用户名: 密码: 验证码:
水相中“click”化学在多组分和不对称反应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“Click”化学是由Sharpless小组提出的一种模块化的方法,该方法只用在最实用和最可靠的化学转换中。其核心是开辟一整套以含杂原子链接单元C—X—C为基础的组合化学新方法,用少量简单可靠和高选择性的化学转变来获得更广泛的分子多样性,开创了快速、有效、甚至是100%可靠的、高选择性地制造各类新化合物的合成化学新领域。
     由于反应过程的高度可靠性、生成的产物有完全的区域选选择性、反应试剂与生理条件的相容性,Cu(I)催化的叠氮化合物和末端炔形成[1,2,3]-三唑的1,3-二偶极环加成是一种特别强有力的纽带反应。在药物开发方面,[1,2,3]-三唑产物不像传统的连接试剂,仅仅是被动的连接单元,而是通过氢键和二偶极相互作用,与生物靶点产生了联系。
     随着Cu(I)催化的炔基化合物和有机叠氮的环加成反应的发展,“click”叠氮化学在包括天然产物的全合成等学科引起了广泛的兴趣,发现了许多有趣的应用。由于“click”叠氮化学的反应条件对常见的生物分子的几乎所有的官能团是稳定的,炔基化合物和有机叠氮不会与这些官能团发生反应,生物学家将这种现象称之为生物正交。这种生物正交性为炔-叠氮的“click”叠氮化学在生物学上的应用,提供了很大的便利,已经被用在先导化合物库的合成和活性蛋白质的仿形等药物开发的许多方面。
     由于N-取代的三唑比烷基取代的三唑有更多的应用,同样比烷基取代的三唑有更好的活性。已有的方法,制备这些化合物往往采用间接的方法,利用容易制备的三唑酯、酸或亚胺作为中间体,然后通过官能团转化,生成难制备的三唑酰胺获三唑胺。我们应用Cu(I)催化Huisgen反应条件,一锅法实现环加成反应和胺化反应,合成了有潜在生物活性的1-取代-4-胺基甲基取代的1H-[1,2,3]-三唑,反应过程显示了一些优点:1)反应过程是简单的,不需要排除空气,在室温下就能发生,得到了好到高的产率;2)原料是易于得到的,能够用做模板反应去高效率的合成复杂的药物分子。为构建复杂的含胺基基团取代基的三唑提供一种通用的、更简便的方法。
     最近几年,有机化学最为重要的进程之一便是,发展了以脯氨酸及其衍生物和其它氨基酸衍生物为代表的有机催化剂不对称催化,合成手性化合物的方法。在短短的几年,便发展成为有机化学最热门的研究方向,能够催化地反应也从早期的很少的几种反应,扩展到了几乎不对称合成的各个领域。我们利用便宜的脯氨酸作为手性源,Cu(I)催化的炔-叠氮反应的“click”化学条件作为一个关键的步骤,将“click”化学介入到不对称领域,合成了一系列四氢吡咯-三唑的手性有机催化剂,并将它们应用到了水相中的Michael加成反应,以较高的产率,优秀的非对映选择性和优秀的ee值完成了反应。总的来说,我们将“click”化学引入到了有机催化剂催化的不对称领域,拓展了它的用途。由于Cu(I)催化的炔-叠氮反应的“click”化学,本身具有宽广的底物范围和温和的反应条件,为合成多样性的三唑有机催化剂提供了模块化和可调特征的模板反应。此外,需要关注的是,由于三唑基团本身既亲水又疏水的特点,可以充当作相转移试剂,保证了反应能够在多样性的溶剂中反应,此外它体积大的特点,又能更有效的屏蔽烯胺双键的si-面,从而保证了得到非常好的非对映选择性和ee值。
"Click" chemistry is a modular approach proposed by Sharpless et al. that uses only the most practical and reliable chemical transformations. The goal is to develop an expanding set of powerful, selective, and modular "blocks" that work reliably in both small- and large-scale applications. The reaction must be modular, wide in scope, give very high yields, generate only inoffensive byproducts that can be removed by nonchromatographic methods, and be stereospecific. The required process characteristics include simple reaction conditions, readily available starting materials and reagents, the use of no solvent or a solvent that is benign or easily removed, and simple product isolation.
     The copper-(I)-catalyzed 1,2,3-triazole formation from azides and terminal acetylenes is a particularly powerful linking reaction, due to its high degree of dependability, complete specificity, and the bio-compatibility of the reactants. The triazole products are more than just passive linkers; they readily associate with biological targets, through hydrogen bonding and dipole interactions. Its applications are increasingly found in all aspects of drug discovery, ranging from lead finding through combinatorial chemistry and target-templated in situ chemistry, to proteomics and DNA research, using bioconjugation reactions.
