用户名: 密码: 验证码:
遥感蚀变信息场及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
围岩蚀变是热液成矿作用发生过程的一个重要标志。蚀变矿物中典型离子或基团的诊断性波谱特征为利用遥感数据提取蚀变信息提供了理论依据。本论文在详细研究蚀变矿物中典型离子或基团的诊断性波谱特征和线、环构造信息、矿床(点)空间重复再现规律、岩浆岩分布等空间信息的基础上,把蚀变矿物的波谱信息与蚀变岩存在的空间信息相关联,提出了遥感蚀变信息场理念。并阐述了遥感蚀变信息场的性质、特点及地学意义。基于遥感蚀变信息场理念,利用多元统计学方法,建立了北方落叶时相遥感蚀变信息提取模型和研究区蚀变信息模式识别字典,在地表植被覆盖度大于80%的吉林省东部小西南岔铜金矿及其外围地区,利用多光谱遥感数据进行矿化蚀变信息提取,为吉东小西南岔铜金矿探矿取得突破性进展提供了有指导价值的依据。
Remote sensing technique has become a dvanced technique ways for Land & Resources investigation and inspection and has become one of the important technical ways in exploartion. Wallrock alteration is an important indication in the process of hydrothermal mineralization. Hydrothermal alteration minerals’diagnostic spectral characteristics exit in short wave infrared bands, which is the minerals characteristics. We can attain lots of alteration wallrocks distribution anomalous information, which can not be observed in common technical ways. Study on wallrock alteration can help to illuminate the physical and chemical conditions and the cause of deposit in the process of hydrothermal deposit forming. Also, it is one of important indication for exploitation.
     Alteration information refers to synthetical spectral information including all kinds of background spectrum reflected by integrative wallrocks in the spatial entity which is benefit to the metallization taking place in the remote sensing imagery. The background spectrum refers to some environment background such as the spectrum of soil, vegetation, and etc. Under the effect of hydrotherm, the rocks, which are the mineral components, chemistry elements and structure changed, is called alteration wallrock, because of it usually presented round the hydrothermal deposit. Alteration wallrock is different to the normal wallrock in the mineral components, chemistry elements, rock structure and color, so it takes on different colors and textures in multi-band remote sensing image between alteration wallrocks and normal wallrocks.
     Extracting the alteration information related to the mineralization, which is related to land surface condition, alteration type, alteration intensity, selected data type and available data time for seeking wallrock alteration information concerned the mineralization. The difference of geographic positions lie on styles of weathering, soil, vegetation, climate, and etc. Selecting the remote sensing data acquired in the late autumn or early spring can debase vegetation disturb.
     There are three models in extracting the alteration information in the badly covered by vegetation field:①synthetical spectral model of using spectrum of vegetation and rock.②Model of eliminating the vegetable spectrum effects;③Model of mining the vegetable spectrum information.
     The synthetical spectral information model uses the original remote sensing data and does not exit the spetral distortion complication. The information quantity of the synthetcal spectral information model is more than the other models. There is further perspective using the synthetical spectral information for alteration information extraction. In the paper, on the basis of the synthetical spectral information mdoel,the author modifies the model and extracts the alteration information.The topic pick out“Information extractioin information method research of remote sensing controlling mine based on GIS”and“multivariable metallogenesis target prediction of Jindong Xiaoxinancha copper and gold deposit”.The study of alteration information extracton is at Xiaoxinancha copper and gold deposit in east of Jilin province, in which more than 80% is covered by perennial forest and in Dongkunlun of Qinghai province. Attained the key results are listed as follow:
     1.Remote sensing alteration field establishment
     The informatioin included in remote sensing information is mainly spectral information characteristics, spatial information characteristics and time information characteristics. Based on the physical model and math ways, retmote sensing information basic quality can be synthesized and analysed to enhance the identification capability of chaned information in multi-band images. How to integrate the spectral information with spatial information to full use the spectral and spatial information in order to mine hidden information and find new knowledge, which has become focus on problem for remote sensing workers. In the paper, based on study the characteristic alteration mineral ions diagnostic spectral characters, analyzing the mineralization spatial iteration appearance law and integrated with the linear texture direction probability, linear structure spatial iteration appearance law and deposit, remote sensing alteration field standpoint has been established. Alteration information field is fountain field and its fountains are heat fountain. The point field-strength,linear field-strength, field-strength overlap,field gradient,alteration information quantity math expressions and their means in geology field are both put forward.Alteration information radiance, alteration information point, alteration information quantity and so on of the alteration field qualities are made certain. At last, complication resulted in alteration information pollution and alteration charcters and means are described in detail.
