用户名: 密码: 验证码:
高频微型声驱动热声制冷机的理论探索与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型化高频热声制冷机的研究,由于频率升高、尺寸减小而引发了粘性损耗增大、声场不匹配等众多问题。尤其是缺乏合适的大压力幅值的振荡系统导致无法实现微型化高频热声制冷机的工程化应用。针对这一问题,本文从研制能产生高声压振幅的谐振系统出发,进行了以下热声制冷机微型化的应用理论基础、样机研制以及实验研究工作:
     1)以线性热声理论为基础,建立了微型化热声制冷机的模型;确定了系统内基本的声场分布;在谐振系统中引入了锥形管结构,在减小管内粘性耗散损失的同时,实现了管内局部声能密度的积聚;同时完成了多工况调节机构的设计,并在此基础上进行了各个热声元件的优化设计并建立了一整套微型热声制冷机试验台;
     2)研制了一种适合于微型热声制冷机的PZT声驱动器,结合谐振管的管型优化设计,可以形成高声压振幅的谐振系统;声驱动器与谐振管达到较好的声匹配,在均压2.1MPa的空管试验中可以获得最高0.3MPa的声压峰峰值;
     3)根据声驱动器试验确定的运行工况在改进后的试验样机上进行了制冷性能试验,结果表明,冷热端温差和冷端温降均超过了目前报道的同频率范围的微型制冷机近一倍。分别达到31oC和15.2oC;
     4)运用稳态流动理论估算换热器了的换热量,但是试验结果表明稳态的对流换热理论已经很不适用;预测了改进当前换热器设计的结果。
The research of miniature high frequency thermoacoustic refrigerator faces many challenges such as sound field mismatch and viscosity losses caused by dimension decrease, especially lack of suitable high sound pressure resonating system became bottleneck of engineering application of the thermoacoustic refrigerator. In order to solve the problem author developed a high sound pressure resonating system and carried out study on fundamental theory, prototype manufacture and cooling tests as below:
     1. According to the linear thermoacoustic theory, we set up the model of high frequency thermoacoustic refrigerator; basic sound field distribution was confirmed; cone shape resonator was applied either decrease the viscosity losses or gather the acoustic dynamic energy; according to the optimizing design an adjustable resonator system and the whole test bed was accomplished;
     2. A suitable PZT acoustic driver was developed; combining with the optimized design of resonator shape, we established a high sound pressure resonating system; the 0.3 MPa peak to peak dynamic pressure was achieved under the mean pressure of 2.1 MPa with a well matched resonating system;
     3. The cooling tests under operating conditions decided by results of the driver tests were carried out. Compared to reported results nearly twice temperature difference and cold side temperature decrease was achieved in our tests,⊿T of 31oC and 15.2oC was achieved in our case;
     4. Heat exchanger design with theory of straight flow was made. Results show that using straight flow heat transfer correlations for analyses and design of this system could result in significant errors. Improvements in Heat exchanger design was introduced;
引文
[1] 陈国邦等著. 最新低温制冷技术. 机械工业出版社, 2003, 北京.
    [2] N. Rott. Thermoacoustics. Adv. Appl. Mech., 1980, 20:135-175.
    [3] 马大猷著. 现代声学理论基础. 科学出版社,2004 北京
    [4] W heatley J,Cox A.J.Acoust.Soc.Am.,1980,84:1145—1180.
    [5] T. J. Hofler. Thermoacoustic refrigerator design and performance. PhD thesis, Physics department, University of California, San Diego, 1986.
    [6] S. L. Garrett et a1. Journal of Thermophysics and Heat Transfer (AIAA),1993,7(4).
    [7] GARRETT S L.Thermoacoustic life science refrigerator[R].NASA Tech.Report No.Ls-10114.Houston,Texas,Johnson Space Center,Space and LLie Science Directorate,10,1991.
    [8] S. L. Garrett and S. Backhaus, "The Power of Sound, "American Scientist 88(6): 516-526 (2000).
    [9] M. Poese and S. L. Garrett, "Performance measurements on a thermoacoustic refrigerator driven at high amplitudes", J. Acoust. Soc. Am. 105(5): 2480-2486 (2000).
    [10] R. A. Hohnson, S. L. Garrett and R. M. Keolian, "Thermoacoustic cooling for surface combatants", Nav. Eng. J. 112(4), 335-345 (2000).
    [11] M. E. Poese, R. W. M. Smith, R. S. Wakeland and S. L. Garrett, Bellows bounce thermoacoustic device, US Pat. No. 6,792,764 , 2004.