     The development of the copper(I)-catalyzed cycloaddition reaction between azides and terminal alkynes has led to many interesting applications of click reactions including the synthesis of natural product derivatives. Although azides and alkynes display high mutual reactivity, individually these functional groups are two of the least reactive in organic synthesis. They have been termed bioorthogonal because of their stability and inertness towards the functional groups typically found in biological molecules. This bioorthogonality has allowed the use of the azide-alkyne [3+2] cycloaddition in various biological applications including target guided synthesis and activity-based protein profiling.
     After extensively reviewed, we found both N-substituted and 4- or 5-substituted 1,2,3-trizoles had more potentialapplication than simple 1,2,3-triazole derivatives. The low reactivity of acetylenic amides toward 1,3-dipolar cycloaddition with azides has remained a problem for direct access to biologically active 1,2,3-triazoles with an amide substituent; the preparation of these compounds has generally involved the use of easily available 1,2,3-triazole esters, acids, or imines as intermediates, followed by a functional group transformation to the amide.
     Herein, we have demonstrated a new three-component protocol of amine, propargyl halide and azide in one-pot procedure for the synthesis of (1 -substituted-1H-1,2,3-triazol-4-ylmethyl)-dialkylamine derivatives in the presence of copper(I) in water. The process showed the considerable synthetic advantages in terms of air, products diversity, mild reaction condition, simplicity of the reaction procedure, and good to excellent yields, can provide an access to a class of compounds that can serve as useful building blocks for synthesis.
     Past several years, between the extremes of transition metal catalysis and enzymatic transformations, a third approach to the catalytic production of enantiomerically pure organic compounds has emerged—organocatalysis. Proline, a chiral-pool compound which catalyzes aldol and related reactions by iminium ion or enamine pathways, is a prototypical example by List et al.. Amino acid-derived organocatalysts such as the oxazolidinone introduced by MacMillan et al. or the chiral thiourea introduced by Jacobsen et al. have enabled excellent enantioselectivity in, e.g., Diels-Alder reactions ofα,β-unsaturated aldehydes or the hydrocyanation of imines. Overall, asymmetric organocatalysis has matured in recent few years into a very powerful, practical, and broadly applicable third methodological approach in catalytic asymmetric synthesis.
     Herein, we have developed a series of novel asymmetric pyrrolidine-triazole organocatalysts and demonstrated their potential for Michael reactions with high yields, excellent enantioselectivity, and a very good diastereoselectivity. Overall, we introduced "click" chemistry to the field of asymmetric organocatalysis and extended the application of "click" chemistry. Therefore, Cu(I)-catalyzed 1,3-dipolar "click" azide-alkyne cycloaddition provides the modular and tunable features for the pyrrolidine-triazole catalysts. In addition, it is worthy of noting that the triazole moiety introduced cannot only act as a positive phase tag to complete the reaction in a broad range of solvents, but can also serve as an efficient chiral-induction group to ensure a high selectivity.
引文
1. D. Barton, K. Nakanishi, Comprehensive Natural Products Chemistry. Sankawa, U, Ed.; Elsevier: New York, 1999.
    2. a) O, Yoshio, Applied catalysis A: General 1997, 155, 133. b) P. Seneci, Solid-Phase Synthesis and Combinatorial Technologies. Wiley: New York, 2000.
    3. G. Wess, M Urmann, B. Sickenberger, Angew. Chem. Int. Ed. 2001, 40, 3341.
    4. H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004-2021.
    5.董卫莉,赵卫光,李玉新,刘征骁,李正名,有机化学 2006,26,271.
    6. (a) T. H. Chan, C. J. Li, Chem. Commun. 1992, 747. (b) E. Kim, D. M. Gordon, W. Schmid, G. M. Whitesides, J. Org. Chem. 1993, 58, 5500. (c) T. P. Loh, G. Q. Cao, J. Pei, Tetrahedron Lett, 1998, 39, 1457. (d) T. P. Loh, Q. Y. Hu, J. J. Vittal, Synlett 2000, 523. (e) T. P. Loh, P. L. Lye, Tetrahedron Lett. 2001, 42, 3511. (f) Z.-Y. Yan, Y.-B. Zhao, M.-J. Fan, W.-M. Liu and Y.-M. Liang, Tetrahedron 2005, 61, 9331.
    7. Z. Demko, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2110.
    8. Z. Demko, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2113.
    9. T.-H. Chuang, K. B. Sharpless, Helv. Chim. Acta 2000, 83, 1734.
    10. For the nucleophilic opening of epoxides derived from tetrahydronaphthalene and hexahydroanthracene, see: a) E. Vogel, F. Kuebart, J. A. Marco, R. Andree, J. Am. Chem. Soc. 1983, 105, 6982. b) E. Vogel, W. Klug, A. Breuer, Org. Synth. Coll. Vol. 1988, 6, 862. c) E. Vogel, M. Biskup, A Vogel, H. Günther, Angew. Chem. Int. Ed. Engl. 1966, 5, 734.
    11. For a study on the influence of Lewis acids on the nucleophilic opening of N-acyl aziridines versus their rearrangement to oxazolines, see: D. Ferraris, W. J. Drury Ⅲ, C. Cox, T. Lectka, J. Org, Chem. 1998, 63, 4568.
