用户名: 密码: 验证码:
滑带剪切过程的离散元模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑带土的物质组成通常存在极大的不均匀性,并且在滑坡启动和滑动过程中的力学性能有很大的变化,在高速滑动过程中还出现明显的液化现象,这些都是连续介质力学不能很好概括或解释的。以散粒体力学为基础,研究滑带土的颗粒离散性对其宏观力学性能,尤其是宏观动力行为的影响,将促进对滑带土在复杂动力过程中的动力行为的认识,并为相关的试验研究提供依据。
     研究滑带土多相动力系统的动力过程目前只有两种途径:一是通过两相介质划分建立有连续介质相和离散颗粒相构成的两相流动力体系;二是将所有多相组成表达成离散单元,通过规定单元的不同属性区别出不同物相,建立统一的颗粒流模型,研究各个物相颗粒运动特征和动力过程。而颗粒流模型大部分采用的是颗粒离散元建立动力模型。
     本文首先根据滑带土颗粒间力的传递特征,建立了滑带土颗粒接触力学模型,并根据滑带土颗粒分布特征构建滑带土的室内试验的离散元数字模型,通过对比数字试验和物理试验的结果,确定模拟滑带土力学行为的合理参数范围。
     其次在两相流理论基础上建立了滑带土分相运动的动力模型,并利用滑带土室内试验的模拟成果建立模拟滑带分相运动的离散元模型,对滑带土剪切过程中的分相运动特性进行了验证。
     最后对具有非连续分布结构的滑带进行的颗粒流模拟,对在剪切过程中滑带非连续分布结构中的应力分布状态和物质运动特征作出了分析和总结。
Non-uniformity generally exists in material constitution of sliding zone soils, and great changes in mechanical characteristics may take place at sliding initiation and in the sliding process. In addition, apparent liquidation occurs during the high-speed sliding, which can not be explained by using continuum mechanics. On the basis of scattered grain mechanics, study on the effect of grain discrete characteristics of the sliding zone soil on its macro mechanical features, especially on macro dynamic behavior, will help to understand the dynamic behavior of the sliding zone soil during the complex dynamic process and provide the basis for relevant test research..
     At present, there are two ways for the study on the multiphase dynamic process of the dynamic system for the sliding zone soil, one is setting up a continuum phase and a two-phase flowing dynamic system formed by discrete grain phase by dividing a two-phase medium and the other is building a unified model of the grain flow and studying the grain movement characteristics and the dynamic process by expressing all the multiphase constitution as the different properties of discrete elements to distinguish different phases. As to grain flow model, grain discrete elements are used to set up dynamic models.
     In this paper, contact mechanics among grains in the sliding zone soil is first modeled according to the transfer characteristics of the force among grains in the sliding zone soil, and the discrete element mathematic model for indoor test of the sliding zone soil is built based on soil grain distribution characteristics and proper parameter is defined for the mechanical behavior of the simulated sliding zone soil by comparing the digital tests with the physical tests.
     Secondly, the dynamic model of sub-phase movement of the sliding zone soil is built based on two-phase flow theory and the discrete element model of the simulated sub-phase movement by using the simulated results of indoor tests for the sliding zone soil, and verification is given for sub-phase movement characteristics in the shearing process of the sliding zone soil.
     Finally, particle flow simulation is made for the sliding zone having non- continuous distributed structure, and analysis and summary is made for non-continuous structure of the sliding zone in the shearing process and material movement characteristics.
引文
[1] 潘家铮. 建筑物的抗滑稳定与滑坡分析[M]. 北京水利出版社 1980
    [2] 倪晋仁, 王光谦.泥石流的结构两相流模型. 地理学报.Ⅰ . 理论.1998,53 (1):66~76.
    [3] 倪晋仁, 王光谦, 熊育武.泥石流的结构两相流模型. 地理学报.Ⅱ . 应用.1998,53 (1):77~85.
    [4] 王光谦, 倪晋仁.颗粒流研究评述. 力学与实践.1992,14 (1):7~19.
    [5] 王光谦, 倪晋仁, 张 军.泥石流的颗粒流模型. 山地研究.1992,10 (1):1~10.