    [12] S. Garrett, "Torsionally resonant toroidal thermoacoustic refrigerator", U.S. Patent No. 5,953,921, 1999.
    [13] S. L. Garrett, Passive frequency stabilization of an acoustic resonator, U. S. Pat. No. 5,857,340, 1999).
    [14] P. H. Ceperley. A pistonless Stirling engine-the traveling wave heat engine. J. Acoust. Soc. Am., 1979, 66:1508-1513
    [15] Wetzel M,Herman C.Int.J.Refrigeration,1997,20 (1):3—21.
    [16] Reh-Lin Chen, Ya-Chi Chen, Chung-Lung Chen,Chialun Tsai, and Jeff DeNatale,Development of Miniature Thermoacoustic Refrigerators, AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2002-0206
    [17] O.G. Symko, E. Abdel-Rahman, Y.S. Kwon,et a1.Design and development of high frequency thermoacoustic engines for thermal management in microelectronics, Microelectronics Journal,2004,35:185—191
    [18] Seyhmus.D, Design of a Mini Thermo-Acoustic Refrigerator, Naval PostgraduateSchool Master’s Thesis (March 2001)
    [19] Denys.P, Performance Measurement of a Mini Thermoacoustic Refrigerator and Associated Drivers, Naval Postgraduate School Master’s Thesis (June 2002)
    [20] 金滔等.压电声源驱动的微型热声制冷.工程热物理学报, 2004(5): 776-778
    [21] 张晓青等.高频热声制冷机中的压电喇叭特性.低温工程,2005(6):33—36
    [22] 张晓青.微型热声制冷及热声模拟的格子方法.清华大学博士后研究报告,2005.7
    [23] Underwood,T.R., Smith D.L. and Muehleisen, R.T. “Design and construction of a small thermoacoustic refrigerator”, J.Acoust.Soc.Am. (104) 1998:1772
    [24] Lord Rayleigh (J. W. Strutt). The Theory of Sound. (Dover, New York), 2nd ed., Vol. 2, Sec. 322, 1945.
    [25] 李晓静.网格填料中气体交变流动特性研究[D].武汉:华中理工大学硕士学位论文,1983.
    [26] 王进修.交变流动回热器流动过程研究[D].武汉:华中理工大学硕士学位论文,1984.
    [27] 肖家华.低温交变流动回热器流动和热力特性的解析模型及实验装置[D].武汉:华中科技大学硕士学位论文,1986
    [28] P. H. Ceperley. A pistonless Stirling engine-the traveling wave heat engine. J. Acoust. Soc. Am., 1979, 66:1508-1513.
    [29] P. H. Ceperley. Gain and efficiency of a short traveling wave heat engine. J. Acoust. Soc. Am., 1985, 77:1239-1244.
    [30] P. H. Ceperley. Travelling wave heat engine, 1978. U.S. Patent No. 4,114,380.
    [31] P. H. Ceperley. Resonant traveling wave heat engine, 1982. U.S. Patent No. 4,355,517.
    [32] N. Rott. Damped and thermally driven acoustic oscillations in wide and narrow tubes. Z. Angew. Math. Phys., 1969, 20:230-240.
    [33] N. Rott. Thermally driven acoustic oscillations, Part II: Stability limit for helium. Z. Angew. Math. Phys., 1973, 24:54.
    [34] N. Rott. Thermally driven acoustic oscillations, Part III: Second-order heat flux. Z. Angew. Math. Phys., 1975, 26:43-49.
    [35] N. Rott and G. Zouzoulas. Thermally driven acoustic oscillations, Part IV: Tubes with variable cross section. Z. Angew. Math. Phys. 1976, 27:197-224.
    [36] Xiao, J. H., “Thermoacoustic theory for cyclic regenerator, Part I: fundament,” Cryogenics, Vol. 32, No. 10, 1992, p. 895.
    [37] Xiao, J. H., “Thermoacoustic heat transportation and energy transformation, Part 1: Formulation of the problem,” Cryogenics, Vol. 35, No. 1, 1995, 15-20.
    [38] Xiao, J. H., “Thermoacoustic heat transportation and energy transformation, Part 2: Isothermal wall thermoacoustic effects,” Cryogenics, Vol. 35, No. 1, 1995, 21-26.
    [39] Xiao, J. H., “Thermoacoustic heat transportation and energy transformation, Part 3: Adiabatic wall thermoacoustic effects,” Cryogenics, Vol. 35, No. 1, 1995, 27-32.
