用户名: 密码: 验证码:
舰船腐蚀电磁场的测量及防护方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海水是一种很强的腐蚀性介质,舰船处于海洋环境中,钢质船壳不可避免地要发生腐蚀。为了使船体不受腐蚀,舰船普遍采用外加电流阴极保护的保护方法。由于施加阴极保护系统,在舰船的周围产生由阴极保护系统的电流产生的腐蚀静电场和极低频电磁场,为舰船的安全性带来了威胁,因此对舰船腐蚀电磁场进行研究,具有重要的军事意义。
     本文的工作是利用我们设计的基于虚拟仪器的舰船腐蚀电磁场的测量系统,主要对舰船的轴频特性信号的提取和舰船腐蚀静电场和极低频电磁场防护方法等问题进行研究。
     首先针对随着传播距离的增大极低频电场衰减很快,很容易被环境噪声所掩盖,研究了基于谐波小波的自适应谱线增强器来提高微弱轴频电场远程检测能力的方法,利用该方法对舰船电磁场缩比模型产生的轴频电场的实测数据进行处理。
     然后针对谐波小波在时域衰减速度慢的缺点,对其在频域进行光滑处理,得到了性质更好的改进的谐波小波,并利用改进的广义谐波小波算法实现了轴频特征提取。同时为了自适应地“无限细分”整个频带以提取信号中的有用频率成分,本文研究了最优小波包基的自适应谐波小波算法。
     此外船体防腐蚀保护的有效性与阴极保护系统设计有关,因此本文研究了双区域阴极保护系统,对双区域阴极保护系统进行了优化设计,实现既满足船体防腐蚀,同时又降低腐蚀静电场,同时为了降低轴频电场,在分析有源轴接地系统原理的基础上,提出利用信号处理的方法进行电压补偿的思想。
     另外基于相似性原理,分析了舰船电磁场缩比模型,同时设计1∶100舰船电磁场缩比模型,利用缩比模型研究了不同转速下的舰船轴频电场的特征。
     最后利用三维电场传感器,同时基于虚拟仪器的思想构建了舰船腐蚀电场的测量系统,实现了舰船腐蚀静电场和极低频轴频电场的快速、准确的测量。
Vessels in the seawater, a strong corrosive medium, will inevitably suffer a corrosion problem. In view of this, a current cathodic protection system is then commonly adopted to handle this problem onboard. However, the application of the cathodic protection system unfavorably creates a corrosive electrostatic field, and an ELF (extremely low frequency) electromagnetic field around the vessel due to the current of protection systems. The ship corrosion electromagnetic field brings the threat to the ship security. Therefore, it is important in military significance to study characteristics of corrosion electromagnetic field of ships.
     The main work of the dissertati physical physical on consists of study on characteristics extraction of shaft-rate modulated electric field and method preventing from corrosion electrostatic field and ELF based on the measurement system with virtual instrument developed in the lab.
     Because the strength of electric field with ELF is getting weaken very quickly as the propagation distance increases, it is easily disturbed by the ambient noise. A new method by using a spectral line enhancer on harmonic wavelet is put forward to improve the long-range detectability of shaft-rate modulated electric field with weak strength. The new method is applied to processing the measured data of the shaft-rate modulated electric field collected in the tests of the physical scale model of ships.
     Regards of shortcoming of harmonic wavelet with slow decay speed in time domain, a method of smooth processing the harmonic wavelet in the frequency domain is proposed to get improvement generalized harmonic wavelet with better properties. The characteristics extraction of shaft-rate modulated electric field is realized by using the improvement generalized harmonic wavelet. In order to "indefinitely subdivide" the whole frequency band self-adaptively to pick up some valid frequency components, a self-adaptive harmonic wavelet algorithm with optimum wavelet packet basis is studied in this dissertation.
     In addition, the effectiveness of hull corrosion protection is related to the design of cathodic protection system .Therefore, the double-zone cathodic protection system is proposed in the dissertation. The optimization of the double-zone cathodic protection system is carried out in order to realize the hull corrosion protection as well as reduce the strength of corrosion electrostatic field. Furthermore, base on active earth grounding system using singnal processing voltage compensation is proposed to reduce the strength of the shaft frequency electric field.