     2 Study the extracting the alteration information model fit to the field of the badly convered by perennial forest
     According to the alteration wallrocks spatial distributing characteristic of Xiaoxinancha copper and gold deposit, the ions including in the characteristic alteration mineral spectral information acted as spectral information vectors and linear direction probability acted as spatial characteristic variable, based on remote sensing alteration and multi-variable statistical theory, the model identification dictionary and the statistical identification model of Jidong Xiaoxinancha have been established.Calculated Linear textures field-strength mean and alteraton information quantity, predictive field linear textures field-strength means have been classified by the distance into two classes.One is alteration information,the other is not alteration information. At last, the alteration information extraction ways of surface bedrocks bareness(Beishan mine zone) and forest covered(Nanshan mine zone and xiaoxinancha adjacent field) are contrast to analysis.
     3 Remote sensing alteration information extraction in bedrock barness filed in the middle field of the Qinghai Dongkunlu
     Based on Qingha dongkunlun characteristic and remote sensing information field, analysed on remote sensing line and ring structure interpret and its characterics of deposits(mineralization), the study field exploration models of remote sensing image have been established.With the spatial iteration appearance law of the deposit(mineralization), remote sensing metallization predictive units has been established.According to ferric and hydroxy spectral characteristics in the ETM+ remote sesnig data,.ferric and hydroxy information has been enhanced in ETM+ remote sensing and integrated ferric information with hydrxoy information. Integrated the spatial information with spectral information of alteration information, alteration information extraction has been done in the bedrocks bareness field of Qinghai Dongkunlun, which will instrut us to investigate resources.
     4 Main innovation and new development
     (1) Integrated spatial information with spectral information in remote sensing, according to the filed theory, remote sensing alteration information field has been put forward. Characteristics, property, academic and geological mean are depicted.
     (2) Based on the remote sensing alteration information field, the model identification dictionary and the statistical identification model of Jidong Xiaoxinancha have been established.
     (3) Alteration information extraction ways of surface bedrocks bareness(Beishan mine zone) and forest covered(Nanshan mine zone and xiaoxinancha adjacent field) are contrast to analysis.The south of F14 fault exploration perspective in Beishan and whether 11th vein passing Xiangfang river fault in Nanshan are given unique interpretation.
     (4) Exploration model of remote sensing image has been established.in remote sensing field in Qinghai Dongkunlun. Based on the model and geology analogy idea, remote sensing metallization predictive units has been established and extracted alteration information in units,which will instrut us to investigate resources.
引文
1. About Imaging Spectroscopy[EB/OL].http://speclab.cr.usgs.gov.
    2. Amos B. J. Alteration detection using TM data[J]. Int. J. Remote Sensing,1989,10:515-527.
    3. Ayache,Nicholas,Faugeras et al. . Building,registrating,and fusing noisy visual map[J]. Int.J. Robot. Res.1998,7(6):45-65.
    4. Baugh W. M.,Kruse F. A..Quantitative remote sensing of ammonium minerals,Cedar mountains,Esmeralda Country,Nevada[A]. In Summaries of the fifth annual JPL airborne earth science workshop,Pasadena,California,23-26 Jan.,1995. Vol. 1 AVIRIS workshop[C],JPL Publication,1995:11-14.
    5. Baugh W M, Kruse F A, William W A,et al. Quantitative Geochemical Mapping of Ammonium Minerals in the Southern Cedar Mountains, Nevada, Using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)[J]. Remote sens. envrion. 1998,65(3):292–308
    6. Beratan K. K.,Delillo N.,Jacobson A.,et al. Lithologic discrimination and alteration mapping from AVIRIS data,Socorro,New Mexico[A].In:Proceedings of the fourth annual JPL airborne geoscience workshop,Pasadena,California,25-29 Oct.,1993,vol. 1 AVIRIS workshop,JPL Publication[C] ,1993,7-11.
