用户名: 密码: 验证码:
大肠杆菌漆酶CueO的结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
漆酶是一类广泛存在于高等和低等生物中的古老酶类,其具有的多酚氧化能力和较宽松的底物特异性使其在造纸、环保、家具制造和食品生产等行业具有引人注目的应用前景。但是由于天然漆酶生产周期长、产量低,一直无法满足大规模工业生产的需求,高产、高活性重组漆酶的开发日益成为研究的焦点。CueO为大肠杆菌铜耐受系统重要组成蛋白,参与大肠杆菌周质空间中的铜离子解毒过程;同时该蛋白也是一种细菌漆酶,可在重组条件下高量表达,但其氧化能力较真菌漆酶低1~2个数量级。
     我们通过克隆表达获得CueO重组蛋白,并对其活性进行测定,发现CueO氧化活性依赖于外源铜离子的存在;为了说明这种依赖性的原因,我们通过悬滴气相扩散法获得了四种不同外源铜离子存在浓度条件下的CueO蛋白晶体,衍射、收集数据并最终解析获得这四种晶体的三维结构。通过结构分析我们发现不同外源铜离子浓度条件下的晶体中CueO四个铜结合位点的占有率随外源铜浓度升高依次递增,结合氧化活性实验结果可知,CueO氧化能力的铜离子依赖性源于其铜结合位点的占有率不足。
     将CueO三维结构与其他三种已解析的漆酶结构比对发现,在CueO三核中心溶剂通道Glu106位残基处,各种漆酶显示出较大的疏水性差异,按照氧化活性最高的漆酶中的残基种类将CueO蛋白106位突变为Phe后,观察到突变体氧化活性对外源铜离子的依赖性较母体降低,表明该位置的疏水性对三核中心铜占有率有影响。同时,在四种漆酶的结构比对中还发现CueO的底物口袋区域较其他漆酶多出一段α螺旋,阻碍了一型铜与底物的直接作用,分析可能对CueO的氧化活性存在负面影响,相关突变体实验尚在进行中。
     除此之外,攻读博士学位期间我还对潜在的抗生素设计靶蛋白——钩端螺旋体来源的DDG醛缩酶进行了克隆、表达、纯化、结晶,并收集得到2.2(?)分辨率衍射数据,结构解析工作正在进行中。
CueO protein was a predicted bacterial laccase and an appropriate target model for laccase large scale application in industrial production. CueO was also a member of the copper regulatory cue system in Escherichia coli, expressed under conditions of copper stress and showed enhanced oxidase activity when additional copper was present. Four CueO structures were resolved by CueO co crystallized with different concentration copper ion. They revealed the low copper occupation in apo-CueO and a slow copper reconstitution process in each copper site of CueO protein while exogenous copper present. These findings gave us an answer for the copper dependency to CueO oxidase activity. The structural comparison between CueO and other three fungal laccase proteins reminded us 106Glu in CueO was a primary counterwork for trinuclear copper site reconstitution. The mutation of 106Glu observably enhanced CueO copper reconstitution rate and well supported our assumption. We also focused theα-helix from 351Leu to 378Gly would cover substrate biding pocket of CueO and greatly encumber the electron transfer from substrate to type I copper.
     2-dehydro-3-deoxygalactarate (DDG) aldolase is a member of the class II aldolase family and plays an important role in the pyruvate metabolism pathway, catalyzing the reversible aldol cleavage of DDG to pyruvate and tartronic semialdehyde. As a potential novel antibiotic target, it is necessary to elucidate the catalytic mechanism of DDG aldolase. To determine the crystal structure, crystals of DDG aldolase from Leptospira interrogans were obtained by the hanging-drop vapor-diffusion method. The crystals diffracted to 2.2A resolution on a Cu Kαrotating-anode X-ray source. The crystal belonged to space group C2, with unit-cell parameters a=293.5 A, b=125.6 A, c=87.6 A, andβ=100.9°. The Vm is calculated to be 2.4A~3/Da, when assuming there are twelve protein molecules in the asymmetric unit.
