用户名: 密码: 验证码:
油气运移动力学及动力耦合作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油气运移是石油地质学研究的一个重要领域,从“系统”的角度来看,它们都是“成油体系”研究、“含油气系统”或“成藏动力学系统”研究内容的一个主要组成部分。多年来,描述油气运聚成藏特征的油气运移理论主要是在经典达西渗流定律基础上建立、发展起来的。现在看来,需要引入新技术、新方法来丰富、修正当前的油气运移理论,以对目前油气运移研究中遇到的诸如构造活动相对平稳期油气输运机制等问题给出更令人满意的解答。在中国东部特别是华北各断陷盆地内,主生烃高峰正值构造活动相对平稳期,这个问题表现得尤为突出。
     基于此,论文选择“系统”研究程度较高的胜利油田东营凹陷作为重点研究区,从非达西渗流理论着手,深入剖析油气运移过程中的阻力和动力耦合作用机制及该机制作用下油气的运聚成藏特征。鉴于所研究的问题的复杂性和现有理论的不完善性,本文结合现场试验和数值模拟两方面的工作来开展研究。通过研究,取得了一些重要成果和认识,丰富、完善了当前的油气运移理论。
     一、分析了油气运移动力学研究进展
     多年来,石油地质学研究中一直以经典达西渗流理论为基础进行油气运移规律研究,在假定地层亲水的前提下着重强调毛管封闭机制。目前,建立在经典达西渗流规律基础上的油气运移理论很难对油气运移研究中遇到的一些问题作出令人满意的解答,如厚度在油气封闭中的作用、构造活动平稳背景下生、排烃期的油气运移规律研究等。
     (一)油气运移的阻力及作用机制研究方面存在的问题
     1.目前对盖层和断层对烃类运移的封闭作用研究,亦即对油气运移产生的阻力作用研究认为,油气要开始渗流,必须克服水湿性烃源岩、盖层及断层带的毛管阻力,是普遍存在的阻力作用机制。但根据油层物理学,岩层内的活性物质可能改变地层的润湿性,在富含有机质的泥页岩类或大厚度的泥岩内部,伴随着生烃作用的不断进行,极有可能发生润湿反转现象,如果变为亲油,这时毛管力反而成了动力;假定流体运移符合达西渗流特征,此时对于常压盖层,其封闭流体运移的能力只能靠地层的孔渗条件及流体粘度合成的粘滞阻力来封堵油气,就难以对低粘度的油气产生封堵。如此看来,将毛管力作为油气运移普遍存在的阻力作用机制难以满足理论的自洽性。
     2.目前关于厚度对封闭性能的影响研究,主要限于能否保持连续性、能否保证涂抹质量、是否易于产生异常流体和生烃作用实现浓度封闭方面,是否还有别的影响机制在起重要作用尚需进一步探讨。
     3.地下渗流力学理论已证实,流体在低渗透多孔介质中的渗流遵循非达西渗流特征,存在启动压力梯度,因此需要在非达西渗流基础上重新评价地下流体的渗流阻力。
     (二)油气运移的动力及作用机制研究方面存在的问题
     1.在地应力与油气运聚关系研究方面,亟需与油田开发中发展较为成熟的流固耦合理论相结合开展深入研究。
     2.在微裂隙排烃机制研究中,对微裂隙的张开机制方面意见不尽一致,有必要深入进行导烃微裂隙大量活动时的流体压力标定;此外,目前的研究基本都局限于实验室或理论方面,尚需进行矿场规模的试验验证。
     3.在构造活动平稳期油气垂向运移问题上,目前的研究认为主要是地震作用引起的“地震触发高压致裂”及“深部流体注入连锁水力压裂”模式,其依据主要是含油气盆地内部或周边地震发生前后油气井产量的变化,尚需深入开展“水压致裂”成藏定量化研究,探讨水压致裂成藏规律。
     4.在用岩石剪切破裂准则对断裂输烃机制进行动力学探讨时,有必要加强3D破裂准则下地层破坏对断层输导能力改善作用研究。
     5.目前在进行扩容破裂引起断层带输导性能改善方面的研究时,认为断裂活动是扩容破裂的前提,有必要加强构造活动平稳期断层带或地层的扩容破裂在油气运移中的作用研究。
     二、从非达西渗流理论着手进行了油气运移阻力综合对比研究
     论文中将流体在低渗透、超低低渗透多孔介质中非达西渗流理论引入油气运移机制研究中,将非达西渗流中与启动压力梯度有关的强吸附阻力纳入油气运移的阻力系统。
     1.研究中以东营凹陷三套区域盖层的物性资料,按平均厚度100m的运移距离计算,对油气所受到的各种阻力进行对比分析,发现即使在假定地层亲水——毛管力为阻力的情况下,三套区域盖层由非达西渗流产生的吸附阻力分别为195MPa、307MPa、12200MPa,远大于毛管阻力及上部异常流体压力带的附加压力损耗。
     2.认为油气在低渗透、超低渗透多孔介质岩石中运移时,高启动压力梯度产生的强大吸附阻力,是油气运移过程中的普遍存在的主要阻力作用机制。
     3.吸附阻力的大小与所需运移路径的长短成正比,体现在盖层的封闭性上,可得出盖层的封闭能力与厚度成正比。
     三、实施了地层增压条件下诱发微破裂活动矿场试验
     在论文研究工作中,鉴于微裂隙排烃机制局限于室内实验及理论研究的现状,开展地层增压条件下诱发微破裂活动矿场监测试验以验证微裂隙排烃机制。论文研究中选取东营凹陷所属的青南次级凹陷作为模拟试验场区进行微裂隙排烃矿场模拟试验。旨在通过向试验层段注水来模拟烃源岩的生烃增压过程;通过对注水过程中的微破活动监测来模拟考察烃源岩生烃增压阶段微裂隙排烃机制。在为期6个月的注水诱发微破裂活动监测试验中,在模型范围内,总共检测到有效震动信号5090条,定位了274个事件,并取得了一些重要认识:
     1.本次的矿场注水试验证实了地层内流体增压引发的微破裂活动将会使地层的渗透性能明显改善。
     2.通过本次的矿场试验,在较低的增压率下监测到了微破裂活动:在对沙三中、沙三上底部及顶部地层注水时井底最大增压率分别为53%、54%、21%,在能够定位的274个事件中,有132个发生在沙三上顶部地层注水阶段,占全部定位事件的48%,而此时仅对应着21%的增压率,证实了由尖端效应导致的微裂隙微破裂活动对油气运移的促进作用。
     四、建立了动力耦合作用下油气运移数值模拟模型
     基于地应力与油气运移关系研究中亟需与油田开发中已发展较为成熟的流固耦合理论相结合现状,对目前的研究成果进行归综,提出动力耦合作用下油气运移数值模拟方法。
     五、探讨了水压致裂机制作用下油气运移规律
     应用水力压裂软件考察了水压致裂机制作用下油气运聚成藏特征;结合地层流体增压诱发微破裂活动监测试验中在较低的地层流体增压率下即可发生大量微破裂活动的实事,认为对东营凹陷来说,其构造活动平稳期的油气运移应该有其它重要的运移机制。
     六、开展了东营凹陷构造活动平稳期油气运移规律研究
     应用提出的动力耦合作用下的数值模拟技术对东营凹陷进行平面及部面数值模拟研究,并探讨了扩容破碎带排烃机制下油气运移的油气运聚成藏特征,研究成果概述如下:
     1.模拟结果表明,对应于主排烃期的馆陶晚期—明化镇期—至今,尽管从总体上说,盆地地层逐渐远离破坏状态,趋于更加稳定。但其内的主干断层及一些重要的次级断层特别是滨南—利津断裂带收敛端、中央断裂带东部、八面河断裂、通古5与陈—王断裂带交汇部位、陈—王断裂带的北东向转折端以及在惠民凹陷帚状断裂带的收敛端地层都处于失稳状态。
     2.探讨了扩容破碎带排烃机制下油气运移的油气运聚成藏特征:认为在该机制作用下,失稳破碎带不存在像水力裂缝顺次扩展问题,当来自烃源岩的油气沿高渗破碎带向沿途各层充注时,对低渗透层段来说,其聚油成藏丰度要比水压致裂机制作用下的丰度低;失稳破碎带会较长时间保持高渗通道作用,非常有利于浅层油藏的形成;该机制作用对油气的聚集保存也存在负面作用。一方面,对于失稳破碎带内浅层油藏的上部活泥岩盖层来说,尽管在平稳的构造活动背景下没有明显的构造断裂活动,但其下部先期断裂带的失稳破坏,对油气的封闭能力必然受到影响,易使浅层原油脱气,气体散失而形成稠油油藏。另一方面,在现今仍处于或处于失稳破碎带内的含油气区块进行注采开发活动时易发生油田地质灾害。
     3.结合胜利油田勘探开发实例对模拟中的这几条失稳破裂带进行考察,发现在这几个带附近的油区呈现出突出的特征,在一些油区易发生油田地质灾害、另外一些油区易形成浅部稠油油藏或着对应着极高的采收率。意味着扩容破碎带油气输运机制有可能是东营凹陷构造活动平稳期油气输运另一极为重要的机制。
     七、进行了烃源岩生烃增压极限数值模拟研究
     以青南凹陷作为主要研究区,模拟确定了地层流体增压情形下岩体普遍失稳时的流体压力界限。数值模拟结果显示出,对所考察的各纵向层段,不论其理深及岩性如何,当地层流体压力达到0.85倍的最小主压应力值时,地层普遍进入破坏状态,研究表明,对应0.85倍最小主压应力值的流体增压极限值可作为烃源岩成熟生烃增压极限。
     八、提出了改进的油气运聚成藏模式
     在对胜利油田油气渗流阻力综合分析、模拟烃源岩生烃增压过程之地层注水诱微破裂活动现场试验研究及主排烃期东营凹陷平面和剖面上的数值模拟成果基础上,提出了构造活动平稳期扩容破碎带油气输运机制下改进的油气运聚成藏模式。
     九、取得的一些重要成果和认识
     通过开展对油气运移动力学过程的深入研究,取得了一些重要成果及认识:
     1.将非达西渗流中与启动压力梯度有关的强吸附阻力纳入油气运移的阻力系统分析中。研究表明,油气在低渗透、超低渗透多孔介质岩石中运移时,高启动压力梯度产生的强大吸附阻力,是油气运移过程中普遍存在的主要阻力作用机制;研究还表明厚度在油气封闭中起到了关键作用,是重要的封堵因素。
     2.烃源岩生烃增压现场模拟试验及数值模拟研究表明:在较低的地层流体增压率即可引发微破裂活动使地层的渗透性能明显改善;而对应0.85倍的最小主压应力值的流体增压极限值可作为烃源岩成熟生烃增压极限。
     3.通过对胜利油田主排烃期油气运移数值模拟结合油田勘探开发实例对东营凹陷油气运移规律的深入研究,表明扩容破碎带油气输运机制可能是东营凹陷构造活动平稳期油气输运极为重要的机制。
Research on hydrocarbon migration is one of the most important fields in petroleum geology. But the theory based on the classic Darcy's law is difficult to characterize fluid migration in petroliferous basins at present especially in some rifted basin located in North China, in which hydrocarbon migrated under the background of weak tectonic activity. Research should be run to amend current theory on hydrocarbon migration- In this dissertation, theory of non-Darcy flow has been adopted to study the resistive force, migration agent and dynamic coupling mechanism of fluid migration in the Dong Ying depression. Research has been carried out in two ways including site test and numerical simulation. Some important achievements has been obtained, which wili enrich present theory of hydrocarbon migration.
     1. Present state on resistance and migration agent in hydrocarbon migration process
     Capiliary-pressure models and concepts have been used to evaluate filtrational resistance in porous media during fluid migration for many years. But the theory based on the classic Darcy's law is difficult to address some problems such as effects of thickness on cap formation sealing and characteristics of fluid migration under the background of weak tectonic activity during hydrocarbon generation process, which are as follows.
     (1) Existing problems in the research of (?)iltrationai resistance during fluid migration process:
     i. As mentioned above, capillary-pressure models and concepts have been regarded as the main filtrational resistance on the presupposition that the porous media are hydrophilic, losing sight of the oleophilic case.
     ii. Research on thickness sealing evaluation now has been restricted to some aspects such as continuity keeping, smear quality and so forth.