    7. Beratan K. K.,Peer B.,Dunbar N. W.,et al. A remote sensing approach to alteration mapping:AVIRIS data and extension –related potassium metasomatism,Socorro,New Mexico[J]. Int. J. Remote Sensing,1997,18(17):3595-3609.
    8. Chavez P. S., Jr. Digital merging of Landsat TM and digitized NHAP data for 1:24000 scale image mapping[J].PE & RE,1986,52(10):1637-1646.
    9. Chavez P S,Sides S C,Anderson J A. Comparsion of the Three Different Methods to Merge Multiresolution and Multispectral Data: TM&SPOT Pan[J]. Photogrammetric Engineering and Remote Sensing,1991,57:295-303.
    10. Clark, R.N. and Swayze, G.A., Mapping Minerals, Amorphous Materials, Environmental Materials, Vegetation, Water, Ice and Snow, and Other Materials: TheUSGS Tricorder Algorithm[A]. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, January 23-26, R.O. Green, Ed., JPL Publication 95-1[C]. 1995:39-40,.
    11. Collins W. 填绘热液蚀变岩带机载分光辐射计数据的分析及陆地卫星数据的应用[A].地质部情报研究所,遥感专辑-矿物岩石的可见-中红外光谱及其应用,第一辑[M].北京:地质出版社,1980:358-372.
    12. Collins W , Chang S H, Raines G, et al. Airborne Biogeochemical Mapping of Hidden Mineral Deposits[J]. Econ Geol,1983,78(4):737- 749.
    13. Costantiti M,Farina A,Zirilli F. The fusion of different resolution SAR images[J]. In:Proceedings of the IEE,1997,85(1):139-146.
    14. Coutis B A. Remote Sensing of Cold Deserts: Spectral Reflectance Properties of Weathered Rock Surfaces[A]. Proceedings of the Seventh Thematic Conference on Remote Sensing for Exp lo ration Geo logy, ER IM, Calgary, Alberta, Canada[C],1989: 478-500.
    15. Crosta A P, Sabine C, Taranik J M . Hydrothermal Alteration Mapping at Bodie,California, Using AVIRIS Hyperspectral Data[J].Remote senses. envrion..1998,65(3):309-319
    16. Crowley J K,Brickye D W,Rowan L C.Airborne imaging spectrometer data of the Ruby Mountains,Montana:Mineral discrimination using relative absorption band-depth images[J].Remote sens environ,1989,29(2):121-134.
    17. Farrand W. H. , Harsanyi J. .Mineralogic variations in fluvial sediments contaminated by mine tailings as determined from AVIRIS data,Couer d’Alene river valley ,Idaho[A]. In Summaries of the fifth annual airborne earth science workshop,Pasadena,California,23-26 Jan.,1995. Vol. 1 AVIRIS workshop, JPL Publication,1995,47-50.
    18. Feldman S C , Taranik J V.Comparison of techniques for discriminiating hydrothermal alteration minerals with airborne imaging spectrometer data[J].Remote Sens Environ,1988,24(1):67-83.
    19. Ferrier G, White K, Griffiths G,et al.The mapping of hydrothermal alteration zones on the island of Lesvos, Greece using an integrated remote sensing dataset[J]. Int. J. Remote Sensing,2001:1-16.
    20. Fisher Ⅲ, A. F. Mapping and correlating desert soils and surface with imaging spectroscopy[A]. In proceedings of the third airborne visible/infrared spectrometer (AVIRIS) workshop, 1 Aug. 1991 Pasadena,California[C], JPL Publication,1991,91-28.
    21. Fraser S J.Discrimination and identification of ferric oxides using satellite Thematic Mapper data: A Newman case study[J].Int. J. Remote Sensing,1991,12(3):635-641.
    22. Gonzalez R C. Digital Image Processing, 2nd Edition[M]. Prentice Hall,2002,349-492
    23. Hunt G. R. Near-infrared(1.3-2.4μm)Spectra of Alteration Minerals-Potential for Use in Remote Sensing[J]. Geophysics,1979,44:1974-1986.