    12. a) H. Stamm, J. Prakt. Chem. 1999, 341, 319-331; b) K. Bellos, H. Stamm, J. Org. Chem. 1995, 60, 5661.
    13. P.-Y. Lin, K. Bellos,H. Stamm, A. Onistschenko, Tetrahedron 1992, 48, 2359.
    14. Opening ofaziridines with thiols, see:a) G. Meguerian, L. B. Clapp, J. Am. Chem. Soc. 1951, 73, 2121. b) J. Legters, L. Thijs, B. Zwanenburg, Recl. Trav. Chim. Pays-Bas 1992, 111, 1. c) H. Shao, Q. Zhu, M. Goodman, J. Org. Chem. 1995, 60, 790.
    15. a) J. Chem. Soc. Pekin Trans I, 1982, 627. b) D. R. Buckle, D. J. Outred, C. J. M. Rockell, H. Smith, B. A. Spicer, J. Med Chem. 1983, 26, 251. c) D. R. Buckle, C. J. M. Rockell, H. Smith, B. A. Spicer, J. Med. Chem. 1986, 29, 2262. d) R. Alvarez, S. VelAzquez, A. San-FBlix, S. Aquar, E. De Clercq, C.-F. Perno, A. Karlsson, J. Balzarini, M. J. Camarasa, J. Med Chem. 1994, 37, 4185. e) M. J. Genin, D. A. Allwine, D. J. Anderson, M. R. Barbachyn, D. E. Emmert, S. A. Garmon, D. R. Graber, K. C. Grega, J. B. Hester, D. K. Hutchinson, J. Morris, R. J. Reischer, C. W. Ford, G. E. Zurenko, J. C. Hamel, R. D. Schaadt, D. Stapert, B. H. Yagi, J. Med Chem. 2000, 43, 953.
    16. R. Alvarez, S. VelAzquez, A. San-Félix, S. Aquaro, E. De Clercq, C-F. Perno, A. Karlsson, J. Balzarini, and M. J. Camarasa, J. Med. Chem. 1994, 37, 4185.
    17. L. L. Brockunier, E. R. Parmee, H. O. Ok, M. R. Candelore, M. A. Cascieri, L. F. Colwell, L. Deng, W. P. Feeney, M. J. Forrest, G. J. Hom, D. E. MacIntyre, L. Tota, M J. Wyvratt, M. H. Fisher and A. E. Weber, Bioorg. & Med. Chem. Lett. 2,000, 10, 2111.
    18. M J. Genin, D. A. Allwine, D. J. Anderson, M. R. Barbachyn, D. E. Emmert, S. A. Garmon, D. R. Graber, K. C. Grega, J. B. Hester, D. K. Hutchinson, J. Morris, R. J. Reischer, C. W. Ford, G. E. Zurenko, J. C. Hamel, R. D. Schaadt, D. Stapert, and B. H. Yagi, J. Med. Chem. 2000, 43, 953.
    19.刘传德,王培松,王继秋,宫本义,尹国香,山东农业大学学报,2005,36,157
    20.刘长令,农药科学与管理,2000,3,20.
    21.倪汉祥,杨鸿生,植物保护,1996,22(4),37.
    22. a) K. V. Gothelf, K. A. Jorgensen, Chem. Rev. 1998, 98, 863. b) T. Curtius, Ber. Dtsch. Chem. Ges. 1883, 16, 2230.
    23. E. Buchner, Ber. Dtsch. Chem. Ges. 1888, 21, 2637.
    24. E. Buchner, M. Fritsch, A. Papendieck, H. Witter, Liebigs Ann. Chem. 1593, 273, 214.
    25. E. Beckmann, Ber. Dtsch. Chem. Ges. 1890, 23, 3331.
    26. K. N. Houk, J. Gonzáles, Y. Li, Acc. Chem. Res. 1995, 28, 81.
    27. O. Diels, K. Alder, Liebigs Ann. Chem. 1928, 460, 98.
    28. R. Huisgen, In 1, 3-Dipolar Cycloadition Chemistry, Padwa, A., Ed., Wiley: New York, 1984.
    29. D. S. Wolfman, G. Linstrumelle, C. F. Cooper, The Chemistry of Diazonium and Diazo Groups, John Wiley and Sons: New York, 1978.
    30. R. Huisgen, Angew. Chem. 1963, 75, 604.
    31. a) R. Huisgen in 1,3-Dipolar Cycloaddition Chemistry (Ed.: A. Padwa), Wiley, New York, 1984, pp. 1-176; b) A. Padwa in Comprehensive Organic Synthesis, Vol. 4 (Ed.: B. M. Trost), Pergamon, Oxford, 1991, pp. 1069-1109.