    [6] 王光谦, 倪晋仁.泥石流动力学基础方程. 科学通报.1994,39 (18):1700~1704.
    [7] 王光谦 , 邵颂东, 费祥俊.泥石流模拟. 泥沙研究.Ⅰ—模型.1998, (3):7~13.
    [8] 王光谦 , 邵颂东, 费祥俊.泥石流模拟. 泥沙研究.Ⅲ—应用.1998, (3):18~22.
    [9] 王光谦, 熊 刚, 方红卫.颗粒流动的一般本构关系. 中国科学.1998,28 (3):282~288.
    [10] 陈洪凯, 唐红梅, 陈野鹰. 泥石流固液分相流速计算方法研究[J]. 应用数学和力学, 2006,(03) .
    [11] K.J.Hsu,Catastrophic Debris Streams (Sturzstroms) Generated by Rockfalls, Bull.Geol. Soc.Amen 1975,vol.8,225~256.
    [12] Ronald L. Shreve,1968: The Blackhawk Landslides ,The Geological Society of America Special Paper No. 108, Boulde Colorado.
    [13] Ronald L. Shreve,Leakage and ftuidization in air-layer lubricated Avalanches, Bu11.Geol.Soc.Amer, 1968, vo1.79, 654~657.
    [14] L.Muller, New consideration of the Vaiont slide,Rock Mech.Eng.Geol,,1968,vol.6,105~121.
    [15] 邢爱国, 高广运, 陈龙珠.大型高速滑坡启程流体动力学机理研究. 岩石力学与工程学报.2004,23 (4):607~613.
    [16] Aurelian C. Trandafir , Kyoji Sassa.Undrained Cyclic Shear Response Evaluation of Sand Based on Undrained Monotonic Ring Shear Tests.2004:781~787.
    [17] Ivan B. Gratchev, Kyoji Sassa, Victor I. Osipov,Viatcheslav N. Sokolov. The Liquefaction of Clayey Soils under Cyclic Loading.2006:70~84.
    [18] Yasuhiko Okada, Kyoji Sassa, Hiroshi Fukuoka.Excess Pore Pressure and Grain Crushing of Sands by Means of Undrained and Naturally Drained Ring-Shear Tests.2004:325~343.
    [19] Cundall P.A. A computer model for simulating progressive large scale movements in blocky system. In: Muller Led. Proceedings of Symposium of the International Society of Rock Mechanics. Rotterdam: A.A. Balkema, 1971(1): 8-12.
    [20] Cundall P.A. The measurement and analysis of acceleration in rock slopes. Ph.D. Dissertation , University of London , Imperial college of Science and Technology, 1971.
    [21] Cundall P.A. and O.D.L.Strack. A discrete numerical method for granular assemblies.Geotechnique, 1979, 29(1): 47-65.
    [22] Maini T, Cundall P.A. Computer modeling of jointed rock mass, (AD-AO61658), 1978.
    [23] Cundall P.A. UDEC-A Generalized distinct element program for modeling jointed rock. Report PCAR-1-80 Peter Cundall Associates, European Research Office, U.S. Army, March 1980.
    [24] Cundall P.A. BALL-A Program to model granular media using the distinct element method. Dames & Moore Advanced Technology Group, London, April 20, 1978.
    [25] Strack O. D. L., Cundall P.A. The distinct element method as a tool for research in granular media. Part I. Report to the National Science Foundation , Minnesota: University of Minnseota, 1978.
    [26] Lemos J.V. A Hybrid distinct element computational model for the half-plane, M.S. Thesis, University of Minnesota, 1983.
    [27] Lemos J. V., Brady B. H. G. Stress distribution in a jointed and fractured medium. Rock Mechanics-Theory-Experiment-Practice, New York, 1983: 53-59.
    [28] Lorig L.J. A Hybrid computational scheme foe excavation and support design in jointed rock media, Ph.D. Thesis, University of Minnesota, 1984.
    [29] 王泳嘉. 离散单元法——一种适用于节离岩石力学分析的数值方法. 第一届全国岩石力学数值计算及模型试验讨论论文集, 1986: 32-37.