    24. Hunt G. R. Spectral Signatures of Particulate Minerals,in the Visible and Near-infrared[J].Geophysis,1977:42:501-513.
    25. Hunt G R, Salisbury J W. Mid-infrared spectral behavior of igneous rocks. AFC-TR-74-0625,1974.
    26. Hunt G R, Salisbury J W. Mid-infrared spectral behavior of metamorphic rocks. AFC-TR-76-0003, 1974.
    27. Hunt G R, Salisbury J W. Mid-infrared spectral behavior of sedimentary rocks. AFC-TR-75-0356, 1975.
    28. Hutsinpiller A. Discrimination of hydrothermal alteration mineral assemblages at Virginia City, Nevada, using the Airborne Imaging Spectrometer[J].Remote Sens Environ,1988,24(1):53-66.
    29. Iraj Navai, Simin MehdiZadej - Tehrani. Alteration Mapping by Remote Sensing Techniques in South Iran - A Case Study[EB/OL]. http://www.gisdevelopment.net.
    30. Kaufmann H. Mineral exploration along the Aqaba-Levant Structure by use ofTM-data Concepts, processing and results[J]. Int. J. Remote Sensing,1988,9(10):1639-1658.
    31. Kruse F A. Comparison of AVIRIS and Hyperion for Hyperspectral Mineral Mapping[A]. Presented at the 11th JPL Airborne Geoscience Workshop, 4-8 March 2002, Pasadena, California[C].
    32. Kruse F A. Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains,Nevada,and California[J].Remote Sens Environ,1988,24(1):31-51.
    33. Li H., Manjunath B. S., Mitra S. K. Multisensor image fusion using wavelet transform[J].Graphical models and image process,1995,57(3):235-245.
    34. Longhi I,Sgvetti M. Chiari R.,et al. Spectral analysis and classification of metamorphic rocks from laboratory reflectance spectra in the 0.4-2.5μm interval:a tool for hyperspectral data interpretation[J]. Int. J. remote sensing,2001,22(18):3763-3782.
    35. Loughlin W P. Pricipal Component Analysis for Alteration Mapping[A]. The Eighth Thematic Conference on Geologic Remote Sensing[C].USA,1991:293-306.
    36. Ma J W. Extraction of polymetallic mineralization information multispectral Thematic Mapper data using the Gram-Shmidt Orthogonal Projection(GSOP) method[J]. Int. J. Remote Sensing, 2001,22(17):3323-3337.
    37. Michalski J R, Kraft M D, DiedrichT, et al. Thermal emission spectroscopy of the silica polymorphs and conciderations for remote sensing of Mars[J].Geophysical Research Letters,2003,30(19):PLA2-1-PLA2- 4.
    38. Ranjbar H, Honarmand M,Moezifar Z,et al. Application of Crosta technique for porphyry copper alteration mapping,using ETM+ data: A case study of Meiduk and SAR[EB/OL]. http://www.gisdevelopment.net/application/geology/mineral.
    39. Rock B N,Hoshizaki, Miller J R.Comparision of in situ and airborne spectral measurements of the blue shift associated with forest decline[J]. Remote Sensing Environ,1998,(24):109-127.
    40. Rowan L.C.,Anton-Pacheco C.,Brickey, D.W.,et al.Digital classification of contact metamorphic rocks in Extremadura,Spain using Landsat thematic mapper data[J].Geophysics,1987,52(7):885-897..
    41. Rowan L C, Goetz A F H,Ashley R P. Discrimination of hydrothemally altered and unaltered rocks in visible and near-infrared multispectral images [J].Geophysics, 1977, 42:522-535.
    42. Ruiz-Armenta J R, Prol-Ledesma R M. Techniques for enhancing the spectral response of hydrothermal alteration minerals in Thematic Mapping Images of Central Mexico[J].Int. J. Remote Sensing,1998,19(10):1981-2000.
    43. Salisbury J. W. ,Walter L. S., Vergo N. et al. Infrared (2.1-2.5μm) Spectra of Mineral [M]. The Johns Hopkins University Press, Baltimore.1991.