     iii. Non-Darcy flow has already been validated in low permeability media, while it hasn't been widely applied to the field of hydrocarbon migration research. Some work should be done to reappraise filtrational resistance in porous rock.
     (2) Existing problems in research of migration agent and dynamic coupling mechanism on fluid migration
     i. Research of ground stress effects on hydrocarbon migration should be enhanced combined with solid-liquid coupling theory with 3D failure criterion.
     ii. The study on effects of microfracture activity on hydrocarbon migration has been restricted to laboratory experiments, lacking of site tests. Aditionally, some work using 3D failure criterion should also be carried out to determine the maximum pressure that the source rock could hold.
     iii. Hydraulic fracturing induced by seismicity has been regarded as the main way for hydrocarbon vertical migration only in view of notable production variety when earthquakes occur quantitative examination should be done to characterize hydrocarbon migration.
     iv. Effects of microfracrure activity and dilation on hydrocarbon migration have been studied on the assumption that the fault should be active, while little work has been done under the background of weak multiphase tectonic activity.
     2. Integrative and comparative study on filtrational resistance based on non-Darcy flow theory
     Non-Darcy flow theory has been adopted to study hydrocarbon migration. And adsorbing resistance in connection with starting pressure gradient has been used as the most important filtrational resistance for hydrocarbon migration.
     (1) Comparative analysis on sorts of territorial resistance in hydrocarbon migration has been done in term of per 100m for each territorial cap formation of three territorial cap formations including Middle Shahejie3, Shahejiel and Ming Huazhen in the Dong Ying depression. It indicates that adsorbing resistance in each of the three territorial cap formations has values of 195MPa, 307 MPa, 12200MPa respectively, which is rather greater than capillary-pressure even on the assumption that the porous media are hydrophilic.
     (2) For the adsorbing resistance in connection with starting pressure gradient, it can be concluded that magnitude of adsorbing resistance is in direct proportion to migration distance. Consequently, for the cap formation, its sealing capacity is in direct proportion to thickness.
     3. Site test conducted on microfracrure activity induced under pressure charging condition
     Site test has been conducted months in the Qing Nan sub-depression to monitor microfracrure activity under pressure charging condition. Five seismic stations have been installed around the water injection well to record seismic activity during the water injection process for 6 months. In the test, there are 5090 seismic events has been picked out manually from the recorded data, 274 failure events have been located. From which some conclusions could be concluded as follows:
     (1) The site test proves permeability enhancement caused by microfarcture activity under pressure charging condition.
     (2) Microfracrure activity had been monitored even at a lower rate of pressurization. The maximum rate of pressurization for each interval has been obtained with value of 53% for Shahejie3, 54% for Bottom Shahejie3 and 21% for Upper Shahejie3, respectively 48 percent of located failure events occurred during Upper Shahejie3 injection period, which could confirm stimulation of microfracture activity on hydrocarbon migration induced by point effect of preexist ing microfracture.
     4. Numerical simulation modeling of hydrocarbon migration
     According to the requirement that research of crustai stress effects on hydrocarbon migration should combine with the solid-liquid coupling theory, a numerical simulation model of hydrocarbon migration has been proposed.
     5. Hydrocarbon migration under hydraulic fracturing
     Numerical simulation has been run to characterize hydrocarbon migration and accumulation using special hydraulic fracturing software, which indicates that more important hydrocarbon migration mechanism should work in the Dong Ying depression under the background of weak multiphase tectonic activity.
     6. Hydrocarbon migration in the Dong Ying depression
     Numerical simulation has been run on the areal model and section model respectively to study hydrocarbon migration and accumulation in the Dong Ying depression using numerical simulation program described in the dissertation. Some important conclusions have been made out as follows:
     (1) Numerical simulation results indicate that corresponding to the main periods of hydrocarbon expulsion since 20Ma, although formations in the depression became more stabile in the mass, rocks in some main faults and secondary faults such as the segments of Bin Nan-Li Jin fault, eastern Central fault, Baminanhe fault, interjunction of the TG5 and Chen-Wang fault, convergent segment of Lin Pan fault in the Huimin depression reached to failure condition.
     (2) According to the numerical simulation result, hydrocarbon migration and accumulation in the Dong Ying depression has been studied with microfracture activity and dilation mechanism under the background of weak multiphase tectonic activity. The result indicates that hydrocarbon migration and accumulation in faults does not flow like that in hydraulic fracturing process, oil abundance in lower permeability reservoir will be lower than that in hydraulic fracturing process. and in this way, higher permcability in the fractured dilation zone of the fault will be kept in long duration, which would be propitious to oil reservoir in shallow layer. While there are still some disadvantageous respects for hydrocarbon to accumulation and conservation such as forming viscous crude or more geologic hazard during oil field exploitation.
