 112:1-20
    12. Brewer G. (2002) Messenger RNA decay during aging and development. Ageing Res. Rev. 1: 607-625.
    13. Burd, C.G. and Dreyfuss, G. (1994) Conserved structures and diversity of functions of RNA-binding proteins. Science 265:615-621.
    14. Cartegni L., Chew S.L., and Krainer A.R.(2002) Listening to silence and understanding nonsense: Exonic mutations that affect splicing. Nat. Rev. Genet.3: 285-298.
    15. Crozat A., Aman P., Mandahl N. et al. (1993) Fusion of CHOP to a novel RNA-binding protein. Nature 363: 640-644.
    16. Deo R.C., Bonanno J.B., Sonenberg N., Burley S.K. (1999) Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98:835-845.
    17. Dreyfuss G., Kim V.N., Kataoka N. (2002) Mssenger-RNA binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 3:195-205.
    18. Dreyfuss G., Matunis M.J., Pinol-Roma S., et al. (1993) hnRNP proteins and the biogenesis of mRNA. Ann. Rev. Biochem. 62:289-321.
    19. Du, X. L., Qian, X. Y., Wang, D. and Yang, J.S. (2006) Alternative splicing and expression analysis of OsFCA (FCA in Oryza sativa L.), a gene homologous to FCA in Arabidopsis. DNA Sequence 17:31-40.
    20. Elliott R.C., Betzner A.S., Huttner E., Oakes M. P., Tucker W. Q. J., Gerentes D., Perez P. and Smyth D. R. (1996) Aintegumenta,an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155-168.
    21. Graveley B.R. (2000) Sorting out the complexity of SR protein functions. RNA 6: 1197-1211.
    22. Harper J.L, Lovll P.H, Moore K.G. (1970) The shape and sizes of seeds. Annu. Rev. Ecol. Syst. 1:327-356.
    23. Hayes R., Kudla J., Schuster G., Gabay L., Maliga P. and Gruissem W. (1996) Chloroplast mRNA 3'-end processing by a high molecular weight protein complex is regulated by nuclear encoded RNA binding proteins. EMBO J. 15: 1132-1141.
    24. Hirose T. and Sugiura M. (2001) Involvement of a site-specific trans-acting factors and a common RNA-binding protein in the editing of chloroplast mRNAs: development of a chloroplast in vitro RNA editing system. EMBO J. 20: 1144-1152.
    25. Iko Y., Kodama T.S., Kasai N., Oyama Y., Morita E.H., Muto Y., Okumura M., Fujii R., Takumi T., Tare S., Morikawa K. (2004) Domain architectures and characterization of an RNA-binding protein, TLS. J. Biol. Chem. 279:44843-44840.
    26. Isshiki M., Tsumoto A. and Shimamoto K. (2006) The Serine/Arginie-Rich Protein Family in Rice Plays Important Roles in Constitutive and Alternative Splicing of Pre-mRNA. Plant Cell 18:146-158.
    27. Johanson U., West J., Lister C., et al. (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290: 344-347.
    28. Jofuku KD, den Boer BGW, Montagu MV, and Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6: 1211-1225.
    29. Jofuku KD, Omidyar PK, Gee Z, and Okamuro JK (2005) Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc. Natl. Acad. Sci. USA 102: 3117-3122.
    30. Jumma H., Wei G., Nielsen P.J. (1999) Blastocyst formation is blocked in mouse embryo lacking the splicing factor SRp20. Curr.Biol. 9: 899-902.
    31. Keller W. and Minivielle-Sebastia L. (1997)A comparison of a mammalian and yeast pre-mRNA 3'-end processing. Curr. Opin. Cell Biol. 9: 329-366.
    32. Kenan D.J.,Query C.C., Kenne J.D.(1991) RNA recognition: towards identifying determinants of specificity. TIBS 16: 214-220.
    33. Kim G.T., Tsukaya H., Saito Y., Uchimiya H.( 1999) Changes in the shapes of leaves and flowers upon overexpression of cytochrome P450 in Arabidopsis. Proc. Natl. Acad. Sci. USA 96: 9433-9437.
    34. Klucher K. M, Chow H., Reiser L., and Fischer R. L. (1996). The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8: 137-153.
    35. Krecic A.M and Swanson M.S.( 1999) HnRNP complexes:composition, structure and function.Curr. Opin. Cell Biol. 11:363-371.
    36. Kunst L, Klenz JE, Martinez-Zapater J, and Haughn GW (1989) AP2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana. Plant Cell 1: 1195-1208.