    [30] 剑万禧. 离散单元法的基本原理及其在岩体工程中的应用. 第一届全国岩石力学数值计算及模型试验讨论论文集, 1986: 43-46.
    [31] 王泳嘉, 刘兴国, 邢纪波. 离散单元法在崩落法放矿中应用的研究, 有机金属, 1987,39(2): 20-26.
    [32] 王泳嘉, 邢纪波. 崩落采矿法放矿的计算机仿真,全国非金属矿学术会议论文集(二),1988: 22-26.
    [33] 刘连峰. 三维离散单元法及其在边坡工程中的应用. 东北大学博士学位论文, 1995.6.
    [34] 张健全, 于友江. 岩层移动动态过程的离散单元法分析. 水文地质工程地质, 2004, 31(2): 9-13.
    [35] 夏开文, 唐志平. 基于细观弹性接触的多相颗粒材料本构模型. 中国科技大学学报,2000, 30(4): 422-429, 433.
    [36] 王文强. 离散单元法及其在材料和结构力学响应分析中的应用. 中国科学技术大学博士学位论文, 2000.10.
    [37] 张楚汉.结构——地基动力相互作用问题. 结构与介质相互作用理论及其应用. 南京: 河海大学出版社, 1993.
    [38] 徐泳, K.D.Kafui, C.Thornton. 用颗粒离散元法模拟料仓卸料过程. 农业工程学报, 199915(3): 65-69.
    [39] 殷跃平, 张加桂, 陈宝荪, 康宏达. 三峡库区巫山移民新城址松散堆积体成因机制研究工程地质学报, 2000, 8(3): 265-271.
    [40] 徐泳, 黄文彬, 李红艳. 圆球颗粒间有幂律流体时挤压流动时的法向粘性力. 农业工程学报, 2002, 18(2): 1-4.
    [41] 黄文彬, 徐泳. 球颗粒间幂律流体挤压流动法向黏性力的高效数值算法. 中国农业大学学报, 2002, 7(2): 17-21.
    [42] 徐春晖. 存在填隙流体颗粒离散元法理论研究. 中国农业大学博士学位论文, 2003.6.
    [43] Thornfon. C. Interparticles liding in the presence of adhesion. J. Phys .D: Appl. Phys., 1991,24: 1942-1946
    [44] Thornton, C, Yin, K K. Impac to felastic spheres with and without adhesion, Powder Technology,1991, 65:153一166
    [45] Thornton, C. On the relationship between the modulus of particul atemeda and surface energy of the constituent particles. J. Phys. D: Appl. Phys., 1993, 26: 1587-159.
    [46] D.O. Potyondya, P.A. Cundallb.Abonded-particle model for rock. International Journal of Rock Mechanics & Mining Sciences 41 (2004) 1329–1364.
    [47] Thomton C, Zhang L. A DEM comparison of different shear testing devices, Powders&Grains 2001, 4th International Conference on Micromechanics of Granular Media. 183-189.
    [48] 周健, 张刚, 孔戈.渗流的颗粒流细观模拟.水力学报.2006,37 (1):28~32.
    [49] Taku Ibuki and Akira Oida. Simulation to analyze the interaction between soil and a tire lug by distinct element method. Proceedings of the 8th European Conference of the International Society for Terrain-Vehicle Systems, Umea, Sweden, June 18-22, 2000: 87-94.
    [50] 张锐. 基于离散元细观分析的土壤动态行为研究. 中国农业大学博士学位论文, 2005.6.
    [51] Mindlin, R. D., and H. Deresiewicz. “Elastic Spheres in Contact under Varying Oblique Forces,” J. Appl. Mech., 20, 327-344 (1953).
    [52] Cundall, P. A. “Computer Simulations of Dense Sphere Assemblies,” in Micromechanics of Granular Materials, pp. 113-123. M. Satake and J. T.Jenkins, Eds. Amsterdam: Elsevier Science Publishers B.V., 1988.
    [53] 周健,池永. 土的工程力学性质的颗粒流模拟.固体力学学报. 2004,25(4).
    [54] Scott R F.Principle of soil mechanics.Addison Wesley,1963.