    44. Schwaller M R, Tkach S J. Premature leaf senescence as: Remote ssensing Detection and Utility for Geobotanical Prospecting[J]. Econ Geo l, 1985,80:250- 255.
    45. Siegrist A W, Schentyler C C.岩石差别的最佳波段[A]。译自 Photogr. Eng. Rem. Sens. 1980,46(9). 遥感专辑,第二辑《图像处理和地质应用》[M],地质矿产情报研究所编,北京:地质出版社,1982:172-180.
    46. Singh A.,Harrison A. Standardized Principal Components[J]. Int. J. Remote Sensing,1985,6(6):883-896.
    47. Toet A..Image fusion by a ratio of low-pass pyramid[J].Pattern recognition letters,1989,(9):245-25.
    48. Torfinn Taxt, Anne H. Schistad Solberg. Information fusion in Remote Sensing[J]. Vistas in Astronomy,1997,41(3):337-342.
    49. 曹建君.航空影像和 TM 影像融合及应用研究[J].遥感技术与应用,2002,17(6):394-397.
    50. 陈冬林,李勤爽.知识型遥感图像光谱特征融合探讨[J].遥感信息,2001,(2):6-8.
    51. 陈光火.中等程度植被覆盖区岩石蚀变信息提取技术及其应用[J].国土资源遥感,1992,(3):55-60.
    52. 陈松岭,卢福宏,高光明,等.华北地台北缘内蒙古段金矿围岩蚀变的遥感识别[J].国土资源遥感,2001,(2):13-18.
    53. 戴昌达,姜小光,唐伶俐.遥感图像应用处理与分析[M].北京:清华大学出版社,2004:6-20.
    54. 党福星.多光谱定量化分析技术在矿化蚀变信息提取中的应用研究[J].国土资源遥感,1998,(4):86-92.
    55. 丁清峰.东昆仑造山带区域成矿作用与矿产资源评价[D].吉林大学博士学位论文,2004:7-57.
    56. 傅碧宏,丑晓伟.利用热红外多光谱遥感技术提取和识别岩石、矿物信息[J].遥感技术与应用,1994,9(1):56-61.
    57. 甘甫平,刘圣伟,周强.德兴铜矿矿山污染高光谱遥感直接识别研究[J].中国地质大学学报,2004.29(1):119-126.
    58. 甘甫平,王润生.遥感岩矿信息提取基础与技术方法研究[M].北京:地质出版社,2004:43-47.
    59. 甘甫平,王润生,郭小方,等.利用成像光谱遥感技术识别和提取矿化蚀变信息-以河北赤城-崇礼地区为例[J].现代地质,2000,14(4):465-469.
    60. 甘甫平,王润生,马蔼乃,等.遥感地质信息提取集成与矿物遥感地质分析模型[J].遥感学报,2003,7(3):208-213.
    61. 郭世忠,田国良,汪水花,等.二氧化硫和重金属镉、铜等物质对植物光谱特性的影响[J].环境科学,1984,5(6):13-18.
    62. 国土资源部地质大调查背景情况[EB/OL].http://www.people.com.cn/
    63. 何国金,李克鲁.星载合成孔径雷达遥感及多卫星遥感数据融合方法[J].地质科技情报,1997,16(增刊):29-34.
    64. 何国金,李克鲁,胡德永.多卫星遥感数据的信息融合:理论、方法与实践[J].中国图像图学学报,1999,4(9):744-750.
    65. 吉林省地质 2 队.吉林省珲春县小西南岔铜金矿区勘探中间储量报告[A],1970.
    66. 贾永红,李德仁,孙家柄.多源遥感影像数据融合[J].遥感技术与应用,2000,15(1):41-44.
    67. 贾永红,李德仁,孙家柄,等.4 种 HIS 变换用于 SAR 与 TM 影像复合比较[J].遥感学报,1998,2.(2):103-106.
    68. 焦子锑,李小文,王锦地,等.一种基于分类的融合算法[J].中国图象图形学报,2002,7(8):771-775.
    69. 阚明哲,田庆久,张宗贵.新疆哈密三种典型蚀变矿物的 HyMap 高光谱遥感信息提取[J].国土资源遥感,2005,(1):37-40.