     (3) Investigation on these fractured dilation zones of the fault zones mentioned above combined with exploratory development cases in the Shengli oil field shows that there are more geologic hazard during oil field exploitation, more viscous crude reservoir formed, or more higher recover ratio in the field around the belt which reaches to the failure condition mentioned above, which indicates that hydrocarbon migration and accumulation in microfracture activity and dilation mechanism under the background of weak multiphase tectonic activity might be another very important mechanism.
     7. Numerical research on the maximum pressure in source formation under pressure charging condition
     Numerical simulation research has been run to obtain the maximum pressure in formation under pressure charging condition with the numerical simulation program for injection formations including Shahejie3 and Shaheje2 in the Qingnan sub-depression which has been taken as a region of interest. Simulation result shows that formation would reach the failure condition when fluid pressure in each interval approaches to the value of 0.85 times the minimum horizontal principal compressional stress in spite of the depth or lithologic character of the formation, which indicates that fluid pressure with value of 0.85 times the minimum horizontal principal compressional stress could be regarded as the maximum pressure in source formation under pressure charging condition.
     8. Modified modle of hydrocarbon migration and accumulation
     According to intergrated study on filtrational resistance in porous rock, site test conducted on microfracture activity induced under pressure charging condition in the Qinnan sub-depression, numerical simulation run in Dong Ying depression and Qinnan sub-depression respectively, a modified modle of hydrocarbon migration and accumulation style is suggested to characterize hydrocarbon migration under the background of weak multiphase tectonic activity.
     9. Achievements obtained
     (1) Non-Darcy flow theory has been adopted to study hydrocarbon migration. And adsorbing resistance in connection with starting pressure gradient has been counted as the most important filtrational resistance for hydrocarbon migration, which puts stress on thickness sealing.
     (2) Site test and numerical research under pressure charging condition indicate that permeability enhancement will be induced even at a lower pressure ratio, while fluid pressure with value of 0.85 times the minimum horizontal principal compressional stress could be regarded as the maximum pressure in source formation under pressure charging condition.
     (3) Numerical research combined with exploratory development cases in the Shengli oil field indicates that hydrocarbon migration and accumulation in microfracture activity and dilation mechanism under the background of weak multiphase tectonic activity might be another very important mechanism.
引文
Altilla A. 2000. Fractures, faults, and hydrocarbon entrapment, migration and flow[J]. Marine and Petroleum Geology, 17: 797-814
    Antonellini M and Aydin A. 1994. Effect of faulting on fluid flow in porous sandstones: Petrophyscial properties[J]. AAPG Bulletin. 78(3): 355~377
    Barker C. 1990. Calculated volume and pressure changes during the thermal cracking of oil gas in reservoirs[J]. AAPG Bulletin, 74(8): 1 254~1 261
    Barton C A., Zoback M D, Moos D. 1995. Fluid flow along potentially active faults in crystalline rock[J]. Geology, 23: 683~686
    Berg R R, Avery A H. 1995. Sealing properties of tertiary growth faults, Texas Gulf Coast[J]. AAPG Bulletin, 79(3): 375~393
    Biot M A. 1942. General Theory of Three-dimension-consolidation[J]. Jour Appl Phys, 12: 155~164
    Biot M A. 1955. Theory of Elasticity and Consolidation for a porous Anistropic Solid[J]. Jour. Appl Phys, 26: 182~191
    Biot M A. 1956. General solution of the Equation of Elasticity and Consolidation for Porous Material[J]. Jour Appl Mech, 78: 91~96
    Biot M A. 1972. Theory of finite deformation of porous solid[J], Idiana Univ Math, 21: 507-620
    Bouvier J D. et al, 1989. There-dimensional seismic interpretation and fault sealing investigations, Nun River field, Nigeria[J]. AAPG Bulletin, 73(11): 1 397~1 414
    Brace W F, Paulding B W, Scholtz C. 1966. Dilatancy in the fracture of crystalline rocks[J]. Geophys Res, 71: 3 939~3 953.
    Bretan, et al. 2003. Using calibrated shale gouge ratio to estimate hydrocarbon column heights. AAPG Bulletin, 87(3): 383~397
    Brown A. 2003. Capillary effects on fault-fill sealing[J]. AAPG Bulletin, 87(3): 381~395
    Byerlee J. 1993. Model for episodic flow of high-pressure water in fault zones before earthquakes[J]. Geology, 21: 303~306
    Capuano R M. 1993. Evidence of fluid flow in micro-fractures in geo-pressured shales[J]. AAPG Bulletin, 77(8): 1 303~1 314
    Charles W. 1989. Review of characteristics of low permeability[J]. AAPG Bulletin, 75(3): 613~629
    Costin L S. 1981. Static and dynamic fracture behaviour of oil shale[C]. In: Freiman S W, eds. Fracture mechanics of ceramics, rocks and concrete. Philadelphia, Am. Soc Testing Materials, ASTMSTP, 745, 169~184
    Cox S F. 1995. faulting progresses at high fluid pressures: An example of fault valve behavior from the Wattle Gully Fault, Victoria, Australia[J]. Journal of Geophysical Research, 100, B(7): 12 841~12 859
    Crosson R S. 1972. Small earthquakes, structure, and tectonics of the Puget Sound region[J]. Bull Seism Soc Amer, 62: 1 133-1 171
    Davis S D, Permington W D. 1989. Induced seismic deformation in the Cogdell oil field of West Texas[J]. Bull Seism Soc Amer, 79: 1 477~1 494
    Dickey P A. 1975. Possible primary migration of oil from source rock in oil phase[J]. AAPG Bulletin, 59(2): 337~345
    Dickinson G. 1953. Geological aspects of abnormal reservoir pressures in Gulf coast Louisiana[J]. AAPG Bulletin, 37(2): 410~432
    Dirk T, 1971. Prediction of Formation Compaction from Laboratory Compressibility Data[C]. SPES Sep. 63~271
    Doughty P T. 2003. Clay smear seals and fault sealing potential of an exhumed growth fault, Rio Grande rift, New Mexico[J]. AAPG Bulletin, 87(3): 427~444
    Downey M W. 1984. Evaluating seals for hydrocarbon accumulations[J]. AAPG Bulletin, 68(11): 1 752~1 763
    Du Rouchet J. 1981. Stress field, A key to oil migration. AAPG Bulletin, 65: 74~85
    Eaton B A. 1975. The equation for geo-pressure prediction from well logs[J]. SPE 5544
    Engelder T, Leftwich J T. 1997. A pore pressure limit in overpressured south Texas oil and gas fields, in R. C. Surdam, ed., Seals, traps, and the petroleum system[C]: AAPG Memoir, 67: 255~267.
    Engelder T. 1993. Stress Regimes in the Lithosphere[M]. Princeton Univ Press, Princeton, New Jersey.
    Evans K F, Moria H, Niitsuma H, et al. 2005. Microseismicity and permeability enhancement of hydrogeologic structures during massive fluid injections into granite at 3kin depth at the Soultz HDR site[J]. Geophys J Int, 160: 388~412
    Farpuhar R A, Smar B G D t. 1993. Stress sensitivity of low permeability sandstones from the rotliegendes sandstone[J]. SPE 26501: 851~859
    Fillippone. 1982. Estimation of formation parameters and the prediction of overpressure from seismic data[C], Research symposziem on Geopressure studies SEC Meeting.
    Finkbeiner T, Zoback M, Flemings P, et al. 2001. Stress, pore pressure, and dynamically constrained hydrocarbon columns in the South Eugene Island 330 field, northern Gulf of Mexico[J]. AAPG Bulletin, 85(6): 1 007~1 031
    Gaarenstroom L R, Tromp A J, de Jong M C, et al. 1993. Overpressures in the central North Sea: implications for trap integrity and drilling safety, in J. R. Parker, ed., Petroleum geology of northwest Europe: proceedings of the 4th Conference: Geological Society of London[C], 1 305~1 313
    Ghaith A, Chen W, Ortoleva P. 1990. Oscillatory methane releasee from shale source rock[J]. Earth Science Reviews, 29: 241~248
    Gibson T G. 1994. Fault zone seals in silicicalstic strata of the Columbus Basin, offshore Trimidad [J]. AAPG Bulletin, 78: 1 372~1 385
    Grauls D J, Baleix J M. 1994. Role of overpressures and in-situ stresses in fault-controlled hydrocarbon migration: a case study[J]. Marine and Petroleum Geology, 11: 734~742.