    [55] Oda M. The mechanics of fabric changes during compressional deformation of sand. Soil and Foundations.1972,12(2):1-17.
    [56] 曾远.土体破坏细观机理及颗粒流数值模拟.同济大学博士学位论文, 2006.4.
    [57] 方丁酉.两相流体动力学.国防科技大学出版社 湖南:1988.
    [58] 岳湘安.液体一固体:两相流动—基础理论.北京:石油工业出版社,l 996.
    [59] 倪晋仁,王光谦,张红武.固液两相流基本理论及其最新应用.北京:科学出版社,1991
    [60] Hiroshi Fukuoka, Kyoji Sassa, Gonghui Wang, Ryo Sasaki. Observation of shear zone development in ring-shear apparatus with a transparent shear box. Landslides 75 (2004) 325–343.
    [61] Savage, S.B & lun, C.K.K. particle size segregation in Icclined Chate Flow of Dry Cohesionless Granular Solids, J.Fluid Mech. Vol. 189, 1988, pp.311-335
    [62] Savege, S.B., The Mechanics of Rapid Granular Flow, In Advances in Applied Mechanics, Vol. 24, Academic Press, 1984, pp. 289-366
    [63] 康天合,曲民强.断续岩体力学引论.北京:地震出版社,1998.
    [64] C. Wang, D. D. Tannant ,P. A. Lilly. Numerical analysis of the stability of heavily jointed rock slopes using PFC2D. International Journal of Rock Mechanics and Mining Sciences Volume 40, Issue 3, April 2003, Pages 415-424
    [65] A. Fakhimi, F. Carvalho, T. Ishida, J. F. Labuz.Simulation of failure around a circular opening in rock. International Journal of Rock Mechanics and Mining Sciences Volume 39, Issue 4, June 2002, Pages 507-515
    [66] R.M. Holt, J. Kj?laas, I. Larsen, L. Li, A. Gotusso Pillitteri.Comparison between controlled laboratory experiments and discrete particle simulations of the mechanical behaviour of rock. International Journal of Rock Mechanics and Mining Sciences.Volume 42, Issues 7-8, October-December 2005, Pages 985-995
    [67] Chen, ZhengfaYuzhen Yu.A Review on Development of Geotechnical Dynamic Centrifugal Model Test.2006,25 (SUPPL 2):4026-4033.
    [68] F.W. Wanga, Kyoji Sassa, Gonghui Wang.Mechanism of a Long-Runout Landslide Triggered by the August 1998 Heavy Rainfall in Fukushima Prefecture, Japan.2002:169~185.
    [69] G. Furuya, K. Sassa, H. Hiura, H. Fukuoka.Mechanism of Creep Movement Caused by Landslide Activity and Underground Erosion in Crystalline Schist, Shikoku Island,Southwestern Japan.1999:311~325.
    [70] Gonghui Wang , Kyoji Sassa , Hiroshi Fukuoka.Downslope Volume Enlargement of a Debris Slide—Debris Flow in the 1999 Hiroshima,Japan,Rainstorm.2003, (69):309~330.
    [71] Gonghui Wang, Kyoji Sassa.Pore-Pressure Generation and Movement of Rainfall-Induced Landslides : Effects of Grain Size and Fine-Particle Content.2003:109~125.
    [72] Kamai, Toshitaka.Monitoring the Process of Ground Failure in Repeated Landslides and Associated Stability Assessments.1998:71~84.
    [73] O. Seguel, R. Horn.Mechanical Behavior of a Volcanic Ash Soil (Typic Hapludand) under Static and Dynamic Loading.2005:109~116.
    [74] Sergio D.N.Lourenco, Kyoji Sassa, Hiroshi Fukuoka.Failure Process and Hydrologic Response of a Two Layer Physical Model: Implications for Rainfall-Induced Landslides.2006:115~130.
    [75] Vicki Moon , Jennifer Bradshaw , Richard Smith , Willem de Lange.Geotechnical Characterisation of Stratocone Crater Wall Sequences,White Island Volcano, New Zealand.2005:146~178.
    [76] Yongshan Wan, James Kwong.Shear Strength of Soils Containing Amorphous Clay-Size Materials in a Slow-Moving Landslide.2002:293~303.