    32. J. C. Sheehan and C. A. Robinson, J. Am. Chem. Soc. 1951, 73, 1207.
    33. W. Kirmse and L. Horner, Ann. Chem., 1958, 614, 1.
    34. R. Fuks, R. Buijle, and H. G. Viehe, Angew. Chem. Int. Ed. Engl. 1966, 5, 585.
    35. P. Grunanger, P. Vita Finzi, and E. Fabbri, Gazz. Chim. Ital. 1960, 90, 413.
    36. P. Vita Finzi and C. Scotti, Atti. Accad Naz. Lincei, Rend CI. Sci. Fis.Mat. Nut. 1966, 41, 204.
    37. P. Grunanger and P. Vita Finzi, Tetrahedron Lett. 1963, 1839.
    38. P. Grunanger, P. Vita Finzi, and C. Scotti, Chem. Ber.1965, 98, 623.
    39. A. Michael, d. Prakt. Chem. 1893, 48, 94.
    40. T. Curtius, W. Klavehn, J. Prakt. Chem. 1930, 125, 498.
    41. J. J. Looler, J. Org. Chem. 1965, 30, 638.
    42. R. Huisgen, R. Knorr, L. Mobius, G. Szeimies, Chem. Ber. 1965, 98, 4014.
    43. S. K. Khetan, M. V. George, Can. J. Chem. 1967, 45, 1993.
    44. S. T. Abu-Orabi, M. A. Atfah, I. Jibril, A. A. S. Ali, F. Marii, Gazz. Chim. Ital, 1992, 122, 92.
    45. H. Honda, H. Nakanishi, Y. Nagawa, and A. Yabe, J. Chem. Soc. Chem. Commun. 1984, 450.
    46. S. T. Abu-Orabi, R. Al-Hamdany, A. Aftah, A. S. S. Ali, K. H. Abu-Shandi, Asian Journal of Chemistry, 1999, 11, 774.
    47. Z.-X. Wang and H.-L. Qin, Chem. Commun. 2003, 2450.
    48. Z. Li, T. S. Seoa, and J. Jua, Tetrahedron Lett. 2004, 45, 3143.
    49. R. B. Merrifield, J. Am. Chem. Soc. 1963, 85, 2149.
    50. M. Moore and P. Norris, Tetrahedron Lett. 1998, 39, 7027-7030
    51. B. E. Blass, K. R. Coburn, A. L. Faulkner, C. L. Hunn, M. G. Natchus, M. S. Parker, D. E. Portlock, J. S. Tullis and R. Wood, Tetrahedron Lett. 2002, 43, 4059.
    52. L. Garanti and G. Molteni, Tetrahedron Lett. 2003, 44, 1133.
    53. K. Harju, M.Vahermo, I. Mutikainen, and J. Yli-Kauhaluoma, J. Comb. Chem. 2003, 5, 826.
    54. N. H. Williams. J. Microwave Power 1967, 2, 123.
    55. R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge and J Rousell, Tetrahedron Lett. 1986, 27, 279.
    56. R. J. Giguere, T. L. Bray, S. M Duncan and G. Majetich, Tetarhedron. Lett. 1986, 27, 4945.
    57. F. Louerat, K. Bougrin, A. Loupy, A. M Ochoa de Retana, J. Pagalday, and F. Palacios, Heterocycles 1998, 48, 161.
    58. a) D. Habich, W. Barth, M. Rosner, Heterocycles 1989, 29, 2083; b) R. C. Mearman, C. E Newall, A. P. Tonge, J. Antibiot. 1984, 37, 885.
    59. a) Y. S. Sanghvi, B. K. Bhattacharya, G. D. Kini, S. S. Matsumoto, S. B. Larson, W. B. Jolley, R. K Robins, G. R. Revankar, J. Med. Chem. 1990, 33, 336. b) O. Makabe, H Suzuki, S. Umezawa, Bull. Chem. Soc. Jpn. 1977, 50, 2689. c) D. J. Hupe, R. Boltz, C. J. Cohen, J. Felix, E. Ham, D. Miller, D. Soderman, D. V. Skiver, J. Biol. Chem. 1991, 266, 10136. d) R. R. Talekar, R. H. Wightman, Tetrahedron 1997, 53, 3831. e) P. Norris, D. Horton, B. R. Levine, Heterocycles 1996, 43, 2643. f) J. K. Chakrabarti, T. M. Hotten, I. A. Pullar, D. J. Steggles, J. Med Chem. 1989, 32, 2375.
    60. P. H. Olesen, F. E. Nielsen, E. B. Pedersen, J. Becher, J. Heterocycl. Chem. 1984, 21, 1603.
    61. A. R. Katritzky and S. K. Singh, J. Org. Chem. 2002, 67, 9077.
    62. C. W. Tornφe, C. Christensen, and M. Meldal, J. Org. Chem. 2002, 67, 3057.
    63. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596.
    64. A. Krasinski, V. V. Fokin, and K. B. Sharpless, Org. Lett. 2004, 6, 1237.
    65. L. Zhang, X. Chen, P. Xue, H. H. Y. Sun, I. D. Williams, K. B. Sharpless, V. V. Fokin, and G. Jia, J. Am. Chem. Soc. 2005, 127, 15998.