    [40] 肖家华.热声效应与回热式制冷机(热机)的热声理论.中国科学院博士学位论文.1990.
    [41] G. W. Swift. Thermoacoustic engines. J. Acoust. Soc. Am., 1988, 84:1145-1180.
    [42] W. C. Ward and G. W. Swift. Design environment for low amplitude thermoacoustic engines (DeltaE). J. Acoust. Soc. Am., 1994, 95:3671-3672.
    [43] W. C. Ward and G. W. Swift. Full tested software and user’s guide available at http://www.lanl.gov/thermoacoustics/.
    [44] F. Z. Guo. On the theory of cyclic flow cryogenic regenerator. Proc. of INCONCRYO, India, 1985, 227.
    [45] F. Z. Guo, Y. M. Chou, S. Z. Lee et al. Flow characteristics of a cyclic flow regenerator. Cryogenics, 1987, 27:152.
    [46] F. Z. Guo. The investigation on cyclic flow regenerator for Stirling cycle cryocooler. Proc. of JSJS-3, Japan, 1989, 59.
    [47] F. Z. Guo. Network model of cyclic flow regenerator for Stirling cryocooler (invited). Proc. of ICEC-13, Beijing, 1990, 199.
    [48] F. Z. Guo and Q. Li. Progress of the research work on network modeling of split cycle Stirling cryocooler. Proc. of JSJS-4, Beijing, 1993, 152.
    [49] 邓晓辉.回热器的热声机理及热声热机设计理论.博士学位论文.华中理工大学.1994.
    [50] Y. Xiang, B. Kuang, F. Z. Guo. Parity simulation of thermoacoustic effect in regenerator of Stirling cryocooler. Cryogenics, 1995, 35(8):489.
    [51] Xiaoqing Zhang, Fangzhong Guo. A Network Model and Some Simulation Results for Thermoacoustic Engines. Proceedings of the Sixth Joint Sino-Japanese Seminar
    [52] Xiaoqing Zhang, Fangzhong Guo, Qing Li. Numerical simulation study on thermoacoustic prime mover using network method. Proceedings of the International Conference on Energy Conversion and Application, 2001, pp 241-245.
    [53] Qiu Tu, Qing Li, Feng Wu et al. Network model approach for calculating oscillating frequency of thermoacoustic prime mover. Cryogenics, 2003, 43 (6): 351~357.
    [54] 邓晓辉.热声谐振管的实验和理论研究[R].武汉:华中理工大学博士后研究工作报告,1996.
    [55] 张晓青.热声热机系统的仿真与优化研究——仿真软件的研制与实验验证[D].武汉:华中科技大学博士学位论文,2001.
    [56] TU Q,WU C,LI Q,et al.Influence of Temperature Gradient on Acoustic Characteristic Parameters of Stack in TAE[J].International Journal of EngineeringScience,2003,41:1338~1349.
    [57] 涂虬,陈正军,张晓青,郭方中. 热声理论的研究进展及其应用[J]. 真空与低温 2004, 10 (3): 125~131
    [58] J. C. Wheatley, T. Hofler, G. W. Swift, and A. Migliori. Experiments with an intrinsically irreversible acoustic heat engine. Phys. Review Lett., 1983, 50(7):499-502.
    [59] J. C. Wheatley, T. Hofler, G. W. Swift, and A. Migliori. An intrinsically irreversible thermoacoustic heat engine, J. Acoust. Soc. Am. 1983, 74(1):153-170.
    [60] J. C. Wheatley, T. Hofler, G. W. Swift, and A. Migliori. Understanding some simple phenomena in thermoacoustics with applications to acoustic heat engines, Am. J. Phys., 1985, 53(2):147-162.
    [61] J. C. Wheatley and A. Cox. Natural engines. Physics Today, 1985: 38-50
    [62] G. W. Swift. Analysis and performance of a large thermoacoustic engine. J. Acoust. Soc. Am., 1992, 92(3):1551-1563.
    [63] Zhu S. W., Matsubara Y., Theoretical and experimental study of thermal acoustic engine. Cryogenics, Proceedings of 7th Int’l Conf on Stirling Cycle Machine, 1995: 579-584.
    [64] Zhou S. L., Matsubara Y., Experimental research of thermoacoustic prime mover. Cryogenics, 1998, 38(8):813-822.
    [65] S. Backhaus and G. W. Swift. A thermoacoustic-Stirling heat engine. Nature, 399:335—338, 1999.