    37. Lemaire R., Prasad J., Kashima T., Gustafson J., Manley J.L., and Lafyatis R. (2002) Stability of a PKCI-1 -related mRNA is controlled by the splicing factor ASF/SF2: A novel function for SR proteins. Genes Dev. 16: 594-607.
    38. Liker E., Fernandez E., Izaurralde E. and Conti E. (2000) The structure of the mRNA export factor TAP reveals a cis arrangement of a non-canonical RNP domain and an LRR domain. EMBO J. 19: 5587-5598.
    39. Lim M.H., Kim Y.S., Chung K.S., Seo Y.H., Lee I., Kim J., Hong C.B., Kim H.J. and Park C.M.(2004) A New Arabidopsis thaliana Gene, FLK, Encodes an RNA Binding Protein with K Homology Motifs and Regulates Flowering Time via FLOWERING LOCUS C. Plant Cell 101: 12759-12764.
    40. Li,Y. and Sugiura M. (1990) Three distinct ribonucleoproteins from tobacco chloroplasts: each contains a unique amino terminal acidic domain and two ribonucleoprotein consensus motifs. EMBO J. 9:3059-3066.
    41. Lopato S., Forstner C, Kalyna M., Hilscher J., Langhammer U., Indrapichate K., Lorkovic Z.J. and Barta A.(2002) Network of interactions of a novel plant-specific Arg/Ser-rich protein, atRSZ33, with atSC35-like splicing factors. J. Biol. Chem. 277: 39989-39998.
    42. Lopato S., Kalyna M., Dorner S., Kobayashi R., Krainer A.R.and Barta A.(1999) atSRp30, one of two SF2/ASF-like proteins from Arabidopsis thaliana, regulates splicing activities. Plant Mol. Biol. 39:761-773.
    43. Lopato S., Waigmann E., and Barta A. (1996) Characterization of a novel argine/serine-rich splicing factor in Arabidopsis. Plant Cell 8: 2255-2264.
    44. Lorkovic Z.J. Wieczorek Kirk D.A., Lambermon M.H.L. and Flipowicz W. (2000) Pre- mRNA splicing in higher plants. Trends Plant Sci. 5: 160-167.
    45. Lou M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc. Natl. Acad. Sci. USA 102:17531-17536.
    46. Macknight, R., Bancroft, I., Page, T., et al. (1997) FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89: 737-745.
    47. Macknight, R., Duroux, M., Laurie, R., et al. (2002) Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA. Plant Cell 14: 877-888.
    48. Magnai E, Sjolander K, Hake S (2004) From endonucleases to transcription factors:evolution of the AP2 DNA binding domain in plants. Plant Cell 16: 2265-2277.
    49. Maniatis Y. and Yasic B. (2002) Alternative splicing pre-mRNA splicing and proteome expansion in metazoans. Nature 418: 236-243.
    50. Mian M.A.R., Wells R., Carter T.E. Jr., Ashley D.A., Boerma H.R. (1998) RFLP tagging of QTLs conditioning speci Wc leaf weight and leaf size in soybean. Theor. Appl. Genet. 96:354-360.
    51. Michaels, S.D., and Amasino, R.M. (1999a) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949-956.
    52. Mieszczak M., Klahre U., Levy J.H., Goodall G.J. and Filipowicz W. (1992) Multiple plant RNA binding proteins identified by PCR: expression of cDNAs encoding RNA binding proteins targeted to chloroplasts in Nicotiana plumbaginifolia. Mol. Gen. Genet. 234: 390-400.
    53. Minivielle-Sebastia L. and Keller W. (1999) mRNA polyadenylation and its coupling to other RNA processing reactions and to transcription. Curr. Opin. Cell Biol. 11: 352-357.
    54. Miyashiro K., Beckel-Mitchener A., Purk T.P., Kelly A., Becket K., Barret T. Weiler I.J., Greenough W.T. and Eberwine J. (2003), RNA Cargoes Associating with FMRP reveal Deficits in Cellular functioning in Fmr1 null mice. Neuron 37:417-431.
    55. Mizukami Y. and Fischer R.L.(2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc. Natl. Acad. Sci. USA 97: 942-947.
    56. Nagai K., Oubridge C., Jessen T.H., Li J. and Evans P.R. (1990) Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein. A. Nature 348: 515-520.
    57. Nakamura T., Ohta M., Sugiura M. and Sugita M. (2001) Chloroplast ribonucleoproteins function as a stabilizing factor of ribosome-free mRNAs in the stroma. J. Biol. Chem. 276: 147-152.
    58. Ohta M., Sugita M. and Sugiura M. (1995) Three types of nuclear genes encoding chloroplast RNA-binding proteins (cp29, cp31 and cp33) are present in Arabidopsis thaliana: presence of cp31 in chloroplsts and its homologue in nuclei/cytoplasm. Plant Mol. Biol. 27: 529-539.