引文
Alexandre G, Bally R, Taylor BL, Zhulin IB. Loss of cytochrome c oxidase activity and acquisition of resistance to quinone analogs in a laccase-positive variant of Azospirillum lipoferum. J. Bacteriol. 1999 181 (21): 6730-8.
    Alexandre G, Zhulin lB. Laccases are widespread in bacteria. Trends. Biotechnol. 2000 18(2): 41-2.
    Angele L, Degre M. Method and device for the determination of laccase in musts by the syringaldazine test. Eur Pat Appl Ep: 543722 A1
    Bajpai P. Application of enzymes in the pulp and paper industry. Biotechnol. Prog. 1999 15(2): 147-57.
    Bao W, O' Malley DM, Whetten R, Sedero RR. A laccase associated with lifgnification in loblolly pine xylem. Science 1993 260: 672-674.
    Brouwers GJ, de Vrind JP, Corstjens PL, Cornelis P, Baysse C, de Vrind-de Jong EW. cumA, a gene encoding a multicopper oxidase, is involved in Mn2+ oxidation in Pseudomonas putida GB-1. Appl. Environ. Microbiol. 1999 65(4): 1762-8.
    Campos R, Kandelbauer A, Robra KH, Cavaco-Paulo A, Gubitz GM. Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. J. Biotechnol. 2001 89(2-3): 131-9.
    Cha JS, Cooksey DA. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc. Natl. Acad Sci. USA. 1991 88(20): 8915-9.
    Changela A, Chen K, Xue Y, Holschen J, Outten CE, O'Halloran TV, Mondragon A. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science. 2003 301 (5638): 1383-7.
    Claus F, Lund M. Process for treating pulp with laccase and a mediator to increase paper wet strength. US 6610172(2003-08-26).
    Claus H. Laccases and their occurrence in prokaryotes. Arch. Microbiol. 2003 179(3): 145-50.
    Cohen R, Persky L, Hadar Y. Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl. Microbiol. Biotechnol. 2002 58(5):582-94.
    Collins PJ, Dobson A. Regulation of Laccase Gene Transcription in Trametes versicolor. Appl. Environ. Microbiol. 1997 63(9):3444-3450.
    Davin LB, Wang HB, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science. 1997 275(5298):362-6.
    Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature. 1998 392(6674):353-8.
    Diamantidis G, Effosse A, Potier P, Bally R. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol. Biochem. 2000 32:919-927.
    Dombrovskaia EN, Kostyshin SS. Effect of lignin preparations and cultivation conditions on the ligninolytic complex of the fungus Pleurotus floridae, the wood white-rot pathogen. Ukr. Biokhim. Zh. 1997 69(1):26-31.
    Dorado J, Claassen FW, van Beek TA, Lenon G, Wijnberg JB, Sierra-Alvarez R. Elimination and detoxification of softwood extractives by white-rot fungi. J. Biotechnol. 2000 80(3):231-40.
    Ducros V, Brzozowski AM, Wilson KS, Brown SH, Ostergaard P, Schneider P, Yaver DS, Pedersen AH, Davies GJ. Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 A resolution. Nat. Struct. Biol. 1998 5(4):310-6.
    Endo K, Hosono K, Beppu T, Ueda K. A novel extracytoplasmic phenol oxidase of Streptomyces: its possible involvement in the onset of morphogenesis. Microbiology. 2002 148(Pt 6): 1767-76.
    Enguita FJ, Marcal D, Martins LO, Grenha R, Henriques AO, Lindley PF, Carrondo MA. Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis. J. Biol. Chem. 2004 279(22):23472-6.
    Fitz-Gibbon ST, Ladner H, Kim UJ, Stetter KO, Simon MI, Miller JH. Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc. Natl. Acad. Sci. USA. 2002 99(2):984-9.
    Francis CA, Tebo BM. cumA multicopper oxidase genes from diverse Mn(Ⅱ)-oxidizing and non-Mn(Ⅱ)-oxidizing Pseudomonas strains. Appl. Environ. Microbiol. 2001 67(9): 4272-8.