     In the light of similarity theory, a physical scale model of vessel electromagnetic field is studied. A 1:100 physical scale model is designed and various characteristics of the shaft-rate modulated electric field under different r.p.m. are extracted based on the model.
     At last, according to concept of virtual instrument an electric field measurement system by using three dimensional electric field sensors is developed in the Lab such that the accuracy and speed of measurement for corrosion electrostatic field and the ELF shaft-rate modulated electric field of ships is reasonable.
引文
[1] 叶平贤,龚沈光.舰船物理场.北京:兵器工业出版社,1992
    [2] 龚沈光,周骏,刘胜道等.加强舰船水下电场研究,促进海军装备发展.水中目标特性研究学术论文集.大连.2002,205-207页
    [3] 喻浩.舰艇电场和低频电磁场防护措施.舰船科学技术.2000,3:37-39页
    [4] 刘胜道,龚沈光.舰船电场的国内外研究概况.水中兵器.2004,3:63-67页
    [5] 冀路明,李晓宇,陈新刚.舰船电场探索.海军装备.2003,4:38-41页
    [6] 周骏,龚沈光.导电介质 (海水) 中的电磁问题.水中兵器.1999,3:1-7页
    [7] 马淑萍.舰船电场及其在水雷上的应用.硕士论文.武汉:海军工程学院.1991
    [8] 龚沈光等.电场测量新途径.中国船舶科技报告.1996
    [9] 周骏.海水中电磁场特性及舰船电磁场.硕士论文.武汉:海军工程大学.1999
    [10] 刘胜道.舰船水下电场的测试技术与电偶极子模型研究.硕士论文.武汉:海军工程大学,2002
    [11] 刘胜道,龚沈光,周骏.舰船水下电场测试技术研究报告.中国国防科学技术报告.2000
    [12] Y. Huang, M. Iwata, Z. L. Jin. Numerical analysis of electropotential distribution on the surface of marine structure under cathodic protection (application of three dismensional BEM ). J. of the society of naval architects of Japan, vol. 168: 589-592P
    [13] M. Iwata, Y. Huang, Y. Fujimoto. Application of BEM to design of the impressed current cathodic protection system for ship hull. J. of the society of naval architects of Japan. Vol. 171: 377-380P
    [14] N. G. Zamani. Boundary element simulation of the cathodic protection system in a prototype ship. Applied mathematics and computation, 1988, 26: 119-123P
    [15] J. M. Chauang, N. G. Zamani, C. C. Hsiung. Some computational aspects of BEM simulation of cathodic protection systems. Applied mathematical modeling. 1987, 11: 371-378P
    [16] P. G. Rawlins, et al. The design of ICCP systems for stealth vessels. Conf. Proc. UDT Europe 2000, 548P
    [17] R. Adey, J. Baynham. Predicting corrosion related electrical and magnetic fields using BEM. Conf. Proc. UDT Europe 2000, 473P
    [18] P. Hoitham, I. Jeffrey, B. Brooking and T. Richards. Electromagnetic signature modeling and reduction. Conf. Proc. UDT Europe 1999, 97-100P
    [19] S. J. Davidson, P. G. Rawlins. A multi influence range. Conf. Proc. UDT Europe 99, 169-171P
    [20] J. Certenais, J. J. Perious. Electromagnetic measurements at sea. Conf. Proc. UDT Europe, 1997, 433P
    [21] K. Dymarkowski, J. Uczciwek. Ships detection based on measurement of electric field in disturbance existing region. Conf. Proc. UDT Europe, 2000, 554