    [77] Zhengfa ChenYuzhen Yu,A review on development of geotechnical dynamic centrifugal model test,Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering,2006,25(SUPPL 2):4026-4033
    [78] Kyoji Sassa F.W. Wanga, Gonghui Wang,Mechanism of a long-runout landslide triggered by the August 1998 heavy rainfall in Fukushima Prefecture, Japan,Engineening Geology,2002:169~185
    [79] K. Sassa G. Furuya, H. Hiura, H. Fukuoka,Mechanism of creep movement caused by landslide activity and underground erosion in crystalline schist, Shikoku Island,southwestern Japan,Engineening Geology,1999:311~325
    [80] Kyoji Sassa Gonghui Wang, Hiroshi Fukuoka,Downslope volume enlargement of a debris slide—debris flow in the 1999 Hiroshima,Japan,rainstorm,Engineening Geology,2003,(69):309~330
    [81] Kyoji Sassa Gonghui Wang , Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content,Engineening Geology,2003:109~125
    [82] Toshitaka Kamai,Monitoring the process of ground failure in repeated landslides and associated stability assessments,Engineening Geology,1998:71~84
    [83] R. Horn O. Seguel,Mechanical behavior of a volcanic ash soil (Typic Hapludand) under static and dynamic loading,Soil & Tillage Research,2005:109~116
    [84] Kyoji Sassa Sergio D.N.Lourenco, Hiroshi Fukuoka,Failure process and hydrologic response of a two layer physical model : Implications for rainfall-induced landslides,Geomorphology,2006:115~130
    [85] Jennifer Bradshaw Vicki Moon, Richard Smith , Willem de Lange ,Geotechnical characterisation of stratocone crater wall sequences,White Island Volcano, New Zealand,Engineening Geology,2005:146~178
    [86] James Kwong Yongshan Wan,Shear strength of soils containing amorphous clay-size materials in a slow-moving landslide,Engineening Geology,2002:293~303
    [87] 程谦恭,高速远程滑坡液化减阻和超前冲击气浪机理研究,基础科学研究,2004,(1):17~20
    [88] 胡厚田 程谦恭,据冲式高速滑坡全程动力学机理分析,水文地质工程地质,1999,(4):19~23
    [89] 胡厚田 程谦恭, 胡广韬,等,高速岩质滑坡临床弹冲与峰残强降复合启程加速动力学机理,岩土力学与工程学报,2000,19(2):173~176
    [90] 费祥俊,粘性泥石流的输沙浓度与运动速度,水利学报,2003,(2):15~18
    [91] 王泳嘉 冯夏庭,泥化夹层错动带残余强度的人工神经网络,中国有色金属学报,1995,5(3):17~21
    [92] 郭熙灵 龚壁卫,泥化夹层残余强度的非线性问题探讨,大坝观测与土工测试,1997,21(5):38~40
    [93] 陈奕柏 黄理兴,我国岩石动力学研究状况与发展,岩石力学与工程学报,2003,22(11):1881~1886
    [94] Hayley H Shen 季顺迎,颗粒介质在类固-液相变过程中的时空参数特性,科学通报,2006,51(3):255~262