    Freeman JC, Nayar PG, Begley TP, Villafranca JJ. Stoichiometry and spectroscopic identity of copper centers in phenoxazinone synthase: a new addition to the blue copper oxidase family. Biochemistry. 1993 32(18): 4826-30.
    Freudenberg K, Harkin JM, Rechert M, Fukuzumi T. Die and der verholzung beteiligten enzyme die dehydrierung des sinapylalkohol. Chem. Ber. 1958 91: 581-590.
    Galli I, Musci G, Bonaccorsi di Patti MC. Sequential reconstitution of copper sites in the multicopper oxidase CueO. J. Biol. Inorg. Chem. 2004 9(1): 90-5.
    Givaudan A, Effosse A, Faure D, Potier P, Bouillant ML, Bally R. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in nonmotile strains of Azospirillum lipoferum. FEMS Microbiol. Lett. 1993 108: 205-210.
    Grass G, Rensing C. CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem. Biophys. Res. Commun. 2001 286(5): 902-8.
    Hakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J. Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat. Struct. Biol. 2002 9(8): 601-5.
    Hatfield R, Vermerris W. Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol. 2001 126(4): 1351-7.
    Hullo MF, Moszer I, Danchin A, Martin-Verstraete I. CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol. 2001 183(18): 5426-30.
    Huttermann A, Mai C, Kharazipour A. Modification of lignin for the production of new compounded materials. Appl. Microbiol. Biotechnol. 2001 55(4): 387-94.
    Jonsson L, Sjostrom K, Haggstrom I, Nyman PO. Characterization of a laccase gene from the white-rot fungus Trametes versicolor and structural features of basidiomycete laccases. Biochim. Biophys. Acta. 1995 1251 (2): 210-5.
    Karhunen E, Niku-Paavola ML, Viikari L, Haltia T, van der Meer RA, Duine JA. A novel combination of prosthetic groups in a fungal laccase; PQQ and two copper atoms. FEBS Lett. 1990 267(1): 6-8.
    Karlsson S, Holmbom B, Spetz P, Mustranta A, Buchert J. Reactivity of Trametes laccases with fatty and resin acids. Appl. Microbiol. Biotechnol. 2001 55(3): 317-20.
    Kim C, Lorenz WW, Hoopes JT, Dean JF. Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. J. Bacteriol. 2001 183(16):4866-75.
    Labat E, Morel MH, Rouau X. Wheat gluten phenolic acids: occurrence and fate upon mixing. J Agric. Food Chem. 2000 48(12):6280-3.
    Lee YA, Hendson M, Panopoulos NJ, Schroth MN. Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. J. Bacteriol. 1994 176(1):173-88.
    Lewis NG, Davin LB, Sarkanen S. 1998. Lignin and lignan biosynthesis: distinctions and reconciliations. In: Lewis NG, Sarkanen S eds. Lignin and Lignan Biosynthesis. Washington, DC: American Chemical Society, 1~27
    Li L, Steffens JC. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta. 2002 215(2):239-47.
    Lund M, Felby C. Wet strength improvement of unbleached kraft pulp through laccase catalyzed oxidation. Enzyme. Microb. Technol. 2001 28(9-10):760-765.
    Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH, Henriques AO. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J. Biol. Chem. 2002 277(21):18849-59.
    Mayer AM, Staples RC. Laccase: new functions for an old enzyme. Phytochemistry. 2002 60(6):551-65.
    Monera OD, Sereda TJ, Zhou NE, Kay CM, Hodges RS. Relationship of sidechain hydrophobicity and alpha-helical propensity on the stability of the single-stranded amphipathic alpha-helix. J. Pept. Sci. 1995 1(5):319-29.
    Nyanhongo GS, Gomes J, Gubitz G, Zvauya R, Read JS, Steiner W. Production of laccase by a newly isolated strain of Trametes modesta. Bioresour Technol. 2002 84(3):259-63.
    Outten FW, Huffman DL, Hale JA, O'Halloran TV. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J. Biol. Chem. 2001 276(33):30670-7.