    [22] 李宝祥(译).电场强度三分量测量传感器.舰艇装备.1992,2:24-26页
    [23] 周士弘,孙玉兰,刘永志.水中目标非声特性研究及其应用技术水中目标特性研究论文集.大连,2002,196-200页
    [24] T. E. Bentson, D. C. Johnson, T. J. Cowling, et al. A rapidly deployable electric field array. Conf. Proc. UDT Europe, 1994, 531-532P
    [25] J. Certenails, J. J. Periou. UEP and the horizontal antenna. UDT, 1997
    [26] 李宝祥.舰船电场—需要我们重新认识的研究领域.GF79836,1-8页
    [27] Hubbard J C, Brooks S H, Torrrance B C. Practical measures for reduction and management of the electro-magnetic signatures of in-service surface ships and submarines. UDT, 1996, 64-65P
    [28] Smith J. Electricity and magnetism. London, 1954: 661P
    [29] K. Dymarkowski, J. Uczciwek. The extremely low frequency electromagnetic signature of the electric field of the ship. UDT, 2001, 1-6P
    [30] A. S. Harrison, J. C. Hubbard. An underwater electric potential (static electric) signature management toolkit for the non-specialist. Conf. Proc, UDT Europe 1994, 477P
    [31] 夏立新.对抗极低频电磁场及其它电磁场的方法.水雷战与舰船保护.1996,3:34-36页
    [32] 宋安东.舰船水下极低频电磁信号的控制.国外舰船工程.1999,8:22-24页
    [33] 龚锦伟,王振民,王立新,卫林根.舰船隐身设计探讨.船舶.2003,3:29-31页
    [34] 李宝祥.降低舰艇信号特征的措施.水雷战与舰船保护.1998,3:37-38页
    [35] 高慧英.舰船极低频电磁特性的控制.水雷战与舰船防护.1997,2:39-44页
    [36] A. Donohoo, J. Vrbancich, and M. de Sousa, A Controlled Underwater Electric Potential Source Array, UDT Pacific 98, Sydney. Australia. February 1998: 163-165P
    [37] G. J. Webb, S. S. Tutt, S. J. Davidson and A. J. Wilkinson. Multi-Influence Electromagnetic and Acoustic Ranging, UDT Pacific 98, Sydney Australia. February 1998: 1-13P
    [38] J. T. Weaver, The Quasi-Static Field of an Electric Dipole Embedded in a Two-Layer Conducting Half Space, Canandian Journal of Physics, v45. 1967: 1981-2002P
    [39] Alex Timonov, Ian Barrodale, and Peter Holtham, Generalized ELF Propagation. Proc Marelec 1997, London, UK, June 1997. 8. 3
    [40] 陈聪,周骏,龚沈光.海水中电磁波传播特性的研究.海军工程大学学报.2004,2:61-64页
    [41] 刘胜道,周骏,龚沈光.海水中电磁波的弯曲.海军工程大学学报.2001,4:75-78页
    [42] 卢新城,龚沈光,周骏,孙明.海水中极低频水平电偶极子电磁场的解 析解.电波科学学报.2004,3:290-295页
    [43] 邓涛.认识和利用腐蚀相关的磁场.水中兵器.2003,3:58-61页
    [44] 傅金祝,与腐蚀有关的磁特征管理,水雷战与舰船防护,2000,2:48-52页
    [45] 肖昌汉.铁磁学.北京:海潮出版社,1999
    [46] 梁成浩,彭乔,李淑英等.腐蚀工程学.大连:大连理工大学出版社,1998
    [47] 曹楚南.腐蚀电化学原理.北京:化学工业出版社,2004
    [48] GB/T3108-1999 船体外加电流阴极保护系统
    [49] 侯保荣.海洋腐蚀与防护.北京:科学出版社,1997:59-71页
    [50] 鲍戈拉得等.海船的腐蚀与保护.北京:国防工业出版社,1983:191页
    [51] Enos. Getal corrosion. 1997. 54(5)
    [52] 陈光章,吴建华,许立坤等.海船保护发展现状.海峡两岸材料腐蚀与防护研讨会论文集.1998,10:24-28页
    [53] 孙建科,王其红,张钧.舰船材料技术在舰艇装备发展中的作用.海军装备.2002,9:24-28页
    [54] 陈光章,吴建华,许立坤等.舰船腐蚀与防护.舰船科学技术.2001,2:38-43页
    [55] 许立坤,王廷勇,高玉柱等.船舶外加电流阴极保护用辅助阳极组件.材料开发与应用.2001,16(2):35页
    [56] Rajani G L. Modern trend impressed current anodes for cathodic protection. Proceedings of the 6th Middle East Corrosion Conferece, Baharain, 1994