    [66] G. W. Swift. Thermoacoustics: A Unifying Perspective for some Engines and Refrigerators. Acoustical Society of America Publications, Sewickley PA, 2002.
    [67] S. Backhaus and G. W. Swift. A thermoacoustic-Stirling heat engine: Detailed study. J. Acoust. Soc. Am., 2000, 107:3148-3166.
    [68] Swift et al. Traveling-wave device with mass flux suppression. U S Patent, No.6032464, 2000
    [69] David Gedeon, DC gas flow in Stirling and pulse tube cryocooler. In R. G. Ross, editor, Cryocooler 9,1997:385-392
    [70] G. W. Swift, D. L. Gardner, S. Backhaus. Acoustic recovery of lost power in pulse tube refrigerators. J. Acoustic. Soc. Am. 1999,105:711-724
    [71] J. R. Olson, G. W. Swift. Suppression of acoustic streaming in tapered pulse tubes. In R. G. Ross Jr., editor. Cryocoolers 10.Plenum, New York. 1999:307-311
    [72] J. R. Olson, G. W. Swift. Acoustic streaming in pulse tube refrigerators: Tapered pulse tubes. Cryogenics. 1997,Vol.37:769-776
    [73] Li Qing, Wu Feng, et al, Thermodynamic analysis on thermoacoustic self-excited oscillation. Open System & Information Dynamics, 2003, 10:391-402,
    [74] Wu. J. H, Li. Q., Guo F.Z. Experimental investigation of self-sustained oscillation in a travelling wave thermoacoustic system. Thermal Science. 2003(1)
    [75] Li Q., Wu Jihao, Guo F. Z., Investigation on a high frequency travelling-wave thermoacoustic system, ICC12, 2002.
    [76] Wu J. H., Li Q., Zhang X. Q., et al., Experimental investigation on onset modes of oscillation in self-excited loop thermoacoustic engine, Proc. Of ICEC-19 France, 2002.
    [77] Z. B. Yu, Q. Li, X. Chen, F. Z. Guo, X. J. Xie, J. H. Wu, Investigation on the oscillation modes in a thermoacoustic Stirling prime mover: mode stability and mode transition. Cryogenics 2003, 43:687-691.
    [78] Z.B. Yu, Q. Li, X. Chen, F.Z. Guo, X. J. Xie, Experimental investigation on a thermoacoustic engine having a looped tube and resonator. Cryogenics 2005, 45:566-571.
    [79] 伍继浩,“自激热声行波热机的实验研究及其参数激励机理的初探”,华中科技大学博士学位论文,2002
    [80] 禹智斌,“热声斯特林发动机回热器优化与振动模态的理论及实验研究”,中国科学院研究生院博士学位论文,2005
    [81] 谢秀娟,“高频斯特林型热声发动机和制冷机的理论探索及研制”,中国科学院研究生院博士学位论文,2006
    [82] Zhongjun Hu, Qing Li, Xiujuan Xie, Gang Zhou and Qiang Li, Design and experiment on a mini cascade thermoacoustic engine. Ultrasonics, Volume 44, Supplement 1, 22 December 2006, Pages e1515-e1517
    [83] Zhong Jun Hu, Qing Li, Qiang Li and Zheng Yu Li, A high frequency cascade thermoacoustic engine. Cryogenics, Volume 46, Issue 11, November 2006, Pages 771-777
    [84] 胡忠军, 李青, 李正宇, 李强, 正交试验法在高频级联型热声发动机研究中的应用. 2006(4):14—18
    [85] Z. J. Hu, Q. Li, X. J. Xie, G .Zhou, Qiang Li, P. Duthil, M.X. Fran?ois, Acoustic impedance adjusting for a small cascade thermoacoustic engine. Annual conference (2006) of France Acoustic Society 2006.5
    [86] Hu Z.J., Li Q., Li Qiang, Li Z.Y., Impedance tune-up of a high-frequency cascade thermoacoustic engine. ICEC21 Proceeding, 2006.7 Prague.
    [87] DEFF A,HOFLER T J.Design and construction of a solar powered,thermoacoustic ally driven,thermoacoustic refrigerator[J].J. Acoustic. Soc. Am. 2000,107: 3148~3166.
    [88] S. L. Garrett, Cylindrical spring with integral gas seal, US Pat. No. 6,755,027, 2004.