    66. M. Stein, R. B. Henerson, J. S. Fruton, In Heterocyclic Compounds. R. C. Elderfield, Ed.; Wiley & Sons, Inc.: London, 1950, Vol. 1.
    67. V. D. Bock, H. Hiemstra, and J. H. van Maarseveen, Eur. J. Org. Chem. 2006, 51.
    68. E.-H. Ryu, Y. Zhao, Org. Lett. 2005, 7, 1035-1037.
    69. B. H. Lipshutz and B. R. Taft, Angew. Chem. Int. Ed. 2006, 45, 8235.
    70. a) H. A. Orgueira, D. Fokas, Y. Isome, P. C.-M. Chane, C. M. Baldino, Tetrahedron Lett. 2005, 46, 2911. b) L. D. Pachón, J. H. van Maarseveen, G. Rothenberg, Adv. Synth. Catal. 2005, 347, 811.
    71. F. Fazio, M. C. Bryan, O. Blixt, J. C. Paulson, C.-H. Wong, J. Am. Chem. Soc. 2002, 124, 14397.
    72. T. R. Chan, R. Hilgraf, K. B. Sharpless, and V. V. Fokin, Org. Lett. 2004, 6, 2853.
    73. J.-c. Meng, V. V. Fokin, M. G. Finn, Tetrahedron Lett. 2005, 46, 4543.
    74. Kolb, H. C.; Sharpless, K. B. Drug Discovery Today 2003, 8, 1128.
    75. Yang, J.; Hoffmeister, D.; Liu, L.; Fu, Xun.; Thorson, J. S.; Bioorg. Med. Chem. 2004, 12, 1577.
    76. H. Lin, C. T. Walsh, J. Am. Chem. Soc. 2004, 126, 13998.
    77. N Kaval, D. Ermolat'ev, P. Appukkuttan, W. Dehaen, C. O. Kappe, and E. Van der Eycken, J. Comb. Chem. 2005, 7, 490.
    78. R. Manetsch, A. Krasinski, Z. Radic, J. Raushel, P. Taylor, K. B. Sharpless, and H. C. Kolb, J. Am. Chem. Soc. 2004, 126, 12809.
    79. S. Lober, P. Rodriguez-Loaiza, P. Gmeiner, Org. Lett. 2003, 5, 1753.
    80. F. Pérez-Balderas, M. Ortega-Munoz, J. Morales-Sanfrutos, F. Hernández-Mateo, F. G. Calvo-Flores, Jose A. Calvo-Asín, Joaquín Isac-Garcia, and Francisco Santoyo-González, Org. Lett. 2003, 5, 1951.
    81. T. Liebert, C. Hansch, T. Heinze, Macromol. Rapid Commun. 2006, 27, 208.
    82. L. V. Lee, M L. Mitchell, S.-J. Huang, V. V. Fokin, K. B. Sharpless, C.-H. Wong, J. Am. Chem. Soc. 2003, 125, 9588.
    83. A. Brik, J. Muldoon, Y.-C Lin, J. H. Elder, D. S. Goodsell, A. J. Olson, V. V. Fokin, K. B. Sharpless, C.-H. Wong, Chem BioChem 2003, 4, 1246.
    84. a) L. K. Mahal, et al., Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 1997, 276, 1125. b)D. J. Vocadlo, et al., Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 9116.
    85. Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin, K. B.Sharpless, M G. Finn, J. Am. Chem. Soc. 2003, 125, 3192.
    86. A. J. Link and D. A. Tirrell, J. Am. Chem. Soc. 2003, 125, 11164.
    87. A. Deiters, T. A. Cropp, M. Mukherji, J. W. Chin, J. C. Anderson, and P. G. Schultz, J. Am. Chem. Soc. 2003, 125, 11782.
    88. A. E. Speers, G. C. Adam, B. F. Cravatt, J. Am. Chem. Soc. 2003, 125, 4686.
    89. T. S. Seo, Z. Li, H. Ruparel, J. Ju, J. Org. Chem. 2003, 68,609.
    90. a) S. M. Grayson, J. M. J. Fréchet, Chem. Rev. 2001, 101, 3919. b) J. M. J. Fréchet, J. Polym. Sci. Part A 2003, 41, 3713.
    91. a) P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel, B. Voit, J. Pyun, J. M. J. Fréchet, K B. Sharpless, and V. V. Fokin, Angew. Chem. Int. Ed. 2004, 43, 3928. b) M. Malkoch, K. Schleicher, E. Drockenmuller, C. J. Hawker, T. P. Russell, P.Wu, and V. V. Fokin, Macromolecules 2005, 38, 3663.