    [57] Bekeley K G. Anodes for cathodic protection-old and new. Corrosion'84, New Orleans, 1984
    [58] 胡士信.阴极保护工程手册.北京:化学工业出版社,1999:9-12,139-147页
    [59] 宋曰海,郭忠诚,樊爱民等.牺牲阳极材料的研究现状.腐蚀科学与防护技术.2004,16(1):26-28页
    [60] 龙晋明,郭忠诚,樊爱民等.牺牲阳极材料及其在金属防腐工业中的应用.云南冶金.2002,3:142-148页
    [61] Rajani G L. Modern trend impressed current anodes for cathodic protection. Proceedings of the 6th Middle East Corrosion Conferece, Baharain, 1994
    [62] Bekeley K G. Anodes for cathodic protection-old and new. Corrosion'84, New Orleans, 1984
    [63] 方淑贞.外加电流阴极保护在船舶上的应用和设计.船舶设计通讯.1994,12:24-28页
    [64] GrossmannA, Morlet J. Decomposition of hardy function into square intergrable wavelets of constant shape. SLAM J. MATH. ANAL. 1984, 15(4): 723-736P
    [65] GrossmannA, Morlet J. Transforms associated to square intergrable group representations, I: general results. J. Math. Phys. 1985, 26(10): 2473-2479P
    [66] Mayer Y. Wavelets and applications. Proceedings of the International Conference, Marseiile, France, 1989
    [67] 喻文焕,金振东等.信号奇异性的检测及应用.系统工程理论与实践.2000,20(3):125-129页
    [68] Mallat S, Hwang W L. Singularity detection and processing with wavelets. IEEE Trans, Information Theory, 1992, 38(2): 617-643P
    [69] Mallat S, Zhong S. Characterization of Signals from multi-scale edges. IEEE ch3 Trans Petenand Machine Intelligence, 1992, 14(7): 710-732P
    [70] Gaydon B G, Hargis C, Kamash K. The detection of rotor faults in induction motors. IEEE conf. on Electrical Machines-Design and Applications, London, 1982: 216-220P
    [71] Mallat S. Multi-frequency channel decompositions of images and wavelet models. IEEE Trans. ASSP, 1989, 37(12): 2091-2110P
    [72] Shy-Jier Huang, Cheng Tao, Ching-Lien Huang. Application of Morlet Wavelets to Supervise Power System Disturbances. IEEE Trans. Power Delivery, 1999, 14(1): 235-243P
    [73] 许彬,郑链,王克勇,宋承天.基于信号奇异性分析目标检测方法.红外技术.2005,27(3):245-249页
    [74] Mallat S. A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Machine Intell, 1989, 11 (1): 674-693P
    [75] 朱洪俊,王忠,秦树人.小波变换对瞬态信号特征信息的精确提取.机械工程学报.2005,41(12):196-199页
    [76] 孙鹏,刘平香,徐百灵.瞬态信号检测方法的研究.舰船科学技术.2005,27(3):71-75页
    [77] 程正兴.小波分析算法与应用.西安:西安电子交通大学出版社,1998.5
    [78] 秦前清,杨宗凯.实用小波分析.西安:西安电子科技大学出版社,1998.1
    [79] Newland D E. Harmonic wavelet analysis. Proc R Soc Lond: A, 1993, 443(10): 203-205P
    [80] Newland D E. Wavelet analysis of vibration-part 1: Theory. Journal Vibration and Acoustics, Transactions of the ASME, 1994, 116(5): 409-416P
    [81] Newland D E. Ridge and phase identification in the frequency analysis of transient signals by harmonic wavelets. Journal of Vibration and Acoustics, Transactions of the ASME, 1999, 121(2): 149-155P