    [89] R. W. M. Smith, M. E. Poese, S. L. Garrett and R. S. Wakeland, "Thermoacousticdevice", US Pat. No. 6,725,670, 2004.
    [90] S. L. Garrett, R. M. Keolian and R. W. M. Smith, High-efficiency moving magnet loudspeaker, U. S. Pat. No. 6,307,287, 2001.
    [91] J. Wollan, G. Swift and W. Wijngaarden. Development of a Thermoacoustic Natural Gas Liquefier. Presented at the 2000 AGA Operations Conference, Denver, CO. May, 2000.
    [92] J. J. Wollan, G. W. Swift, S. N. Backhaus, and D. L. Gardner, Development of a thermoacoustic natural gas liquefier, AIChE Meeting, New Orleans LA, March 11-14, 2002.
    [93] G. W. Swift and J. J. Wollan, Thermoacoustics for liquefaction of natural gas, GasTIPS, Volume 8, Number 4, pages 21-26 (Fall 2002).
    [94] J. J. Wollan, G. W. Swift, S. N. Backhaus, and D. L. Gardner, Development of a thermoacoustic natural gas liquefier, AIChE Meeting, New Orleans LA, March 11-14, 2002.
    [95] S. L. Garrett, "Resource Letter TA-1: Thermoacoustic engines and refrigerators," Am. J. Phys. 72 (1), 11-17 (2004).
    [96] 罗二仓,戴巍,吴张华,吴剑锋。交变流动热机的介观热力学循环理论。低温工程2004;(2)1-10
    [97] Luo E. C, Ling H., Dai W., et al, A high pressure-ratio, energy-focused thermoacoustic heat engine with a tapered resonator. Chinese Science Bulletin, 2005.50(3): 284-286.
    [98] K. T. Feldman. Review of the literature on Sondhauss thermoacoustic phenomena. J. Sound Vib., 7:71—82, 1968.
    [99] K. T. Feldman. Review of the literature on Rijke thermoacoustic phenomena. J. Sound Vib., 7:83—89, 1968.
    [100] N. Rott. The influence of heat conduction on acoustic streaming. Z. Angew. Math. Phys., 25: 417—421, 1974.
    [101] Tominaga.A.Thermodynamic aspects of thermoacoustic theory. Cryogenics, 1995, 35(7): 427-440
    [102] Tominaga.A.Fundamental Thermoacoustics. ISBN-7536-5079-0, 1998. In Japanese. (English translation in progress)
    [103] Tominaga, A., “Phase dependence of energy flows in a regenerator,” Cryog. Eng.(in Japan), Vol. 27, 1992, p. 63
    [104] Tominaga, A., “Basic notion of thermoacoustic theory and some results of simulations,” JSJS-4, Beijing, China, 1993, p. 79
    [105] Tominaga, A., The second step of the thermoacoustic effects in a resonance tube, Cryogenic Engineering Vol.29,558
    [106] Gusev.V, Lotton.P, Bailliet .H, Thermal wave harmonics generation in thehydrodynamic heat transport in thermoacoustic. J. Acoust. Soc. Am., 2001, 109:84-90
    [107] M.Watanabe, A.Prosperretti and H.Yuan.A simplilified model for linear and nonlinear processes in thermoacoustic prime movers. Part I. Model and linear theroy. J. Acoust. Soc. Am., 1997, 102(6):3484-3496
    [108] H.Yuan, S.Karpov and A.Prosperretti. A simplilified model for linear and nonlinear processes in thermoacoustic prime movers. Part II. Nonlinear oscillations. J. Acoust. Soc. Am., 1997, 102(6):3497-3506
    [109] S.Karpov, A.Prosperretti. Linear thermoacoustic instability in the time domain. J. Acoust. Soc. Am., 1998, 103(6):3309-3317
    [110] S.Karpov, Noninear phenomena in thermoacoustic and bubbly liquides. Ph.D, thesis, Johns Hopkins University
    [111] S.Karpov, A.Prosperretti. Noninear saturation of thermoacoustic instability. J. Acoust. Soc. Am., 2000, 107(6):3130-3147
    [112] Tijani M E H,Zeegers J C H,de Wade A T A M,et a1.Design of thermoacoustic refrigerators[J].Cryogenics.,2002,42:49.57.
    [113] Tijani M E H,Zeegers J C H,de Wade A T A M,et a1.Construction and performance of a thermoacoustic refrigerator[J].Cryogenics.,2002,42:59-66.