    Hansbo S. 1960. Consolidation of clay, eith special reference to influence of vertical sand drains[J]. Swedish Geotech Inst Proc, 18: 41~159
    Harding T P, Tuminas A C. 1988. Interpretation of footwall(lowside) fault traps sealed by reverse faulted and convergent wrench faults[J]. AAPG Bulletin, 72: 738~757
    Harding T P, Tuminas A C. 1988. Structural interpretation of hydrocarbon traps by basement normal blocks and at stable flank of foredeep basins and at rift basins[J]. AAPG Bulletin, 73: 812~840
    Harding T P. et al. 1997. Quantitative fault seal prediction[J]. AAPG Bulletin, 81(6): 987~997
    Harjes H-P, Bram K, Duerbaum H-J, et al. 1997. Origin and nature of crustal reflections: results from integrated seismic measurements at the KTB superdeep drilling site[J]. J Geophys Res, 102(B8): 18 267~18 288
    Healy J H, Rubey W W, Griggs D T, et al. 1968. The Denver earthquakes[J]. Science, 161: 1 301~1 304
    Helan J K, Kennieutt Ⅱ M C, Brooks J M, et al. 1994. Organic geochemical indications of dynamic fluid flow process in petrolenm basins[J]. Organic Geochemistry, 22: 857~615
    Heppard P D, Cander H S, Eggertson E B. 1998. Abnormal pressure and the occurrence of hydrocarbons off the east coast of Trinidad, West Indies, in B. E. Law, G F. Ulimshek, V. I. Slavin, eds., Abnormal pressures in hydrocarbon environments[C]. AAPG Memoir, 70: 215~246.
    Holland D S, J B Leedy, and Lammlein D R. 1990. Eugene Island Block 330 field-USA, offshore Louisiana, in E. A. Beaumont and N. H. Foster, eds., Structural traps Ⅲ, tectonic fold and fault traps[C]: AAPG Treatise of Petroleum Geology Atlas of Oil and Gas Fields: 103~143
    Hooper E C D. 1991. Fluid Migration along Growth Faults in Compacting Science[J]. Journal of Petroleum Geology, 14: 61~180
    House L. 1987. Locating microearthquakes induced by hydraulic fracturing in crystalline rock[J]. Geophys Res Lett, 14(9): 919~921
    Hubbert M K, Rubey W W. 1959. Role of fluid pressure in mechanics of overthrust faulting. Part Ⅰ: mechanics of fluid2filled porous solids and its application to overthrust faulting[J]. AAPG Bulletin, 37(8): 155~166.
    Hubbert. 1953. Entrapment of petroleum under hydrodynamic conditions[J]. AAPG Bulletin, 37: 1 954~2 026
    Hunt J. 1990. Generation and migration of petroleum from abnormally pressured fluid compartments[J]. AAPG Bulletin, 74: 1~12
    Ingram G M, Urai J L. 1997. Top seal leakage through faults and fractures: the role of mudrock properties[C]. Proceedings of the Geological Society Conference on Mudrocks at the Basin Scale: Properties, Controls, and Behaviour, 26
    Jean du Rouchet. 1981. Stress field, a key to oil migration[J]. AAPG Bulletin, 74~85
    Jose G. 1997. Numerical simulation of coupled fluid-flow/geo-mechanieal behavior of tight gas reservoirs with stress sensitive permeability[J]. SPE, 39055
    Knipe R J. 1997. Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs[J]. AAPG Bulletin, 81(2): 187~195
    Knipe R J. 1989. Deformation mechanisms-recognition from natural tectonites[J]. Journal of Structural Geology, 27(3): 127~146
    Lewan M D. 1987. Petrographic study of primary petroleum the Woodford Shale and related rock units[A]. Doligez B. Migration of Hydrocarbons in Sedimentary Basins[C]. Parise Technip. 113~130
    Lewis R W, Schrefler B A. 1987. The finite element method in the deformation and consolidation of porous media[M]. Wiley, Chichester.
    Lewis R W. 1989. Finite Element Modeling of Two-Phase Heat and Fluid Flow in Deforming Porou Media[J]. Trans. Porous Media, 4: 319~334.
    Lindsay N C, Murphy F C. 1993. Outcrop studies of shale smear on fault-surface[C]. International Association of Sedimentologist Special Pubication, 113~123
    Littke R, Baker D R, Keythaeuser D. 1988. Microscopic and sedimentologic evidence for the generation and migration of hydrocarbons in Toarcian source rocks of different matureties[J]. Org Geochern, 13(1-3): 549~559
    Lorenz J C. 1999(Jan.). Stress-sensitive Reservoir[J]. JPT: 61~63
    Luo X R, Vasseur G. 2002. Natural hydraulic cracking: Numerical model and sensitivity study[J]. Earth and Planetary Science Letters, 201: 431~446.
    Lutz J F. and Kemper W D. 1959. Intrinsic permeability of clay as affected by clay-water interaction[J]. Soil Science Society of America Proceedings, 88(2): 83~90
    Magara K. 1978. Compaction and fluid migration-practical petroleum geology[M]. Amsterdam Oxford New York: Elsevier Scientific Publishing Company, 1~313
    Magara K. 1981. Possible primary migration of oil globules[J]. Journal of Petroleum Geology, 3(3): 325~331
    Matthews M D. 1996. Migration-a view from the top[C]. In: D Schumacher and M AAbrams (eds.), Hydrocarbon migration and its near-surface expression. AAPG Memoirs 66: 139~155
    Maubeuge F, Lerche I. 1994. Geopressure evolution and hydrocarbon generation in a north Indonesian basin: two-dimensional quantitative modeling[J]. Mrine Petroleum Geology 11: 104~120
    Meissner F F. 1978. Petroleum geology of the Bakken Formation, wiilliston basin, North Dakota and Montana, In the economic geology of the Williston Basin[A]. Montana Geological Society, Williston Basin Symposium, 207~227
    Meissner F F. 1981. Abnormal pressures produces by hydrocarbon generation and maturation and their relation to processes of migration and accumulation[J]. AAPG Bulletin, 65: 2467
    Miller R J, Low P F. 1963. Threshold gradient for water flow in clay systems[J]. Soil Science Society of America Proceeding, 27(6): 605~609.