    59. Ohto M, Fischer RL, Goldberg RB, Nakamura K, and Harada JJ (2005) Control of seed mass by APETALA2. Proc. Natl. Acad. Sci. USA 102)2:3123-3128.
    60. Okamuro JK, Caster B, Villarroel R, Montagu MV, and Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc.Natl.Acad. Sci. USA 94:7076-7081.
    61. Okamuro JK, den Boer BGW, and Jofuku KD (1993) Regulation of Arabidopsis flower development. Plant Cell 5: 1183-1193.
    62. Palanivelu R., Belostotsky D.A. and Meagher R.B.(2000) Conserved expression of Arabidopsis thaliana poly(A) binding protein 2 (PAB2) in distinct vegetative and reproductive tissues. Plant J. 22: 199-210.
    63. Perez-Alvarado G.C., Martinez-Yamout M., Allen M.M., Grosschedl R., Dyson H.J. and Wright P.E. (2003) Structure of the nuclear factor ALY: insights into post-Transcriptional regulatory and mRNA nuclear export processes. Biochem. 42: 7348-7357.
    64. Pinol-Roma S., Dreyfuss G.(1992) Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 355: 730-732.
    65. Pinol-Roma S., Dreyfuss G.(1993) hnRNP proteins: localization and transport between the nucleus and the cytoplasm. Trends. Cell Biol. 3:151-155.
    66. Pinol-Roma, S. (1997) HnRNP proteins and the nuclear export of mRNA. Semin. Cell Dev. Biol. 8:57-63.
    67. Quesada V., Dean C, Simpson G.G.(2005) Regulation RNA processing in the control of Arabidopsis flowering. Int. J. Dev. Biol. 49: 773-780.
    68. Quesada V., Macknight R., Dean C., Simpson G.G. (2003) Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J. 22:3142-3152.
    69. Razem F.A., El-Kereamy A., Abrams S.R., Hill R.D. (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature 439: 290-294.
    70. Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol. Chem. 3: 633-646.
    71. Sachs A.B., Davis R.W., Kornberg R.D. (1987) A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability. Mol.Cell Biol. 7: 3268-3276.
    72. Sachs J. (1893) Flora 77: 46-81.
    73. Schomburg F.M., Patton D.A., Meinke D.W. and Amasino R.M.(2001) FPA, a gene involved in floral induction in Arabidopsis thaliana, encodes a protein containing RNA-recognition motifs. Plant Cell 13: 1427-1436.
    74. Schultz EA, and Haughn GW (1993) Genetic analysis of the floral intiation process (FLIP) in Arabidopsis. Devolopment 119: 745-765.
    75. Schussler, J.R., Brenner, M.L. and Brun, W.A. (1984) Abscisic acid and its relationship to seed filling in soybeans. Plant Physiol. 76: 301-306.
    76. Schuster,G. and Gruissem,W. (1991) Chloroplst mRNA 3' end processing requires a nuclear-encoded RNA-binding protein. EMBO J. 8: 4163-4170.
    77. Sheldon, C.C., Burn, J.E., Perez, P.P., et al. (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Paint cell 11:445-458.
    78. Sheldon, C.C., rouse D.T., Finnegan E.J., et al. (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc. Natl. Acad. Sci. 97:3753-3758.
    79. Simpson G.G., Dijkwel P.P., Quesada V., Henderson I., Dean C. (2003) FY is an RNA 3'end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113:7 77-787.
    80. Smith, C.W., Patton, J.G., and Nadal-Ginard, B. (1989) Alternative splicing in the control of gene expression. Annu. Rev. Genet. 23: 527-577.
    81. Sundaresan, V. (2005) Control of seed size in plants. Proc. Natl. Acad. Sci. USA 102: 17887-17888.
    82. Stickeler E., Kittrell F., Medina D. and Berget S.M.(1999) Stage-specific changes in SR splicing factors and alternative splicing in mammary tumorigenesis. Oncogene 18: 3574-3582.
    83. Tourriere H., Chebli K., and Tazi J. (2002) mRNA degradation machines in eukaryotic cells. Biochimie 84: 821-837.
    84. Tsuge T., Tsukaya H., and Uchimiya H. (1996) Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development 122: 1589-1600.
    85. Wahle E., Ruegsegger U. (1999) 3'-end processing of pre-mRNA in eukayotes. FEMS Microbiol. Rev. 23: 277-295.
    86. Westoby M, Jurado E, Leishman M.(1992)Comparative evolutionary ecology of seed size. Trends. Ecol. Evol. 7: 368-372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700