    [95] 贾伟伟 金 峰, 王光纶,离散元—边界元动力耦合模型,水利学报,2001,(1):23~27
    [96] 鲍德松 雷哲敏, 周 英,等,边界形状对二维斜面颗粒流的影响,浙江大学学报(理学版),2006,33(3):282~285
    [97] 张年学 李 晓, 李守定,等,奉节白衣庵滑坡演化的工程地质与历史地质分析,岩石力学与工程学报,2006,25(12):2417~2424
    [98] 陈晓清 李 泳, 胡 凯,等,泥石流颗粒组成的分形特征,地理学报,2005,60(3):495~502
    [99] 连惠邦,泥石流泥沙体积浓度之研究,泥沙研究,2000,(5):6~15
    [100] 周 健 廖雄华, 徐建平,等,粘性土室内平面应变试验的颗粒流模拟,水利学报,2002,(12):11~17
    [101] 邓建辉 刘小丽, 李广涛,滑带土强度特性研究现状,岩土力学,2004,25(11):1849~1854
    [102] 胡厚田 刘涌江, 赵晓彦,高速滑坡岩体碰撞效应的试验研究,岩土力学,2004,25(2):255~260
    [103] 马崇武 刘忠玉, 苗天德,等,高速滑坡远程预测的块体运动模型,岩石力学与工程学报,2000,19(6):742~746
    [104] 胡广韬 毛彦龙, 毛新虎,等,地震滑坡启程剧动的机理研究及离散元模拟,工程地质学报,2001,9(1):74~80
    [105] 费祥俊 舒安平,粘性泥石流运动流速与流量计算,泥沙研究,2003,(3):7~11
    [106] 汪发武,高速滑坡形成机制:土粒子破碎导致超孔隙水压力的产生,长春科技大学学报,2001,31(1):64~69
    [107] 熊 刚 王光谦, 方红卫,颗粒流动的一般本构关系,中国科学,1998,28(3):282~288
    [108] 鲁晓兵 王淑云, 时忠民,颗粒级配和结构对粉砂力学性质的影响,岩土力学,2005,26(7):1029~1032
    [109] 费祥俊 王裕宜,自然界泥石流流变模型的探讨,科学通报,1999,44(11):1211~1215
    [110] 詹钱登 王裕宜, 李昌志,等,粘性泥石流应力应变特征的初步试验研究,山地学报,2002,20(1):42~46
    [111] 胡茂彬 吴清松,颗粒流的动力学模型和实验研究进展,力学进展,2002,32(2):250~258
    [112] 陈纪忠 武锦涛, 阳永荣,移动床中颗粒运动的微观分析,浙江大学学报(工学版),2006,40(5):864~868
    [113] 王余庆 辛鸿博,大石河尾矿粘性土的动力变形和强度特征,水利学报,1995,(11):56~62
    [114] 陈龙珠 邢爱国, 陈明中,岩石力学特性分析与高速滑坡启动速度预测,岩石力学与工程学报,2004,23(10):1654~1657
    [115] 胡厚田 邢爱国, 杨 明,大型高速滑坡滑动过程中摩擦特性的试验研究,岩石力学与工程学报,2002,21(4):522~525
    [116] 龚晓南 熊传祥, 王成华,高速滑坡临滑变形能突变模型的研究,浙江大学学报(工学版),2000,34(443~447):
    [117] 孙其诚 徐 泳, 张 凌,等,颗粒离散元法研究进展,力学进展,2003,33(2):251~260
    [118] 罗锐 杨火军,大悬浮轻颗粒固液两相流中的有序结构,工程力学,2004,21(6):138~143
    [119] 王光纶,张楚汉 尹显俊,岩体结构面切向循环加载本构关系研究,工程力学,2005,22(6):97~103
    [120] 白明洲 于国新, 许兆义,等,工程岩体结构面间距空间分布的ARIMA模型及应用,工程地质学报,2006,14(6):719~823
    [121] 张有天,从岩石水力学观点看几个重大工程事故,水利学报,2003,(5):1~10
    [122] 朱维申 张玉军,小湾水电站左岸坝前堆积体在自然状态下稳定性的平面离散元与有限元分析,岩石力学与工程学报,1999,18(5):497~502
    [123] 李占斌 郑书彦, 李甲平,等,滑坡侵蚀离散元分析研究,岩石力学与工程学报,2005,24(12):2124~2128
    [124] 王光谦 钟德钰, 王士强,非均匀颗粒形成浆体屈服应力的计算模型,泥沙研究,1998,(3):29~33
    [125] 苏燕 周健, 池永,Simulation of soil properties by particle flow code,岩土工程学报,2006,28(3):390~396
    [126] 张刚 周健, 孔戈,渗流的颗粒流细观模拟,水利学报,2006,37(1):28~32
    [127] 周必凡,粘性泥石流力学模型与运动方程及验证,中国科学,1995,25(2):196~203
    [128] 等,粘性泥石流阻力和运动方程验证分析,山地学报,1999,17(1):55~58
    [129] 周平根,滑带土强度参数的估算方法,水文地质工程地质,1998,(6):30~32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700