    92. C. Ornelas, J. R. Aranzaes, E, Cloutet, S. Alves, and D. Astruc, Angew. Chem. Int. Ed. 2006, 45, 1.
    93. S. Lober, P. Rodriguez-Loaiza, P. Gmeiner, Org. Lett. 2003, 5, 1753.
    94. J. C. Meng, C. Averbuj, W. G. Lewis, G. Siuzdak, M. G. Finn, Angew. Chem., Int. Ed. 2004, 43, 1255.
    95. F. Fazio, M. C. Bryan, O. Blixt, J. C. Paulson, C.-H. Wong, J. Am. Chem. Soc. 2002, 124, 14397.
    96. T. Lummerstorfer, H. Hoffmann, J. Phys. Chem. B 2004, 108, 3963.
    97. J. P. Collman, N. K. Devaraj, C. E. D. Chidsey, Langmuir 2004, 20, 1051.
    98. J. K. Lee, Y. S. Chi, I. S. Choi, Langmuir 2004, 20, 3844.
    1. a) A. Dǒmling, I. Ugi, Angew. Chem. Int Ed. 2000, 39, 3168. b)郭长彬,郭宗儒,2003,13,234.
    2. A. Strecker, Liebigs Ann. Chem. 1850, 75, 27.
    3. R. Robinson, J. Chem. Soc. (London) 1917, 111, 876.
    4. G. Hellmann, H. Opitz, α-Aminoalkylierung, Verlag Chemie, Weinheim, 1961.
    5. I. Ugi, C. Steinbrückner, Chem. Ber. 1961, 94, 734.
    6. H.R. Divanfard, Z. Lysenko, P. C. Wang, Synth. Commun. 1978, 8, 269.
    7. A. Dǒmling, I. Ugi, Angew. Chem. Int. Ed. 1993, 32, 563.
    8. T.A. Keating, R. W. Armstrong, J. Am. Chem. Soc. 1995, 117, 7842.
    9. L. Weber, S. Wallbaum, C. Broger, Angew. Chem. Int. Ed. 1995, 34, 2280.
    10. a) M. Passerini, Gazz. Chim. Ital. 1921, 51, 126; b) M. Passerini, Gazz. Chim. Ital. 1921, 51, 181.
    11. R. Bossio, S. Marcaccini, R. Pepino, Liebigs Ann. Chem. 1991, 1107.
    12. I. Ugi, R. Meyr, U. Fetzer, C. Steinbrückner, Angew. Chem. 1959, 71, 386. b) I. Ugi, C. Steinbrückner, Angew. Chem. 1960, 72, 267.
    13. K. Matsumoto, T. Uchida, In organic at high pressure (Eds.: K. Matsumooto, R. M. Acheson), Wiley, New york, 1991, p. 164.
    14. T. Yamada, Y. Omote, Y. Yamanaka, T. Miyazawa, S. Kuwata, Synthesis 1998, 991.
    15. I. Ugi, W. Betz, K. Offermann, Chem. Ber. 1964, 97, 3008.
    16. S. Kamijo, T. Jin, Z. Huo, Y.Yamamoto, Tetrahedron Lett. 2002, 43, 9707.
    17. S. Kamijo, T. Jin, Z. Huo, and Y. Yamamoto, J. Am. Chem. Soc. 2003, 125, 7786.
    18. A. K. Feldman, B. Colasson, and V. V. Fokin, Org. Lett.2004, 6, 3897.
    19. S. Chittaboina, F. Xie, Q. Wang, Tetrahedron Lett. 2005, 46, 2331.
    20. D. B. Ramachary, C. F. Barbas Ⅲ, Chem. Eur. J. 2004, 10, 5323.
    21. M.-Y. Wu, J. Deng, Y. Li, Q.-Y. Chen, Synthesis 2005, 1314.
    22. H. S. G. Beckmann and V. Wittmann, Org. Lett. 2007, 9, 1.
    23. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596.
    24. a) D. Habich, W. Barth, M. Rosner, Heterocycles 1989, 29, 2083; b) R. C. Mearman, C. E. Newall, A. P. Tonge, J. Antibiot. 1984, 37, 885.
    25. a) Y. S. Sanghvi, B. K. Bhattacharya, G. D. Kini, S. S. Matsumoto, S. B. Larson, W. B. Jolley, R. K. Robins, G. R. Revankar, J. Med. Chem. 1990, 33, 336. b) O. Makabe, H. Suzuki, S. Umezawa, Bull. Chem. Soc. Jpn. 1977, 50, 2689. c) D. J. Hupe, R. Boltz, C. J. Cohen, J. Felix, E. Ham, D. Miller, D. Soderman, D. V. Skiver, J. Biol. Chem. 1991, 266, 10136. d) R. R. Talekar, R. H. Wightman, Tetrahedron 1997, 53, 3831. e) P. Norris, D. Horton, B. R. Levine, Heterocycles 1996, 43, 2643. (f) J. K. Chakrabarti, T. M. Hotten, I. A. Pullar, D. J. Steggles, J. Med. Chem. 1989, 32, 2375.