    [82] Newland D E. Harmonic wavelets in vibrations and acoustics. Royal Soc Trans, Philos: A, 1999, 1760(357): 2607-2625PP
    [83] Newland D. E. Wavelet analysis of vibration. Part 2: Theory. Trans. ASME. J. Vibration & Acoustic. 1994, 116: 417-425P
    [84] D. E. Newland. Harmonic and musical wavelets. Proceedings of the Royal Society of London. 1994, 443: 605-620P
    [85] B. Liu Adaptive harmonic wavelet transform with applications in vibration analysis JOURNAL OF SOUND AND VIBRATION 262(2003): 45-64P
    [86] S. A. Neild, P. D. Mcfadden, M. S. Williams A review of time-frequency methods for structural vibration analysis ENGINEERING STRUCTUES 25(2003): 713-728P
    [87] William W. Hsieh Neuralnets for Multivariate and Time Series Analysis Department of Earth and Ocean Sciences, University of British Colunbia, Canada 2002
    [88] V. C. Chancey, G. T. Flowers, C. L. Howerd, Rotordynamic analysis using harmonic wavelets, Proceedings of the Seventh International Congress on Sound and Vibration, July 4-7, Garmisch-Partenkirchen, Germany, Kramer Technology Publ., Munich, 2000: 3519-3526P
    [89] P. D. Samuel, D. J. Pines, D. G. Lewicki, Acomparison of stationary and nonstationary metrics for detecting faults in helicopter gearboxes, Journal of American Helicopter Society 45 (2000): 125-136P
    [90] J. I. Bonel-Cerdan, J. L. Nikolajsen, Introduction to harmonic wavelet analysis of machine vibrations. Proceedings of 1997 International Gas Turbine and Aeroengine Congress and Exposition, June 2-5, Orlando, FL, Paper 97-GT-58, 1997
    [91] S. R. Chettri, Y. Ishiwaka, H. Kimura, I. Nagano, Harmonic wavelets, constant Q transforms, and the cone kernel TFD, Proceedings of SPIE 2762(1996): 446-451P
    [92] S. K. Tang, On the time-frequency analysis of signals that decay exponentially with time, Journal of Sound and Vibration 234(2000): 241-258P
    [93] 高强,何正嘉.谐波小波及其时频剖面图在旋转机械诊断中的应用.西安交通大学学报.2000,34(9):62-66页
    [94] 高强.谐波小波在旋转机械振动特征波形提取中的应用研究.硕士论文.西安交通大学.1999
    [95] 赵玉成,肖忠会,许庆余.谐波小波在数字滤波中的应用及其功效分析.机械工程学报.2000,36(10):9-12页
    [96] 肖忠会.谐波小波分析及其在旋转机械信号分析中的应用.风机技术.2001,1:43-46页
    [97] 李瑰贤,周铭,韩继光,陈域广,王庆华.改进谐波小波及其在振动信号时频分析中的应用.振动工程学报.2001,14(4):378-381页
    [98] 李宏亮,黄润华,韩国明,傅汝楫.谐波小波的时频分析及其在故障诊断中的应用.机械强度.2000,22(2):81-85页
    [99] 赵玉成,袁树清,许庆余.奇异信号的谐波小波分析.工程力学.2000,17(3):60-65页
    [100] 李舜酩,李香莲、盛爱兰.分形与谐波小波相结合的车辆振动信号分析.农业机械学报.2002,33(4):77-81页
    [101] 赵玉成,肖忠会,许庆余.混沌于噪声的谐波小波分析.机械强度.2001,23(1):69-71页
    [102] 温广瑞,张西宁.基于AR模型和谐波小波的扭振固有频率提取.机械科学与技术.2003,22(1):25-27页
    [103] 张玉莲,赵玉成,许庆余.谐波小波在信号滤波中的应用.强度与环境.2000,2:29-33页
    [104] 肖忠会.应用谐波小波滤波识别转子系统临界转速.风机技术.2002,2:8-10页
    [105] 肖忠会,赵玉成,许庆余.应用谐波小波提取转子系统动力参数.应用力学学报.2000,18(4):60-64页