    Miller T W. 1995. New insights on natural hydraulic fractures induced by abnormally high porepressures[J]. AAPG Bulletin, 79(7): 1 005~1 018
    Mitchell J K and Younger J S. 1967. Abnormalities in hydraulic flow through fine-grained soils[J]. ASTM Spech, 417: 106~141
    Morrow C A, Shi L Q, Byerlee J D. 1994. Permeability of fault Gouge under Confining Pressure And Shear Stress[J]. Journal of Geophysics Research, 89(10): 3 193~3 200
    Nehring R. 1991. Oil and gas resources, in A. Salvador, ed., The Gulf of Mexico Basin[C]: decade of North American geology: Geological Society of America, v(J): 445~494
    Olsen H W. 1965. Deviations from Darcy's law in sarurated clays[J]. Soil Science Society of America Proceedings, 29(1): 135~140
    Phillips J. 1972. Hydraulic fracturing and mineralization[J]. Journal of Geological Society, 128: 337~359
    Plumley W J. 1980. Abnormally high fluid pressure: Survey of some basic principles[J]. AAPG Bulletin, 64: 414~430
    Price N J. 1966. Fault and joint development in brittle and semi-brittle rock[M]. London: Pergamon Press, 176
    Roberts S J, Nunn J A. 1995. Episodic fluid expolsion from geo-pressured sediments[J]. Marine and Petroleum Geology, 12: 195~204
    Rochet J H. 1981. Stress field, a key to oil migration[J]. AAPG Bulletin, 65(1): 74~85
    Rutledge J T, Phillips W S, Mayerhofer M J. 2004. Faulting induced by forced fluild injection and fluid flow forced by faulting: an interpretation hydraulic-fracturing microseismicty, Carthage Cotton Valley Gas Field, Texas[J]. Bull Seism Soc Amer, 94(5): 1 817~1 830
    Secor D T. 1965. Role of fluid pressure in jointing[J]. Am J Sci, 263(8): 633~646
    Segall P. 1989. Earthquakes triggered by fluid extraction[J]. Geology, 17(10): 942~946
    Settari A, Puchyr P J. 1990. Patially decoupled modeling of hydraulic fracturing process[J]. SPE Production Engineering February, 25~33
    Sibson R H, et al. 1975. Seismic pumping—a hydrothermal fluild transport mechanism[J]. Jour Geol Sci, 31(6): 653~656
    Sibson R H. 1992. Implications of fault-valve behavior for rupture nucleation and recurrence[J]. Tectonophysics, 211: 283~293
    Sibson R H. 2003. Brittle-failure controls on maximum sustainable overpressure in different tectonic regimes[J]. AAPG Bulletin, 87(6): 901~908
    Sminchak J, Gupta N. 2003. Aspects of induced seismic activity and deep-well sequestration of carbon dioxide[J]. Environmental Geosciences, 10(2): 81~89
    Smith D A. 1980. sealing and non-sealing faults in Louisiana Gulf Coast Salt Basin, AAPG Bulletin, 64(2): 145~172
    Smith D A. 1966. Theoretical consideration of sealing and non-sealing faults[J]. AAPG Bulletin, 50(2): 363~374
    Steven L, Lorraine E, Martin S, et al. 1999. Vertical and lateral fluid flow related to a large growth fault, South Eugene Island Block 330 field, Offshore Louisiana[J]. AAPG Bulletin, 83(2): 244~276
    Stewart S A. 2001. Displacement Distributions on Extensional Faults Stretch, Linkage and Seal[J]. AAPG Bulletin, 85(4): 587~599
    Swartzendruber D. 1962. Modification of Darcy's law for the flow of water in soils[J]. Soil Science Society of America Proceedings, 93: 22~29
    Swartzendruber D. 1963. Non-Darcy behavior and the flow of water in unsaturated soils[J]. Soil Science Society of America Proceedings, 27(5): 491~495
    Swartzendruber D. 1968. The applicability of Darcy's law[J]. Soil Science Society of America Proceedings, 32(1): 11~18
    Talukdar S. 1987. Observation on primary in igration of oil in the La Luna source rocks of Maracaibo Basin, Venezula[A]. Brigitte D, eds. Migration of hydrocarbons in sedimentary basins[C]. Paris: Editions Technip, 59~77
    Terzaghi K. 1943. Theoretical soil mechanics[M]. New York: Thio Wiley
    Teufel L W, Dusseault M B. 1991. Hydraulic fracture stresss measurement in rocks with stress-dependent Young's Moduli[C]. In Rock Mechanics as a Multidisplinary Science, Roegiers(ed), Balkerma, Ralkema, Rofferdam
    Thomas R D and Ward D C. 1972. Effect of overburden pressure and water saturation on gas permeability of night sandstone cores[J]. JPT, 23: 120
    Tissot B P. 1987. Migration of hydrocarbons in sedimentary basins: a geological, geochemical and historical perspective[C]. In: Doligez B(eds.), Migration of hydrocarbons in sedimentary basins. Editions Technip, Paris. 1~19
    Ungerer P, Burrus J. 1990. Basin evaluation by Integrated two dimensional modeling of heat transfer, fluid flow, hydrocarbon generation and migration[J]. AAPG Bulletin, 74(3)
    Vernik L, Charles L. 1996. Ealstic anisotropy of source rocks implication for hydrocarbon generation and primary in igration[J]. AAPG Bulletin, 80(4): 531-544
    Watts N. 1987. Theoretical aspects of cap-rock and fault seals for single and two phase hydrocarbon columns[J]. Marine and Petroleum Geology, 4(4): 274~307
    Weber K J. 1978. The role of faults in hydrocarbon migration and trapping in Nigerian growth faults structures[J]. Tenth Annual Offshore Technology Conference Proceedings. 20(4): 2 643~2 653
    Welte D H, Yukler M A. 1981. Petroleum Origin and Accumulation in Basin Evolution-A Quantitative Model[J]. AAPG Bulletin, 65(8)
    Whelan J K, Kennicutt M C, Brooks J M. et al. 1994. fluid flow processes in petroleum basins[J]. Org. Organic geochemical indicators of dynamic Geochem, 2(3-5): 587~615
    Wilkinson M D, Darby R S, Haszeldine, et al. 1997. Secondary porosity generation during deep burial associated with over-pressure leak-off. Fulmar formation, U K Central Graben[J]. AAPG Bulletin, 81: 803~813
    Yerkes R F, Castle R O. 1976. Seismicity and faulting attributable to fluid extraction[J]. Engineering Geology, 10(24): 151~167
    Yielding G, Freeman B, Needham D T. 1997. Quantitative Fault seal Prediction[J]. AAPG Bulletin, 81(6): 897~917
    Younger J S, Lim C I. 1972. An investigation into the flow behaviour through compacted saturated
    fine-grained soils with regard to fines content and over a range of applied hydraulic gradients. In: International Association for Hydraulic Research(eds). Fundamentals of transport phenomena in porous media-Developments in soil science 2. New York: Elsevier Publishing Company Amsterdam, 312~326
    Zhang M Y, Ambastha A K. 1994. New insights in pressure-transient analysis for stress sensitive reserveoirs. SPE 28420: 617~627
    Zieglar D L. 1992. Hydrocarbon colums, buoyancy pressures, and seal effficiency[J]. AAPG Bulletin, 4: 501~508
    Zoback M D, Byerlee J D. 1975. The effect of micro-crack dilataney on the permeability of Westerly granite[J]. Geophys Res, 80: 750~755
    Zoback M L. 1992. First and second order patterns of stress in the lithosphere: The world stress map project[J]. J Geophys Res, 97(B8): 11 703~11 728
    艾池.2003.套管损坏机理及理论模型与模拟计算[M].大庆石油学院博士论文
    白新华,罗群.2004.利用异常地层压力参数判断断层封闭性[J].大庆石油地质与开发,23(6):13~15
    查明,曲江秀,张卫海.2002.异常高压与油气成藏机理[J].石油勘探开发,29(1):19~23.
    查明.1995.东营凹陷石油二次运移特征及数值模拟[D],中国地质大学北京研究生院,53~67
    陈发景等主编.压实与油气运移,武汉,中国地质大学出版社,1989,7~35
    陈国光,徐杰,马宗晋,等.2004.渤海盆地现代构造应力场与强震活动[J].地震学报,26(4):396~403
    陈荷立,邸世祥,等译.1981.压实与流体运移[M].石油工业出版社.