    70. 康旭,李守业,段展,等.吉林省珲春市小西南岔金铜矿区北山矿段低品位金铜矿资源储量复核报告[A].2004:18.
    71. 李卉,李莲花.利用比值图像提取与金矿相关的信息[J].鞍山钢铁学院学报,1997,20(4):1-4.
    72. 李健,邢立新.小波变换在 TM 热红外遥感信息解释中的应用[J].地球物理学进展,2004,19(2):264-267.
    73. 李军,林宗坚.基于特征的遥感影像数据融合方法[J].中国图象图形学报,1997,28(2,3):103-107.
    74. 李小春,陈鲸 .遥感影像融合的综合评价[A]. 2004 年环境遥感学术年会论文集,中国环境遥感年会[C],2004 年 9 月 湖南长沙,194-204.
    75. 李小文,汪骏发,王锦地,等.多角度与热红外对地遥感[M].北京:科学出版社,2001:8-10.
    76. 刘成,王丹丽,李笑梅.混合像元线性模型提取中等植被覆盖区的粘土蚀变信息[J].遥感技术与应用,2003,18(2):95-98.
    77. 刘继庆,胡正国,钱壮志,等.东昆仑 NW 向线性构造带地质特征及找矿意义[J].西安工程学院学报,2006,22(2):18-21.
    78. 刘健,张才根.粒度对样品辐射特性的影响的实验研究[J].红外与毫米波学报,1994,13(6):431-435。
    79. 刘素红,马建文,蔺启忠.通过 Gram-Schmidt 投影方法在高山区提取 TM 数据中含矿蚀变信息[J].地质与勘探,2000,36(5):62-65.
    80. 刘素红,马建文,燕守勋,等.利用目标向量空间变换方法提取含矿岩层的研究-以新疆卡特里西地区为例[J].地质科学,2000,35(3):370-375.
    81. 刘向友,康旭,刘连登,等.小西南岔铜金矿床北山矿段控矿构造系统的新认识[J].黄金,2003,24(12):6-9.
    82. 吕凤军,邢立新,范继璋,等.基于蚀变信息场的遥感蚀变信息提取[J].地质与勘探,2006,42(2):65-68.
    83. 吕凤军,邢立新,范继璋,等.基于统计识别模型的遥感蚀变信息提取[J].吉林大学学报(地球科学版),2005,35(4):535-538.
    84. 吕凤军,邢立新,范继璋,等.遥感蚀变信息提取应用研究[J].新疆地质,2004,22(4):435-437.
    85. 吕惠萍,徐瑞松,徐火盛. 广东鼎湖钼矿区的生物地球化学效应[J]. 环境遥感, 1994, 9 (1) : 22- 28.
    86. 罗雪山,王震雷.模糊神经网在数据融合技术中的应用[J].模糊系统与数学.1998,12(4):11-19.
    87. 马超飞,蔺启忠,马建文,等.定量消除植被影响的补偿置换方法研究[J].中国图象图形学报,1999,4(7):553-556.
    88. 马超飞,马建文,韩秀珍,等.应用多源数据提取高植被覆盖地区岩性信息——以湖南黔阳地区为例[J].地质科学,2002,37(3):365-371.
    89. 马超飞,马建文,韩秀珍.微量元素在植物光谱中的响应机理研究[J].遥感学报,2001,5(5):334-335.
    90. 马建文,张齐道.利用 TM 数据提取含金蚀变带的方法研究-冀北东地区为例[J].国土资源遥感,1994,(2):84-88.
    91. 马跃良.广东省河台金矿生物地球化学特征及遥感找矿意义[J].矿物学报,2000,20(1):80-86.
    92. 马跃良.金的生物地球化学及遥感探矿方法[J].地质地球化学.1999,27(1):49-55.
    93. 马跃良.遥感生物地球化学效应技术在找矿中的应用效果[J].地质找矿丛论,1998,13(4):78-83.
    94. 马跃良,徐瑞松.遥感生物地球化学在找矿勘探中的应用及效果[J].地质与勘探,1999,35(5):39-43.