    [106] 李舜酩,吕国志,许庆余.转子轴心轨迹的谐波小波提纯.西北工业大学学报.2001,19(2):220-224页
    [107] 肖忠会.谐波小波分析在转子系统动力参数识别中的应用.硕士论文.西安交通大学.2000
    [108] 赵玉成.旋转机械诊断理论及方法的研究.硕士论文.西安交通大学.2000
    [109] 李舜酩,许庆余.微弱振动信号的谐波小波频域提取.西安交通大学学报.2004,38(1):52-57页
    [110] 李舜酩.旋转机械运行监测技术与故障诊断研究.博士论文.西安交通大学.1998
    [111] 赵玉成.旋转机械诊断理论及方法的研究.博士论文.西安交通大学.2000
    [112] 何正嘉,訾艳阳等.机械设备费非平稳信号的故障诊断原理及应用.高等教育出版社,2001
    [113] 李舜酩.谐波小波包方法及其对转子亚频轴心轨迹的提取.机械工程学报.2004,9:133-137页
    [114] 蒋斌.机电系统故障诊断的理论与应用研究.博士论文.浙江大学.2002
    [115] 李方.谐波小波在设备故障诊断中的应用.硕士论文.华中科技大学.2005
    [116] 高珍.齿轮损伤的谐波小波分析方法研究.硕士论文.太原理工大学.2005
    [117] 佩瑶,马孝江,王吉军.小波包信号提取算法及其在故障诊断中的应用大连理工大学学报.1997,39(1):67-72页
    [118] 刘华,蔡正敏.小波包算法在滚动轴承的在线故障诊断中的应用.机械科学与技术.1999,18(2):301-303页
    [119] 陈中孝,王曦.基于最优小波包基的自适应数字水印算法.微电子学与计算机.2005,2:114-116页
    [120] 张贤达.现代信号处理.北京:清华大学出版社,1998
    [121] 胡广书.数字信号处理—理论、算法与实现.北京:清华大学出版社.1998
    [122] Widrow. Stearns S D. Adaptive noise canceling: principles and application. Proc IEEE. 1975. 62: 1692-1716P
    [123] 姚天任,孙洪.现代数字信号处理.武汉:华中理工大学出版社,1999
    [124] 何振亚.自适应信号处理.科学出版社,2002
    [125] Simon Haykin.自适应滤波器原理(第4版).北京:电子工业出版社,2002
    [126] 李耀明.改进的自适应小波变换在信号去噪中的应用.科技情报开发与经济.2005,5:206-208页
    [127] Erdol N, Basbug F. Wavelet transforem based adaptive filters: analysis and new results. IEEE Trans, Signal Processing, 1996, 44: 2163-2171P
    [128] Doroslovacki M I, Fan H. Wavelet-based linear system modeling and adaptive filtering. IEEE Trans, Signal Processing, 1996, 44: 1156-1167P
    [129] Hosur S, Tewfik H. Wavelet domain adaptive FIR filtering. IEEE Trans. Signal Processing, 1997, 45: 617-630P
    [130] 陈孟钢.缩比模型飞机飞行控制系统研究与设计.硕士论文.北京航空航天大学.2003
    [131] 陈孟钢,高金源.缩比模型飞机及其飞控系统与原型机的相似关系.飞行力学.2003,21(2):34-37页
    [132] Zamani N G. Boundary element simulation of the cathodic protection system in a prototype ship. Applied mathematics and computation, 1988, 26: 119-123P
    [133] Huang Y, Iwata M, Jin Z L. Numerical analysis of electropotential distribution on the surface of marine structure under cathodic protection ( application of three dismensional BEM ). J. of the society of naval architects of Japan, vol. 168: 589-592P
    [134] Agar J N, Hoar T P. Disc. Faraday Soc.1,1947:158P
    [135] McGrath J N, Tighe-Ford D J, Hodgkiss L. Scale modeling of a ship's impressed current cathodic protection system. Corrosion prevention and control, 1985,4: 36-38P
    [136] Tighe-Ford D J, Khambhaita P, Walton C P, et al. Effect of propeller material and condition on the impressed current cathodic protection of ships. Corrosion Prevention & Control, 1993, 8(4): 79-83P
    [137] Khambhaita P, Tihge-Ford D J, Hughes R D. A study of anode in the performance of ship ICCP systems. The NACE international annual conference and corrosion, 1995: No. 309