    26. P. H. Olesen, F. E. Nielsen, E B. Pedersen, J. Becher, J. Heterocycl. Chem. 1984, 21, 1603.
    27. T. Harrison, A. P. Owens, B. J. Williams, C. J. Swain, A. Williams, E. J. Carlson, W. Rycroft, F. D. Tattersall, M. A. Cascieri, G. G. Chicchi, S. Sadowski, N. M. J. Rupniak, R. J. Hargreaves, J. Med Chem. 2001, 44, 4296-4299.
    28. a) R. Bossio, S. Marcaccini, R. Pepino, T. Torroba, Synthesis 1993, 783. b) R. Bossio, S. Marcaccini, R. Pepino, T. Torroba, J. Chem. Soc. Perkin Trans. 1 1996, 229. c) R. Bossio, C. F. Marcos, S. Marcaccini, R. Pepino, Tetrahedron Lett. 1997, 38, 2519.
    29. a) T. A. Keating, R. W. Armstrong, J. Am. Chem. Soc. 1995, 117, 7842. b) T. Yamada, Y. Omote, Y. Yamanaka, T. Miyazawa, S. Kuwata, Synthesis 1998, 991. c) G. F. Ross, E. Herdtweck, I. Ugi, Tetrahedron 2002, 58, 6127.
    30. a) M. Tramontini, Synthesis 1973, 703. b) M Arend, B. Westermann, N. Risch, Angew. Chem., Int. Ed 1998, 37, 1044. c) C. Wei, Z. Li, C. J. Li, Org. Lett. 2003, 5, 4473. d) C. Wei, C. J. Li, J. Am. Chem. Soc. 2003, 125, 9584.
    31. K. onogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 1975, 16, 4467.
    32.李在国,汪清民,黄君珉,有机中间体制备(第二版),化学工业出版社,p.1.
    33. P. K. Dutt, J. Chem. Soc. 1921, 199, 2088.
    34. S. G. Alvarez, M. T. Alvarez, Synthesis, 1997, 413.
    1. a) J. D. Morrison, Asymmetric Synthesis, Wol. 5, Academic, Orlando, 1985; b) R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994; c) E. N. Jacobsen, A. Pfaltz, H, Yamamoto, Comprehensive Asymmetric Catalysis Ⅰ-Ⅲ, Springer, Berlin, 1999.
    2. E.J. Corey, Po-Wai Yuen, Francis J. Hannon, and Derk A. Wierda, J. Org. Chem. 1990, 55, 784.
    3. a) K. Soai, T. Shibata, J. Synth. Org. Chem. Jpn. 1997, 55, 72. b) K. Soai, T. Shibata, H. Morioka, K. Choji, Nature, 1995, 378, 767. c) T. Shibata, H. Morioka, T. Hayase, K. Choji, K. Soai, J. Am. Chem. Soc. 1996, 118, 471. d) T. Shibata, J. Yamamoto, N. Matsumoto, S. Yonekubo, S. Osanai, K. Soai, J. Am. Chem. Soc. 1998, 120, 12157.
    4. a) K. Ishihara, H. Kurihara, M. Matsumoto, H. Yamamoto, J. Am. Chem. Soc. 1998, 120, 6920; b) A. Yanagisawa, K. Ishihara, H. Yamamoto, Synlett 1997, 411.
    5. M. Shibasaki, H. Sasai, T. Arai, Angew. Chem. Int. Ed. Engl. 1997, 36, 1236.
    6. D.J. Berrisford, C. Bolm, K. B. Sharpless, Angew. Chem. Int. Ed. Engl. 1995, 34, 1059.
    7. A. Berkessel and H. Groger, Asymmetric Organocatalysis - From Biomimetic Concepts to Appfications in Asymmetric Synthesis. Wiley-VCH, Weinheim, 2005, chapterl.
    8. a) A. B. Northrup, D. W. C. MacMillan, J. Am. Chem. Soc. 2002, 124, 6798. b) A. B. Northrup, D. W. C. MacMillan, Science 2004, 305, 1752. c) I. K. Mangion, D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 3696.
    9. a) W. Notz, B. List, J. Am. Chem. Soc. 2000, 122, 7386; b) C. Northrup, L. Hoang, N. Vignola, B. List, Angew. Chem. Int. Ed. 2003, 42, 2785.
    10. a) B. List, R. A. Lerner, C. F. Barbas Ⅲ, J. Am. Chem. Soc. 2000, 122, 2395. b) K. Sakthivel, W. Notz, T, Bui, C. F. Barbas Ⅲ, J. Am. Chem. Soc. 2001, 123, 5260.
    11. M. Movassaghi, E. N. Jacobsen, Science, 2002, 298, 1904.
    12. For recent and general reviews on catalytic asymmetric Michael additions, see: (a) N. Krause, A. Hoffmann-Roder, Synthesis 2001, 171-196; (b) M. P. Sibi, S. Manyem, Tetrahedron 2000, 56, 8033-8061.