    Outten FW, Outten CE, Hale J, O'Halloran TV. Transcriptional activation of an Escherichia coli copper effiux regulon by the chromosomal MerR homologue, cueR. J. Biol. Chem. 2000 275(40): 31024-9.
    Petersen C, Moller LB. Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Gene. 2000 261 (2): 289-98.
    Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, Boudet AM, Goffner D. Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol. 2002 129(1): 145-55.
    Rensing C, Grass G. Escheriehia eoli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 2003 27(2-3): 197-213.
    Roberts SA, Weichsel A, Grass G; Thakali K, Hazzard JT, Tollin G, Rensing C, Montfort WR. Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc. Natl. Acad. Sci. USA. 2002 99(5): 2766-71.
    Roberts SA, Wildner GF, Grass G, Weichsel A, Ambrus A, Rensing C, Montfort WR. A labile regulatory copper ion lies near the T1 copper site in the multicopper oxidase CueO. J. Biol. Chem. 2003 278(34): 31958-63.
    Saloheimo M, Niku-Paavola ML, Knowles JK. Isolation and structural analysis of the laccase gene from the lignin-degrading fungus Phlebia radiata. J. Gen. Microbiol. 1991 137(7): 1537-44.
    Sanehez-Amat A, Lucas-Elio P, Fernandez E, Gareia-Borron JC, Solano E Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim. Biophys. Acta. 2001 1547(1): 104-16.
    Sanchez-Amat A, Solano E A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp shares catalytic capabilities of tyrosinases and laccases. Biochem. Biophys. Res. Commun. 1997 240(3): 787-92.
    Sannia Giovanni, Giardina Paola, Palmieri Gianna, et al. Waste water treantiment method using microorganisms. WO0212136 (2002-02-14).
    Solomon EI, Sundaram UM, Machonkin TE. Multicopper Oxidases and Oxygenases. Chem. Rev. 1996 96(7): 2563-2606.
    Sterjiades R, Dean JF, Eriksson KE. Laccase from Sycamore Maple (Acer pseudoplatanus) Polymerizes Monoliguols. Plant. Physiol. 1992 99(3): 1162-1168.
    Takami H, Takaki Y, Uchiyama I. Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res. 2002 30(18): 3927-35.
    Tamilarasan R, McMillin DR. Spectroscopic studies of the type 2 and type 3 copper centres in the mercury derivative of laccase. Biochem. J. 1989 263(2): 425-9.
    van Waasbergen LG, Hildebrand M, Tebo BM. Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine Bacillus sp. strain SG-1. J. Bacteriol. 1996 178(12): 3517-30.
    Wang P, Nuss DL. Identification of a Cryphonectria parasitica laccase gene promoter element involved in cycloheximide-inducible, hypovirus-repressible transcriptional activation. Gene. 1998 210(1): 79-84.
    Xu F, Berka RM, Wahleithner JA, Nelson BA, Shuster JR, Brown SH, Palmer AE, Solomon EI. Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile. Biochem. J. 1998 334 (Pt 1): 63-70.
    Yamamoto K, Ishihama A. Transcriptional response of Escherichia coli to external copper. Mol. Microbiol. 2005 56(1): 215-27.
    Yaver DS, Golightly EJ. Cloning and characterization of three laccase genes from the white-rot basidiomycete Trametes villosa: genomic organization of the laccase gene family. Gene. 1996 181(1-2): 95-102.
    Zherdev AV, Bizova NA, Yaropolov AI, Lyubimova NV, Morozova OV, Dzantiev BB. Laccase from Coriolus hirsutus as alternate label for enzyme immunoassay. Determination of pesticide 2,4-dichlorophenoxyacetic acid. Appl. Biochem. Biotechnol. 1999 76(3): 203-15.
    Adler B, Ballard SA, Miller S J, Faine S. Monoclonal antibodies reacting with serogroup and serovar specific epitopes on different lipopolysaccharide subunits of Leptospira interrogans serovar pomona. FEMS Microbiol. Immunol. 1989 1(4): 213-8.