    陈荷立等.1983.东营凹陷泥岩压实作用及油气初次运移问题探讨[J].石油学报,4(2):9~16
    陈新平,王胜利,王中良,等.2004.深层低渗油层渗流规律及水驱油特征研究[J].河南石油.18(2):32~35
    陈中红,查明,曲江秀.2003.沉积盆地超压体系油气成藏条件及机理[J].天然气地球科学,14(2):97~103
    程式,刘文泰.1992.中国注水诱发地震的又一个实例[J].地震,1:63~66
    褚庆忠,李耀华.2001.异常压力形成机制研究综述[J].天然气勘探与开发,38~46
    褚庆忠,张树林.2002.含油气盆地成藏动力学研究综述[J].世界地质,21(1):24~29
    戴贤忠,李学田.1991.济阳坳陷第三系天然气藏盖层评价及其形成机理[J].石油学报,12(2):1~9
    丁中一,钱祥麟,霍红,等.1998.构造裂缝定量预测的一种新方法二元法[J].石油与天然气地质,19(1):1~8
    董瑞树,蒋秀琴.1985.渤海周围地区地震震源机制解和应力场特征[J].东北地震研究,1(1):55~62
    范翔宇.2003.盖层测井评价方法及应用[D].西南石油学院硕士论文
    范学平,徐向荣.2002.地应力对岩心渗透率伤害实验及机理分析[J].石油勘探与开发,29(2):117~119
    冯文光,葛家理.1985.单一介质、双重介质中非定常非达西低速渗流问题[J].石油勘探与开发,12(1):56~67
    冯文光.1986.非达西渗流研究的现状与展望[J].石油勘探与开发,13(4):76~80
    冯向阳,沈淑敏,刘文英.1996.应力驱动与油气运移势场的剖面研究[J].地质力学学报,2(2):26~30
    冯学才,崔中元,贾文山.1985.注水引起的局部构造活动及其与地震的关系[J].中国地震,1(3):67~71
    付广,陈章明,姜振学,等.1995.欠压实泥岩在封盖油气中的作用[J].中国海上油气地质,9(3): 141~145
    付广,陈章明,吕延防,等.1996.断层封闭性综合评价方法探讨及其应用[J].河南石油,10(2):7~12
    付广,陈章明.1997.烃浓度盖层封闭天然气的有效性及其研究意义[J].沉积学报,15:147~151
    付广,吕延防,薛永韶,杨勉.2000.泥岩盖层压力封闭的演化特征及其研究意义[J].石油学报,21(3):41~45
    付广,孟庆芬.2002.油气封盖的主控因素及其作用分析[J].海洋石油,23(3):29~35
    付广,庞雄奇,姜振学.1996.利用声波时差资料研究泥岩盖层封闭能力的方法[J].石油地球物理勘探,31(4):520~528
    付广,苏玉平.2005.声波时差在研究非均质盖层综合封闭能力中的应用[J].石油物探,44(3):296~301
    付广,薛永超.2001.盖层与源岩的时空配置关系对油气运聚成藏的控制作用[J].矿物岩石,21(2):5~61
    付广,张绍臣,刘厚发.1996.利用地震资料研究盖层及其封闭能力[J].石油物探,35(4):97~115
    付金华.2002.惠民凹陷夏口断裂带油气成藏机制研究[J].石油实验地质,26(2):136~141
    高建理,丁健民,梁国平,等.1987.华北地区盆地内地壳应力随深度的变化[J].中国地震,3(4):82~89
    高建理,丁健民,梁国平,等.1992.中国海区及其邻域的原地应力状态[J].地震学报,14(1):17~28
    高树生,边晨旭,何书梅.2004.运用压汞法研究低渗岩心的启动压力[J].31(3):140-142
    高先志,杜玉民,张宝收.2003.夏口断层封闭性及对油气成藏的控制作用模式[J].石油勘探与开发,30(3):76~79
    高哲荣.1996.泥质岩盖层质量的测井评价方法[J].石油勘探与开发,23(3):40~44
    戈尔布诺夫(著),李树保(译).1987.异常油田开发[M].北京:石油工业版社,18~184
    葛洪魁.1998.地应力测试及其在勘探开发中的应用[J].石油大学学报,22(1):32~37
    葛洪魁.2000.多相岩石弹性特征的实验研究及其在地层评价中的应用[D].中国地震局地球物理所博士论文
    葛家理.1982.油气层渗流力学[M].北京:石油工业出版社
    葛云龙,逯径铁,廖保方,等.1999.构造应力场与油气运移关系的研究[J].石油勘探与开发,26(1):84~90
    龚鸿庆.1983.关于控制水库地震的理论及其可能性的讨论[J].华南地震,3(4):54~58
    韩洪宝,程林松,张明禄,等.2004.特低渗油藏考虑启动压力梯度的物理模拟及数值模拟方法[J].石油大学学报(自然科学版),28(6):49~53
    韩式方.1988.非牛顿流体连续介质力学[M].成都:四川科学技术出版社,1~7
    韩小妹.2004.低渗透岩石非Darcy渗流实验研究[D].清华大学硕士论文
    韩修廷.2001.大庆油田套管损坏机理研究[D].哈尔滨工程大学博士论文
    郝芳,邹华耀,姜建群.2000.油气成藏动力学及其研究进展[J].地学前缘,7(3):11~21
    郝景波,吴景新,王海英.1998.泥岩盖层对各种相态天然气封闭力综合评价方法探讨[J].世界地质,17(4):21~27
    郝石生等.1995.天然气藏的形成和保存[M].北京:石油工业出版社,44~186
    何光玉,张卫华.1997.泥岩盖层研究现状及发展趋势[J].天然气地球科学,8(2):9~12
    胡望水,吕炳全,官大勇,等.2003.郊庐断裂带及其周缘中新生代盆地发育特征[J],海洋地质与第四纪地质,23(4):51~57
    华保钦.1995.构造应力场、地震泵和油气运移[J].沉积学报,13(2):77~85
    黄汉纯,黄庆华,马寅生.1996.柴达木盆地地质与油气预测[M].地质出版社,8
    黄延章,于大森.2001.微观渗流实验力学及其应用[M].北京:石油工业出版社,36~56
    黄延章等.1999.低渗透油层渗流机理[M].石油工业出版社,80~86
    蒋维军.2003.低速非达西渗流油藏DST段塞流试井研究[D].西南石油学院硕士论文
    焦婷婷,2004.泥质岩裂缝油气藏的成藏机理[D].西北大学硕士论文:50~70
    解习农,刘晓峰.2000.超压盆地流体动力系统与油气运聚关系[J].矿物岩石地球化学通报,19(2):103~108
    康永尚,庞雄奇.1998.油气成藏流体动力系统分析原理及应用[J].沉积学报,16(3):79~84
    李春光.1992.试论东营盆地高压油气藏的特征及找油意义[J].石油学报,13(1):37~43
    李道品.1983.我国低渗透油田开发探讨[J].低渗透油气田.3(3):17~21
    李道品.1999.低渗透油田开发[M].北京:石油工业出版社
    李吉均,方小敏,马海州,等.1996.晚新生代黄河上游地貌演化与青藏高原隆起[J].中国科学(D),26(4):316~322
    李明诚.1994.石油与天然气运移[M].北京:石油工业出版社,32~89
    李明诚.2000.石油与天然气运移研究综述[J].石油勘探与开发,27(4):3~10
    李丕龙.2003.陆相断陷盆地油气地质与勘探[M].石油工业出版社,卷三.陆相断陷盆地油气生成与资源评价:73~80
    李丕龙.2003.陆相断陷盆地油气地质与勘探[M].石油工业出版社,卷四,陆相断陷盆地油气成藏组合:45~173
    李平,卢良玉,卢造勋,等.2001.辽宁及邻区地壳构造应力场及其与地震活动关系的三维有限元数值模拟研究.地震学报,23(1):24~35
    李四光.1973.地质力学概论[M].科学出版社
    李四光.1976.地质力学方法[M].科学出版社
    李四光同志关于地质工作方面的一些意见(二),1981
    李廷栋.1995.青藏高原隆升的过程和机制[J].地球学报,1:1~9
    李学田.1992.天然气盖层质量的影响因素及盖层形成时间的探讨[J].石油实验地质,14(3):282~290
    李兆敏,蔡国琰.1998.非牛顿流体力学[M].北京:石油大学出版社,216~218
    李志,窦立荣,艾小兰.2003.异常高压与油气的生成[J].石油勘探与开发,30(5):28~30
    李志明,张金珠.1997.地应力与油气勘探开发[M].北京:石油工业出版社,17~18
    李治平.1998.变形介质储层井眼周围应力与渗流耦合理论及应用研究[D].西南石油学院博士论文
    李忠兴,韩洪宝,程林松,等.2004.特低渗油藏启动压力梯度新的求解方法及应用[J].石油勘探与开发,31(3):107~109
    刘方槐.1991.盖层在气藏保存和破坏中的作用及其评价方法[J].天然气地球科学,2(5):220~232
    刘继山.1987.单裂隙受正应力作用时的渗流公式[J].水文地质工程地质,(2):22~27
    刘继山.1988.结构面力学参数与水力学参数耦合关系及其应用[J].水文地质工程地质,(2)
    刘建军,杜广林.2003.裂缝性砂岩油藏流固耦合渗流的等效介质模型[J].中国海上油气(地质),17(3):204~210
    刘建军,耿万东.2000.地下水渗流的固液耦合理论及数值方法[J].勘察科学技术,4:7~10
    刘庆,张林晔,沈忠民,等.2004.东营凹陷湖相盆地类型演化与烃源岩发育[J].石油学报,25(4):42~45
    刘庆.2005.陆相断陷盆地成烃与成藏关系研究[D].成都理工大学博士论文,84~103
    刘五洲,孙君秀.2000.地下水在地震前兆应力场演化过程中的作用[J].地震,20(4):12~18
    刘先贵,刘建军.2000.降压开采对低渗储层渗透性的影响[J].重庆大学学报(自然科学版).23(增刊):93~96
    刘晓峰,解习农.2003.东营凹陷流体压力系统研究[J].地球科学—中国地质大学学报,28(1):78~86
    刘新月,赵德力,郑斌,等.2001.油气成藏研究历史、现状及发展趋势[J].河南石油,15(3):10~16
    刘一鸣,和景昊,陈家庚,等.1984.任丘油田开发与地震活动,见:中国地震局地震研究所编.中国诱发地震[M].北京:地震出版社,183~188
    刘曰武,丁振华,何凤珍.2002.确定低渗透油藏启动压力梯度的三种方法[J].油气井测试,11(4):1~5
    刘震.1997.储层地震地层学[M].北京:地质出版社
    卢守安,苏鸾声,陈正品.等.1987.山东角07井注(漏)水诱发地震—地表宏观现象与震群活动特点[J].地震地质,9(3):79~83
    鲁兵,丁文龙,刘忠,等.1998.断层封闭性研究进展[J].地质科技情报,17(3):75~80
    吕成远,王建,孙志刚.2002.低渗透砂岩油藏渗流启动压力梯度实验研究[J].石油勘探与开发,29(2):86~89
    吕延防,付广,高大岭,等.1996.油藏盖层研究[M].北京:石油工业出版社:4~30
    吕延防,付广,张云峰,等.2002.断层封闭性研究[M].北京:石油工业出版社,31~32
    吕延防,张绍臣,王业明.2000.盖层封闭力与盖层厚度的定量关系[J].石油学报,21(2):27~31
    吕延防.1993.松辽盆地朝长地区青山口组天然气盖层封闭特征及封闭有效研究[J].石油勘探与开发,20(1):55~61
    罗晓容.2003.油气运聚动力学研究进展及存在问题[J].天然气地球科学,14(5):13~22
    马启富,陈斯忠,张启明,等.2000.超压盆地与油气分布[M].北京:地质出版社
    马宗晋,张家声,汪一鹏.1998.青藏高原三维变形运动学的时段划分和新构造分区[J].地质学报,72(3):211~227
    马宗晋,张进,任金卫,等.2006.全球GPS矢量场的分区描述及规律性分析[J].地质学报,80(8):1 089~1 100
    毛曼.2004.成藏过程中的含油气饱和度变化特征研究[D].西北大学硕士论文,13~40
    毛宗源.2004.低渗透介质非达西渗流数值模拟方法及应用[D].清华大学硕士论文.