    [114] 欧阳录春,蒋珍华,俞卫刚, 邱利民,扬声器驱动热声制冷机的研究进展[J].应用声学., Vo1.24,No.1,Jan.,2005 pp59~65
    [115] 汤珂,孔博,陈国邦,黄铜与不锈钢丝网板叠性能比较分析. 低温工程 2003;(6) 5-9
    [116] 邱利民,蒋宁,陈国邦, 丝网热声板叠的最佳填充率. 太阳能学报 2001 Vol.22,No 3. pp322-326
    [117] 何祚镛. 声学理论基础. 北京:国防工业出版社,1981
    [118] 杜功焕,朱哲民,龚秀芬. 声学基础. 上海:上海科学技术出版社,1981
    [119] 穆廷荣.弯曲振动压电陶瓷薄圆板的等效电路和剪应力.声学学报.1983.8(1):45~53
    [120] 穆廷荣.压电陶瓷和金属构成的复合薄圆板的强迫振动.A 电压策动.声学学报,1983,8(5):300~309
    [121] 穆廷荣.压电陶瓷和金属构成的复合薄圆板的强迫振动.B:均匀声压策动.声学学报,1983,8(6):366-373
    [122] 林书玉.超声换能器的原理及设计. 科学出版社,北京, 2004
    [123] 颜忠采.林仲茂. 夹心式压电换能器的优化设计——分析各参量对换能器性能的影响[J].声学学报,1995,20(4):18-25.
    [124] 汪承浩,赵哲英.可调频率压电换能器原理[J]. 声学学报,1982,7(6):364-371
    [125] 林书玉,张福成. 大尺寸夹心式压电超声换能器的设计[J].应用声学,1994,13(3):30-33
    [126] 林书玉.张福成.模式转换弯曲振动超声换能器的研究[J]. 应用声学,1994,13(1):37-39.
    [127] 王兆球. 张淑仪.高频空气声换能器研究 现状和展望 [J]. 应用声学. 1992. 11(2):l
    [128] 朱圣钦.压电超声换能器在气体中的应用[J].声学技术,1987,6(3):40~43.
    [129] 林书玉,张福成.郭孝武大功率气介声波换能器的研究[J].陕西师范大学学报(自然科学版),1995,23(4):43-45.
    [130] 吴永芬,冯永芳.向空气辐射的弯曲振动型超声换能器的研制[J].应用声学,1982,1(2):37-39
    [131] 林书玉.气介式弯曲振动功率超声复合换能器的振动特性研究[J]. 陕西师范大学学报(自然科学版),2000,28(1):33-38
    [132] 张光斌,林书玉, 气介式弯曲振动换能器的辐射声压及其指向特性[J]. 陕西师范大学学报(自然科学版).1999,27(3):45-49.
    [133] 林书玉, 弯曲振动矩形薄板的辐射声场研究[J]. 声学与电子工程,2000,(3):13-18
    [134] W Pat Amott,Henry E Bass, Richard Raspet, General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections.J. Acoust. Soc. Am., 1991,90:3228~3237
    [135] Swift G W,et a1.Thermoacoustics in pin-array stacks.J. Acoust. Soc. Am.,1993,94 (2)
    [136] Wetzel M,Herman C.Design optimization of thermoacoustic refrigerators.Int J Refrigeration,1997,20 (1):3~21
    [137] Zhou S L,Matsubara Y.Experimental research of the thermoacoustic prime mover. Cryogenics,1998,38 (8):813~822
    [138] Chen G B,Jin T, et a1.Experimental study on a thermoacoustic engine with brass screen stack matrix.Adv Cry Eng, 1998,43b:713~ 718
    [139] Qiu Limin,Chen Guobang,Jiang Ning.Optimum packing factor of the stack in a standing-wave thermoacoustic prime mover . International Journal of Energy Research,2002,26 (8):729~735
    [140] 莫尔斯(P.M. Morse),英格特(K.U. Ingard)著;吕如榆,杨训仁译. 理论声学.科学出版社,北京,1984-1986.
    [141] Liang J., Ravex A., Rolland P., “Study on pulse tube refrigeration Part I:thermodynamic nonsysmmetry effect”, Cryogenics, 1996, 36(2):87-93.
    [142] Liang J., Ravex A., Rolland P., “Study on pulse tube refrigeration Part II: Theoretical modeling”, Cryogenics, 1996, 36(2):95-99.
    [143] Liang J., Ravex A., Rolland P., “Study on pulse tube refrigeration Part III: Experimental verification”, Cryogenics, 1996, 36(2):101-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700