    13. H. Wynberg, R. Helder, Tetrahedron Lett. 1975, 46, 4057-4060.
    14. For a review on the use of alkaloids in asymmetric organocatalysis, see: H. Wynberg, Topics Stereochem. 1986, 16, 87-129.
    15. K. Hermann, H. Wynberg, J. Org. Chem. 1979, 44, 2238.
    16. T. Ooi, T. Miki, M. Taniguchi, M. Shiraishi, M. Taakeuchi, K. Maruoka, Angew. Chem. Int. Ed 2003, 42, 3796-3798.
    17. F.-Y. Zhang, E. J. Corey, Org. Lett. 2000, 2, 1097-1100.
    18. M. Yamaguchi, T. Shiraisi, M. Hirama, Angew. Chem. Int. Ed. Engl. 1993, 32, 1176-1178.
    19. K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 4243. For the synthesis of polymer-bound derivatives of the MacMillan catalyst and applications in Diels-Alder reactions, see: a) M. Benaglia, G. Celentano, M. Cinquini, A. Puglisi, F. Cozzi, Adv. Synth. Catal. 2002, 344, 149. b) S. A. Selkala, J. Tois, P. M. Pihko, A. M. P. Koskinen, Adv. Synth. Catal. 2002, 344, 941.
    20. W. S. Jen, J. J. M. Wiener, D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 9874.
    21. N. A. Paras, D. W. C. MacMillan, J. Am. Chem. Soc. 2001, 123, 4370.
    22. a) N. Halland, P. S. Aburel, K. A. Jorgensen, Angew. Chem. Int. Ed. 2003, 42, 661. b) N. Halland, T. Hansen, K. A. Jorgensen, Angew. Chem. Int. Ed. 2003, 42, 4955.
    23. N. Halland, R. G. Hazell, K. A. Jorgensen, J. Org. Chem. 2002, 67, 8331.
    24. For diastereoselective additions of preformed chiral enamines to Michaelacceptors, see: a) D. Seebach, M. Missbach, G. Calderari, M. Eberle, J. Am. Chem. Soc. 1990, 112, 7625. b) S. J. Blarer, D. Seebach, Chem. Ber. 1953, 116, 2250. c) S. Yamada, K. Hiroi, K. Achiwa, Tetrahedron Lett. 1969, 4233.
    25. For a highlight on asymmetric organocatalysis by proline and other lowmolecular weight organic molecules, see: H. Groger, J. Wilken, Angew. Chem. Int. Ed. 2001, 40, 529.
    26. B. List, P. Pojarliev, H. J. Martin, Org. Lett. 2001, 3, 2423.
    27. D. Enders, A. Seki, Synlett 2002, 26.
    28. A. Alexakis, O. Andrey, Org. Lett. 2002, 4, 3611.
    29. J. M Betancort, C. F. Barbas Ⅲ, Org. Lett. 2001, 3, 3737.
    30. J. M. Betancort, K. Sakthivel, R. Thayumanavan, C. F. Barbas Ⅲ, Tetrahedron Lett. 2001, 42, 4441.
    31. T. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc. 2003, 125, 12672.
    32. a) A. J. A Cobb, D. A. Longbottom, D. M. Shaw and S. V. Ley, Chem. Commun. 2004, 1808. b) A. J. A. Cobb, D. M Shaw, D. A. Longbottom, J. B. Gold and S. V. Ley. Org. Biomol. Chem. 2005, 3, 84.
    33. C. E. T. Mitchell, A. J. A. Cobb, S. V. Ley, Synlett 2005, 611.
    34. T. Ishii, S. Fujioka, Y. Sekiguchi, and H. Kotsuki, J. Am. Chem. Soc. 2004, 126, 9558.
    35. W. Wang, J. Wang, and H. Li, Direct, Angew. Chem. Int. Ed. 2005, 44, 1369.
    36. L. Zu, J. Wang, H. Li, and W. Wang, Org. Lett. 2006, 8, 3077.
    37. S. V. Pansare and K. Pandya, J. Am. Chem. Soc. 2006, 128, 9624.
    38. H. Huang and E. N. Jacobsen, J. Am. Chem. Soc. 2006, 128, 7170.
    39. Y. Xu and A. Córdova, Chem. Commun. 2006, 460.
    40. C.-L. Cao, M-C. Ye, X-L. Sun, and Y. Tang, Org. Lett. 2006, 6, 2901.
    41. S. B. Tsogoeva and S. Wei, Chem. Commun. 2006, 1451.
    42. S. Luo, X. Mi, L. Zhang, S. Liu, H.Xu, and J.-P.Cheng, Angew. Chem. Int. Ed. 2006, 45, 3093.
    43. N. Mase, K. Watanabe, H. Yoda, K. Takabe, F. Tanaka, and C. F. Barbas Ⅲ, J. Am. Chem. Soc. 2006, 128, 7170.
    44. S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb, K. B. Sharpless, Angew. Chem., Int. Ed. 2005, 44, 3275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700