    苗建宇,祝总祺,刘文荣,等.2004.泥岩有机质的赋存状态与油气初次运移的关系[J].沉积学报,22(1):169-175
    苗建宇,祝宗祺.2000.济阳坳陷下第三系温度,压力与深部储层次生孔隙的关系[J].石油学报,21(5):36-40
    牟学益,刘永祥.2001.低渗透油田启动压力梯度研究[J].油气地质与采收率,8(5):58~61
    潘裕生,孔祥儒.1998.青藏高原岩石圈结构演化和动力学[M].广州:广东科技出版社.
    庞雄奇,付广,万龙贵,等.1993.盖层封油气性综合定量评价[J].北京:地质出版社,87~89
    彭大均等,1988.济阳盆地沉积型异常高压带及深部油气资源的研究[J].石油学报,9(3):13~19
    憔汉生.1985.渤海湾地区异常高压与烃的生成及运移[[J],石油勘探与开发,12(3):1~4
    秦峰.2003.大中型油气田烃涯岩与储集层空间关系及其演化[D].西北大学硕士论文:1~13
    秦积舜.2002.变应力条件下低渗透砂岩储层渗流模型及应用研究[D].中国矿业大学博士论文,35~58
    邱桂强,凌云,樊洪海.2003.东营凹陷古近系烃源岩超压特征及分布规律[J].石油勘探与开发,30(3):71~74
    邱勇松.2004.低渗透油藏渗流机理及开发技术研究[D].中国科学院博士论文
    裘怿楠等.1998.低渗透油藏开发模式[M].北京:石油工业出版社
    曲国胜,周永胜,徐杰,等.1997.张强凹陷及邻区的构造应力分析[J].地震地质,19(4):341~350
    冉启全,李士伦,等.1997.流固耦合油藏数值模拟中物性参数动态模拟研究[J].石油勘探与开发,24(3):61~65
    冉启全.1996.流固耦合油藏数值模拟理论与方法研究[D].四川,西南石油学院博士论文
    阮敏.何秋轩.1999.低渗透非达西渗流综合判据初探[J].西安石油学院学报,14(4):46~48
    商宏宽,常宝琦,刘晓年.1986.诱发地震对策,见:郭增建,陈鑫连编.地震对策[M].北京:地震出版社,40~47
    尚根华.2004.低渗透非线性渗流规律研究[D].中国科学院渗流流体力学研究所博士论文.
    佘晓宇等.1999.利用地震层速度和声波时差预测盖层封闭能力[J].石油与天然气地质,20(2):155~159
    沈平平.1995.油层物理实验技术[M].北京:石油工业出版社,21~85
    沈平平.2000.油水在多孔介质中的运动理论和实践[M].北京:石油工业出版社,31~49
    施雅风,李吉均,李炳元,等.1999.晚新生代青藏高原的隆升与东亚环境变化[J].地理学报,54(1):10~20
    宋付权,刘慈群,吴柏志.2001.启动压力梯度的不稳定快速测量[J].22(3):67~71
    宋惠珍,曾海容,孙君秀,等.1999.储层构造裂缝预测方法及其应用[J].地震地质,21(3):31~38
    宋艳波.2005.低渗气藏岩石变形渗流机理及应用研究[D].中国地质大学学位论文.
    孙樯,谢鸿森,郭捷,等.2000.构造应力与油气藏生成及分布[J].石油与天然气地质,21(2):99~103
    孙雄,洪汉净.1998.构造应力场对油气运移的影响[J].石油勘探与开发,25(1):1~4
    孙宝珊,丁原辰,邵兆刚,等.1996.声发射法测量古今应力在油田中的应用,地质力学学报,2(2):11~17
    孙宝珊,周新桂,邵兆刚.1995.油田断裂封闭性研究[J].地质力学学报,1(2):21~27
    孙喜新,2005.济阳坳陷馆陶组构造特征及成藏模式研究[D].中国科学院博士论文,110~130
    孙雄.1995.沉积盆地热历史及应力场对油气运移的影响[D].中国地震局地质研究所博士论文
    孙叶,谭成轩.1995.中国现今区域构造应力场与地壳运动趋势分析[J].地质力学学报,1(3):1~12
    孙自明,何发歧,李恩重.2002.断裂作用与流体流动耦合动力学研究进展[J].新疆石油地质,23(4):18~21
    谭雷军,贾永禄,冯曦等.2000.低速非达西流启动压力梯度的确定[J].油气井测试,9(4):5~7
    谭明友,张建宁,许丽.2004.济阳拗陷地层压力预测力法[J].石油地球物理勘探,39(3):314~318
    田世澄,陈建渝,张树林等.1996.论成藏动力学系统[J].勘探家,1(2):10~15
    田仲强,李新,李雪,等.2002.断块油田控油断层封堵模式—以东辛油田东营组为例[J].应用基础与工程科学学报,10(1):42~50
    涂毅敏,陈运泰.2002.德国大陆超深钻井注水诱发地震的精确定位[J].地震学报,24(6):587~598
    万天丰,王明明 殷秀兰,等.2004.渤海湾地区不同方向断裂带的封闭性[J].现代地质,18(2):157~163
    万天丰.1992.山东省构造演化与应力场研究[J].山东地质,8(2):70~101
    汪本善,张丽沽,麦碧娴,等.1996.碳酸盐烃源岩排烃的若干特点[J].地球化学,25(4):317~313
    汪劲草,夏斌,汤静如.2003.构造透镜体中成矿雏形断裂的形成过程[J].地球科学进展,18(2):317-320
    王洪宝等.2003.济阳坳陷桩西油田L451断块断裂特征及其封闭性[J].地质力学学报,9(2):121~127
    王来斌,徐怀民.2003.断层封闭性的研究进展[J].新疆石油学院学报,15(1):11~15
    王连捷,张利容,袁嘉音,等.1996.地应力与油气运移[J].地质力学学报,2(2):3~9
    王明明,憔汉生,胡见义.1990.东营凹陷牛庄六户地区高压油气藏成因分布[J].石油勘探与开发,7(2):13~20
    王平.1993.含油盆地构造力学原理[M].北京,石油工业出版社
    王平.1994.复杂断块油田详探与开发[M].北京:石油工业出版社
    王仁,何国琦,殷有泉,等.1980.华北地区地震迁移规律的数学模拟[J].地震学报,2(1):32~42
    王学军,张之一.1994.开鲁盆地陆西凹陷热埋藏史研究[J].西安地质学院院报,16(1):34~39
    王志欣,信荃麟.1997.关于地下断层封闭性的讨论——以东营凹陷为例[J].高校地质学报,3(3):293~300
    魏柏林,郭钦华,李纯清,等.1999,论三水地震的成因[J],中国地震,15(3):247~256
    仵彦卿.1994.岩体水力学导论[M].成都:西南交通大学出版社,78~90
    武汉地震大队水库地震研究队.1977.深井注水地震[J].地震战线,3:21~23
    武汉地震研究所水库地震研究队.1978.美国落基山注水地震[J].地震战线,6:7~8
    武红岭,王小凤,马寅生,等.1999.油田构造应力场驱动油气运移的理论和方法研究[J].石油学报,20(5):7~13
    肖序常,王军.1998.青藏高原构造演化及隆升的简要评述[J].地质论评,44(4):372~381
    谢富仁,崔效锋,赵建涛.2003.全球应力场与构造分析[J].地学前缘,10(特刊):22~30
    徐守余,李学艳.2005.胜利油田东营凹陷中央隆起带断层封闭模式研究[J].地质力学学报,11(1):19~26
    徐则民,杨立中.1998.渗流场与应力场相互关系研究中应注意的两个问题[J].矿物岩石,18(1):102~107
    徐泽奎.1989.罗城地区的地质构造与注水采盐诱发地震[J].西北地震学报,11(3):96~98