    Ballard SA, Segers RP, Bleumink-Pluym N, Fyfe J, Faine S, Adler B. Molecular analysis of the hsp (groE) operon of Leptospira interrogans serovar copenhageni. Mol. Microbiol. 1993 8(4): 739-51.
    Banner DW, Bloomer AC, Petsko GA, Phillips DC, Pogson CI, Wilson IA, Corran PH, Furth AJ, Milman JD, Offord RE, Priddle JD, Waley SG Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 angstrom resolution using amino acid sequence data. Nature. 1975 255(5510): 609-14.
    Blackwell NC, Cullis PM, Cooper RA, Izard T. Rhombohedral crystals of 2-dehydro-3-deoxygalactarate aldolase from Escherichia coli. Acta Crystallogr D Biol Crystallogr. 1999 55: 1368-9.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal, Biochem. 1976 72: 248-54.
    Chapman A J, Everard CO, Faine S, Adler B. Antigens recognized by the human immune response to severe leptospirosis in Barbados. Epidemiol. Infect. 1991 107(1): 143-55.
    Faine S, Adler B, Bolin C, et al 1 Leptospira and Leptospirosis, second edition (M). Australia: MediSci Melbourne, 1999 171.
    Fessner WD. Enzyme mediated C-C bond formation. Curt. Opin. Chem. Biol. 1998 2(1): 85-97.
    Haake DA, Champion CI, Martinich C, Shang ES, Blanco DR, Miller JN, Lovett MA. Molecular cloning and sequence analysis of the gene encoding OmpL1, a transmembrane outer membrane protein of pathogenic Leptospira spp. J. Bacteriol. 1993 175(13): 4225-34.
    Haake DA, Chao G, Zuerner RL, Barnett JK, Barnett D, Mazel M, Matsunaga J, Levett PN, Bolin CA. The leptospiral major outer membrane protein LipL32 is a lipoprotein expressed during mammalian infection. Infect. Immun. 2000 68(4): 2276-85.
    Haake DA, Martinich C, Summers TA, Shah8 ES, Pruetz JD, McCoy AM, Mazel MK, Botin CA. Characterization of leptoswpiral outer membrane lipoprotein LipL36: downregulation associated with late-log-phase growth and mammalian infection. Infect. Immun. 1998 66(4): 1579-87.
    Izard T, Blackwell NC. Crystal structures of the metal-dependent 2-dehydro-3-deoxy-salactarate aldolase suggest a novel reaction mechanism. EMBO J. 2000 19: 3849-56.
    Izard T, Sygusch J. Induced fit movements and metal cofactor selectivity of class Ⅱ aldolases: structure of of Thermus aquaticus fructorse-1,6-bisphosphate aldolase. J Biol Chem. 2004 279: 11825-33.
    Jia J, Schorken U, Lindqvist Y, Sprenger GA, Schneider G. Crystal structure of the reduced Schiff-base intermediate complex of transaidolase B from Escherichia coli: mechanistic implications for class Ⅰ aldolases. Protein Sci. 1997 6: 119-24.
    Kmety E, Mochmann H. What is the correct specific epithet for pathogenic Leptospirae? Zentralbl. Bakteriol. Mikrobiol. Hyg. 1986 262(3): 298-303.
    Lee SH, Kim S, Park SC, Kim MJ. Cytotoxic activities of Leptospira interroagns hemolysin SphH as a pore-forming protein on mammalian cells. Infect. Immun. 2002 70(1): 315-22.
    Lee SH, Kim KA, Park YG, Seong IW, Kim MJ, Lee YJ. Identification and partial characterization of a novel hemolysin from Leptospira interrogans serovar lai. Gene. 2000 234(1-2): 19-28.
    Li C, Motaleb A, Sal M, Goldstein SF, Charon NW. Spirochete periplasmic flagella and motility. J Mol Microbial Biotechnol. 2000 2(4): 345-54.