    95. 马跃良,徐瑞松.应用遥感信息优选海南南部金矿远景区的研究[J].国土资源遥感,1997,(4):33-38.
    96. 马跃良,徐瑞松,吕惠萍,等.金矿生物地球化学效应特征及遥感信息提取[J].遥感技术与应用,1998,13(1):8-17.
    97. 孟庆丽,周永昶,柴社立.中国延边东部斑岩-热液脉型铜金矿床[M].吉林科学技术出版社,2001 年:65-68.
    98. 缪春燕,李东平,刘丽芳,等.YAG : Ce3+的合成与光谱性能研究[J].光谱实验室,2004,21(3):563-565.
    99. 裴荣富,吴良士,熊群尧.中国特大型矿床成矿偏在性与异常成矿构造聚敛场[M].北京:地质出版社,1998:267-270.
    100.孙朝辉.基于分类融合的武汉市多时相遥感影像监测[J].遥感信息,2002,(4):43-45.
    101.唐宏,杜培军,方涛,等.光谱角制图模型的误差源分析与改进算法[J].光谱学与光谱分析,2005,25(8):1180-1183.
    102.田国良,包佩丽,李建军,等.土壤中镉、铜伤害对水稻光谱特性的影响[J].环境遥感, 1990,5(2):140-1491.
    103.田庆久,董卫东,郑兰芬,等.新疆柯坪地区沉积岩光谱特征分析[J]. 遥感技术与应用,1996,11(2):1-8.
    104.王海平.夏塞多金属矿床矿化蚀变信息提取的主分量分析[J].矿床地质,2002,2(增刊):1190-1193.
    105.王海平,张彤.基于视反射率图像的矿化信息识别及其应用[J].地球学报,2005,26(3):284-289.
    106.王宏,敬忠良,李建勋.一种基于目标区域的图像融合新方法[J].中国激光,2005,32(3):351-355.
    107.王润生,杨文立,黄大年,等.地质勘查图像分析与综合[M].北京:地质出版社,1992:56-75.
    108.王文杰,唐娉,朱重光.一种基于小波变换的图像融合算法[J].中国图像图形学报.2001,6(11):1130-1135.
    109.王秀峰,堀口郁夫,青木正敏,等.卫星热红外遥感信息在泥炭等土地类型分析中的应用[J].国土资源遥感,1992,(1):34-39.
    110.王旭春,吴德文,文雪峰.遥感信息在青海督冷沟地区成矿预测中的应用[J]. 地质与勘探,2005,41(4):78-82.
    111.王延平,袁杰,廖原,等.利用信息融合技术的缺损目标识别方法[J].中国图象图形学报,2000,5(3):237-240.
    112.王之江.关于光学信息量[J].物理学报,1964,20(11):1180-1181.
    113.王志刚,朱振海,王红梅,等.光谱角度填图方法及其在岩性识别中的应用[J].遥感学报,1999,3(1):60-65.
    114.王祖伟,秦其明.多源遥感数据融合及在城市研究中的应用[J].测绘通报,2002,(3):22-24.
    115.韦延光,邓军,王建国,等.谢家沟剪切带蚀变岩型金矿床地质特征及成因初步探讨[J].黄金,2005,26(4):8-12.
    116.吴德文,袁继明,张远飞,等.遥感与化探数据融合处理方法及应用研究[J].国土资源遥感,2005,(3):44-47.
    117.吴德文,朱谷昌,吴健生,等.青海芒崖地区岩石光谱特征分析及其应用[J].国土资源遥感,2001,(4):28-34.
    118.吴奎桥,王浒.基于小波多分辨率分析方法的海冰遥感影像数据融合[J].遥感学报,2001,5(2):130-134.
    119.吴昀昭,田庆久,季峻峰,等.遥感地球化学研究[J].地球科学进展,2003,18(2):228-2335.
    120.邢立新,刘嘉宜.岩石反射波谱与其化学成分关系研究[J].遥感技术与应用,1999,14(3):24-29.
    121.徐瑞松.粤西—海南金矿生物地化效应的遥感研究[J]地质学报,1992,66 (2):170-181.
    122.徐瑞松,马跃良,何在成.遥感生物地球化学[M].广东科技出版社,2003:1-10.