    [138] Ditchfield R W, Mcgrath J N, Tighe-Ford D J. Theoretical validation of the physical scale modelling of the electrical potential characteristics of marine impressed current cathodic protection. Journal of applied electrochemistry, 1995, 25: 54-60P
    [139] Parks A R, Thomas E D, Lucas K E. Physical scale modeling verification with shipboard trials. Materials Performance, 1991, 30(5): 26-29P
    [140] Lucas K E, Thomas E D, Kaznoff A I, et al. Design of impressed current cathodic protection(ICCP) systems for U. S. Navy hulls. ASTM Special Technical Publication, 1999, 1370 (11): 17-33P
    [141] DeGiorgi V G, Thomas E D, Lucas K E, et al. A combined design methodology for impressed current cathdic protection systems. BEASY Technical Paper:335-344P
    [142] Gurrappa I, Kamik J A. Physical scale modelling for ship cathodic protection systems. Corrosion Prevention & Control, 1995, 4(2): 43-46P
    [143] Kear G, Barker D. Physical scale modeling of cathodic protection for students of corrosion and prevention. Corrosion & Prevention-O2 Proceedings, Adelaide, South Australia, 2002, 11: 1-11P
    [144] Thomas E D, Dahele J S. Ship impressed current cathodic protection modulations of system current outputs by propeller/shaft rotation on physical scale model hull. British Corrosion Journal, 2000, 35(4): 269-272P
    [145] Akmah A O, Dahele J S, Thomas E D. Effect of warship impressed current cathodic protection configuration on low frequency current output modulations associated with propeller/shaft rotation. British Corrosion Journal, 2002, 37(2): 114-116P
    [146] 曾昭钧.均匀设计及其应用.沈阳:辽宁人民出版社,1994
    [147] 方开泰.均匀设计与均匀设计表.北京:科学出版社,1994
    [148] 李铁军,李学武,高育鹏.虚拟仪器技术及其在数据采集中的应用.现代电子技术.2005,28(9):79-81页
    [149] 赵勇.虚拟仪器软件平台和发展趋势.国外电子测量技术.2002,21(1):2-4页
    [150] 邓明,刘志刚,白宜诚,颜送清等.海底电场传感器原理及研制技术.地质与勘探.2002,38(6):43-47页
    [151] 邓明,张启升,邱开林,汪林林.海洋环境下大地电场勘探的若干技术问题.仪表技术与传感器.2004,9:48-50页
    [152] 渭涛.30701讲义.北京:科学教育出版社,1961
    [153] 傅金祝.LSM智能滨海自导水雷.舰船知识,2001,5:27-30页
    [154] 傅金祝.水雷技术发展研究.水雷战与舰船防护,2002,2:1-3页
    [155] 刘进(译).瑞典和美国联合研制扫雷艇.水雷战与舰船防护,1996,2:8-11页
    [156] www.ADI.com,2002.11.12下载
    [157] CSIC-710研究所.澳大利亚ADI公司考察报告.2002.7
    [158] J. R. Treichler. Transient and Convergent Behavior of the ALE. IEEETrans, Acoust Speech Signal Processing, Vol, Assp-27. Feb1979
    [159] N. J. Bershad, et al. Trackings Characterstics of the LMS Adaptive LineEnhancer Response to a Linear Chirp Signal in Noise", IEEE Trans, Acoust Speech Signal Processing, Vol, ASSP-28. Oct 1980
    [160] J. Zeidler, E. Statorius, et al, Adaptive Enhancement of Multiple Sinusoids in Uncorrelated Noise. IEEE, Trans Acoust Speech Signal Processing Vol. ASSP-26, June 1978

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700