    Lin M, Bughio N, Surujballi O. Expression in Escherichia coli of flaB, the gene coding for a periplasmic flagellin of Leptospira interrogans serovar pomona. J Med Microbiol. 1999 48(11): 977-82.
    Lin M, Surujballi O, Nielsen K, Nadin-Davis S, Randall G Identification of a 35-kilodalton serovar-cross-reactive flagellar protein, FiaB, from Leptospira interrogans by N-terminal sequeacing, gene cloning, and sequence analysis. Infect. Immun. 1997 65(10): 4355-9.
    Nally JE, Timoney JF, Stevenson B. Temperature-regulated protein synthesis by Leptospira interrogans. Infect. Immun. 2001 69(1): 400-4.
    Noguchi H. The spirochaetes, in the newer knowledge of bacteriology and immunology. University of Chicago Press, Chicago, 1928 452-97.
    Park SH, Ahn BY, Kim MJ. Expression and immunologic characterization of recombinant heat shock protein 58 of Leptospira species: a major target antigen of the humoral immune response. DNA Cell Biol. 1999 18(12): 903-10.
    Picardeau M, Brenot A, Saint Girons I. First evidence for gene replacement in Leptospira spp. Inactivation of L. biflexa flaB results in non-motile mutants deficient in endoflagella. Mol. Microbiol. 2001 40(1): 189-99.
    Ren SX, Fu G, Jiang XG, Zeng R, Miao YG, Xu H, Zhang YX, Xiong H, Lu G, Lu LF, Jiang HQ, Jia J, Tu YF, Jiang JX, Gu WY, Zhang YQ, Cai Z, Sheng HH, Yin HF, Zhang Y, Zhu GF, Wan M, Huang HL, Qian Z, Wang SY, Ma W, Yao Z J, Shen Y, Qiang BQ, Xia QC, Guo XK, Danchin A, Saint Girons I, Somerville RL, Wen YM, Shi MH, Chen Z, Xu JG, Zhao GP. Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature 2003 422(6934): 888-93
    RUTTER WJ. EVOLUTION OF ALDOLASE. Fed. Proc. 1964 23: 1248-57.
    Segers RP, van der Drift A, de Nijs A, Corcione P, van der Zeijst BA, Gaastra W. Molecular analysis of a sphingomyelinase C gene from Leptospira interrogans serovar hardjo. Infect. Immun. 1990 58(7): 2177-85.
    Shang ES, Exner MM, Summers TA, Martinich C, Champion CI, Hancock RE, Haake DA. The rare outer membrane protein, OmpL 1, of pathogenic Leptospira species is a heat-modifiable porin. Infect. Immun. 1995 63(8): 3174-81.
    Shang ES, Summers TA, Haake DA. Molecular cloning and sequence analysis of the gene encoding LipL41, a surface-exposed lipoprotein of pathogenic Leptospira species. Infect. Immun. 1996 64(6): 2322-30.
    Stimson AM. Note on an organism found in yellow fever tissue. Publ. H1th. Rep. 1907 22: 541.
    Szwergold BS, Ugurbil K, Brown TR. Properties of fructose-1,6-bisphosphate aldolase from Escherichia coli: an NMR analysis. Arch Biochem Biophys. 1995 317: 244-52.
    Vinh TU, Shi MH, Adler B, Faine S. Characterization and taxonomic significance of lipopolysaccharides of Leptospira interrogans serovar hardjo. J. Gen. Microbiol. 1989 135(10): 2663-73.
    Wagner J, Lerner RA, Barbas CF 3rd. Efficient aldolase catalytic antibodies that use the enamine mechanism of natural enzymes. Science. 1995 270(5243): 1797-800.
    Wong CH & Whitesides GM. 1994 Enzymes in Synthetic Organic Chemistry. Oxford: Pelganmon.
    World Health Organization. (2006). Zoonases and veterinary public health: Diseases Leptospirosis. http://www.who.int/zoonoses/diseases/leptospirosis/en/
    Yanagawa R, Faine S. Morphological and serological analysis of leptospiral structure. Nature 1966 211(5051): 823-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700