    123.徐瑞松,马跃良,吕惠萍.金及伴生元素生物地球化学效应研究[J]. 地球化学,1996,25(2):196-203.
    124.薛琴访.场论[M].北京:地质出版社,1978.9,12-16.
    125.薛重生,傅小林,王京名.遥感与地球物理数据的融合处理及其地质应用-以上饶地区为例[J].地质科技情报,1997,16(增刊):35-42.
    126.薛重生,黄晓霞,苏德荣. 成矿远景区带蚀变岩的图像识别与制图[J].地质科技情报,1997,16(增刊):82-94.
    127.闫柏琨,王润生,甘甫平,等.热红外遥感岩矿信息提取研究进展[J].地球科学进展,2005,20(10):1116-1126.
    128.杨波,吴德文,陈去浩,等.矿化信息提取的混合蚀变遥感模型-以鹰嘴山金矿区为例[J].国土资源遥感,2005,(1):20-25.
    129.杨凯.高光谱遥感技术在质调查与矿产勘探上的应用[A].矿产资源调查评价理论与方法技术[C],2001,4:118-125.
    130.杨廷槐,刘聚海,薛祖陶,等.金矿遥感及其综合评价方法-综述[M]:问题讨论(三).全国遥感地质协同工作小组,地质矿产部情报研究所,1991.3.
    131.张杰林,曹代勇.成像光谱数据挖掘与矿物填图技术研究[J].遥感技术与应用,2002,17(5):259-263.
    132.张晋开,崔承禹,支毅乔.基于主成分分析的植被掩模与模式滤波方法在中等植被区蚀变信息提取中的应用[J].中国图像图形学报,1996,1(2):108-114.
    133.张满郎,郑兰芬.Landsat TM 及 JERS-1 SAR 数据在金矿探测中的应用研究[J]环境遥感,1996,11(4):260-266.
    134.张西平.反映矿质沉淀环境的造岩元素地球化学异常-地球化学勘查盲矿预测的重要标志[J].物探与化探,1992,16(3)209-215.
    135.张玉君,杨建民.基岩裸露区蚀变岩遥感信息的提取方法[J].国土资源遥感,1998,(2):46-53.
    136.张玉君,杨建民,陈薇.ETM+(TM)蚀变遥感异常提取方法研究与应用-地质依据和波谱前提[J].国土资源遥感,2002,(4):30-36.
    137.张远飞,吴健生.基于遥感图像提取矿化蚀变信息[J].有色金属矿产与勘查,1999,8(6):604-606.
    138.张宗贵,王润生,甘甫平,等.岩矿光谱特性在资源卫星传感器波段选择中的应用分析[J].国土资源遥感,2004,(2):16-20.
    139.赵福岳.矿源场-成矿节-遥感信息异常找矿模式法[J].国土资源遥感,2000,(4):28-33.
    140.赵宏光,姚凤良,孙景贵.吉林省东部斑岩型多金属矿床成矿规律及成矿条件研究[J].黄金:2005,26(7):12-14.
    141.赵丽丽,赵龙莲,李军会,等.傅里叶变换近红外光谱仪扫描条件对数学模型预测精度的影响[J].光谱学与光谱分析,2004,24(1):41-44.
    142.周成虎,骆剑承,杨晓梅,等.遥感影像地学理解与分析[M].北京:科学出版社,1999:142-144.
    143.周前祥,敬忠良,姜世忠.不同光谱与空间分辨率遥感图像融合方法的理论研究[J].遥感技术与应用,2003,18(1):41-46.
    144.周正武,张建枢,王卫东.大型斑岩铜矿的遥感信息讨探[J].国土资源遥感,1996,2:10-20.
    145.朱谷昌,吴健生,吴德文,等.利用 TM 数据快速提取红土型金矿地表特征标志[J].国土资源遥感,1998,(4):29-32.
    146.朱嘉伟,张天义,盛吉虎.金矿遥感异常信息自动提取方法研究及其应用[J]. 国土资源遥感,1996,(4):45-50.
    147.朱章森,杨武年.遥感信息场“分层”解析与无模型预测法[J].物探化探计算技术,1994,16(4):328-337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700