    徐芝纶.1979.编弹性力学(上册)[M].人民教育出版社,126~145
    许忠淮,汪素云,黄雨蕊,等.1989.由大量的地震资料推断的我国大陆构造应力场[J].地球物理学报,32(6):636~647
    许忠淮,闫明,赵仲和.1983.由多个小地震推断的华北地区构造应力场的方向[J].地震学报,5(3):268~279
    许忠淮.1997.岩石层应力场[J].地震地磁观测与研究,18(1):18~36
    薛定谔AE(著),王鸿勋(译).1984.多孔介质中的渗流物理.北京:石油工业出版社,174~180
    薛世峰.2000.非混溶饱和两相渗流与变形孔隙介质耦合作用的理论研究及其在石油生产中的应用[D].中国地震局地质研究所博士论文
    薛芸,石京平,贺承祖.2001.低速非达西流动机理分析[J].石油勘探与开发,28(5):102~106
    阎庆来,何秋轩,等.1990.低渗透油层单相流体渗流特征的实验研究[J].西安石油学院学报,5(2):1~6
    杨满平.2004.油气储层多孔介质的变形理论及应用研究[J].西南石油学院博士论文
    杨琼.2004.低渗透砂岩渗流特性试验研究[D].清华大学硕士论文
    杨绪充.1985,济阳坳陷沙河街组区域地层压力及水动力特征探讨[J],石油勘探与开发,12(4):13~20
    杨友卿,马宗晋,张流.1997.地应力场研究与油气勘探.以张强凹陷为例[J].勘探家,2(4):44~47
    杨智,李奇艳.2005.利用粘土涂抹方法评价断层封闭性研究进展[J].南方油气,18(1):25~28
    姚约东,葛家理.2003.石油非达西渗流的新模式[J].石油钻采工艺,25(5):40~43
    叶加仁,王连进,邵荣.1999.油气成藏动力学中的流体动力场[J].石油与天然气地质,20(2):182~185
    游俊,郑浚茂,1997.深部地层异常压力与异常孔隙度及油气藏的关系[J].中国海上油气,11(4):249~253
    俞洪年,卢华复.1998.构造地质学原理[M].南京:南京大学出版社,72
    袁静,王乾泽.2001.东营凹陷下第三系深部碎屑岩储层次生孔隙垂向分布及成因分析[J].矿物岩石,21(1):43~47
    云美厚.1996.地震地层压力预测[J].石油地球物理勘探,31(4):575~586
    曾宪斌.1997.沉积盆地异常温压体系突破机理研究[J].8(2):18~20
    曾佐勋,刘立林,1992.构造模拟[M].北京:中国地质大学出版社,12
    张宝红,邱泽华.1994.关于注水地震研究的几个问题[J].现代地质,8(3):329~333
    张光明,廖锐全,徐永高,等.2004.特低渗透油藏流体渗流特征试验研究[J].江汉石油学院学报,26(1):88~90
    张国庆,李会喜,李效蕊.2002.东濮凹陷断层封闭模式探讨[J].断块油气田,9(5):16~18
    张厚福,金之钧.2000.我国油气运移的研究现状与展望[J].石油大学学报,(自然科学版),24(4):1~5
    张林晔.2005.富集有机质”成烃作用再认识:以东营凹陷为例[J].地球化学,34(6):619~625
    张流,周永胜.2004.储层裂缝发育程度的判别准则[J].石油学报.25(4):34~38
    张明利,万天丰.1998.含油气盆地构造应力场研究新进展[J].地球科学进展,13(1):38~43
    张守春.2004.东营凹陷第三系烃源岩排烃机理研究[M].西北大学硕士论文:50~53
    张义纲,陈彦华,陆嘉炎,等.1997.油气运移及其聚集成藏模型[M].南京:河海大学出版社
    张义纲.1991.天然气生成、聚集与保存[M].河海大学出版社:138~148
    张煜,李亚辉.2000.东辛油田东营组泥岩涂抹因子与断层封闭性关系探讨[J].石油勘探与开发,27(6):14~15.
    赵根模,张德元.1995.注水诱发地震研究[M].北京:地震出版社,46~68
    赵密福,刘泽容,信荃麟,等.2001.控制油气纵向运移的地质因素[J].石油大学学报,25(6):21~24
    赵密福.2004.断层封闭性研究现状[J].新疆石油地质,25(3):333~336
    郑和荣,黄永玲,冯有良.2000.东营凹陷下第三系地层异常高压体系及其石油地质意义[J].石油勘探与开发,27(4):67~72
    郑秀娟,于兴河,王彦卿.2004.断层封闭性研究的现状与问题[J].大庆石油地质与开发,23(6):19~21
    钟大赉,丁林.1996.青藏高原的隆升过程及其机制探讨[J].中国科学(D),26:289~295
    钟宏平,傅康英,黄仙英.1991.含油气盆地断层封闭性研究进展论述[J].地质科技情报,10(2):51~55
    周建林.2003.东营凹陷胜坨地区油气成藏模式及其勘探前景研究[D].中国科学院博士论文,53~60
    周新桂,孙宝珊,谭成轩,等.2000.现今地应力与断层封闭效应[J].石油勘探与开发,27(5):127~131
    周志军.2003.低渗透储层流固耦合渗流理论及应用研究[D].大庆石油学院博士论文.42~48
    朱长军.2002.非达西渗流实验研究及数学描述[D].中国科学院硕士论文.
    朱苏青,苏玉亮,叶惠民.2004.低渗透油田驱替机理研究[J].西南石油学院学报,26(6):39~42
    祝总祺等,1997.论压力封存箱及其对次生孔隙的保护作用[J].西北大学学报,27(1):73~78
    宗国洪,肖焕钦,李常宝,等.1999.济阳坳陷构造演化及其大地构造意义[J].高校地质学报,5(3):275~282
    陈汉林,程晓敢,王步清.2001.东营凹陷及邻区盆地构造分析与油气富集研究[C].浙江大学地球科学系
    丛良滋,Carolyn Lampe.2003.王庄-宁海北地区油气运移模拟研究[C].北京普思泰克科技有限公司
    邓宏文,王红亮,方勇.2002.东营凹陷高精度层序地层与岩性油藏预测[C].中国地质大学(北京)能源系
    段智斌.1995.济阳坳陷第三系古应力测定及应力场分析[C].中石化胜利油田地质院
    方国庆,杨守业,范代读.2004.青南洼陷沙三—沙四上亚段沉积相及有利勘探区带研究[C].同济大学海洋地质系
    金强,翟庆龙.2002.东营凹陷火成岩发育区油气成藏模式及其评价研究[C].石油大学(华东)油藏地质研究所
    彭平安,王振奇,卢鸿,等.2004.济阳坳陷郑家—王庄油田稠油成因机理研究[C].中国科学院广州地球化学研究所有机地球化学国家重点实验室
    曲国胜,刘启元,李行船,等.2006.中美合作山东东营注水诱发地震中长期监测[C].中国地震应急搜救中心
    胜利油田开发论证会材料,2003,2004,2005
    胜利油田勘探地质论证会材料,2003,2004,2005
    信荃麟,刘泽容.2002.东营凹陷岩性油气藏成藏动力学机制和预测[C].石油大学(华东)油藏地质研究所
    徐国友.2000.川西坳陷中段地应力与中深层致密储层及天然气富集关系研究[C].中石化新星公司勘探研究院
    徐世浙.2001.东营凹陷第三系典型油气藏成藏解剖[C].浙江大学地球科学系
    张林晔.2003.东营凹陷有机质富集层形成机理及潜力分析[C].中石化胜利油田地质院

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700