用户名: 密码: 验证码:
华北地区现今地壳运动及形变动力学数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北地区位于我国北部,阴山、燕山以南,秦岭、大别山以北、鄂尔多斯高原以东延伸至沿海一带的广袤区域,地理坐标范围为东经112°~124°,北纬31°~42°,是我国政治、经济、文化中心。同时,该区域囿于太平洋板块、菲律宾板块和印度板块之间,新生代以来构造运动活跃,为我国大陆强地震频发区域之一。因此,研究该区域现今地壳运动及形变、构造应力场特征,继而探讨其动力学机理,具有重要理论和现实意义。
     本文采用有限元方法在大型有限元软件平台ANSYS基础上,综合现有地质、地球物理资料构建华北地区岩石层(地壳和上地幔顶部)框架。以区域GPS观测、地形变观测以及震源机制解结果作为约束条件及检验标准,通过数值模拟的方式,研究该区域现今地壳运动和形变、构造应力场特征,并将表层运动与深部运动相联系,以区域动力学环境和驱动力为中心,探讨其动力学机制。
     根据华北地区新生代构造发育特征和深部地球物理观测数据,本文选取了108°E~127°E,32°N~42°N矩形区域构建有限单元数值模拟的几何框架。与此同时,还将现今活动断层及断裂带分布、地形起伏以及地壳—上地幔速度结构等纳入模型中。本文构建和测试了三个基本模型:即三维模型3DCM_Ⅰ,3DCM_Ⅱ利二维模型2DDM_Ⅰ。模型3DCM_Ⅰ不考虑地壳—上地幔的实际分层,将模型沿纵向分为七个厚度均匀的水平层,分别代表上、中、下地壳和上地幔(四层)。模型3DCM_Ⅱ则依据该区域深反射地震研究结果进行水平分层。在模型3DCM_Ⅰ、3DCM_Ⅱ中,区域内主要活动断裂带处理为宽度5—6Km,深度不等(10~15km)的软弱带,模型含14736个节点,24829个三维实体单元。在模型2DDM_Ⅰ中断层及断裂带则处理为非连续接触边界,模型含1843个节点,3547个二维实体单元。
     论文采用有限元弹性静力分析方法,以模型区周边GPS观测作为边界约束,计算华北岩石层形变的水平速度场和应力、应变增量场。并以模型区内部GPS观测作为标准,通过调整模型中断层的物理参数方式,寻求与GPS观测的最佳吻合的有限元解。计算显示,水平运动场的最佳数值解和GPS观测值的平均离散度为10171mm~2/year(三维模型)、1.176mm~2/year(二维模型)。与此同时,数值模拟预测的区内主要活动断层的错动方式、水平错动速率(三维模型结果为~0.1mm/year,二维模型结果为~0.3mm/year)与地质及跨断层形变观测结果基本一致。三维模型还显示,在10~15Km深度上,最大、最小主应力轴接近水平,主张应力为主压应力的2~8倍,主张应力方向为NNW,主压应力方向为NEE。这一结果与震源机制解、地应力观测结果比较吻合。三维模型得到的全区应变率较低约10~(-9)/year。并且,大致沿汾渭地堑断裂系、唐山—河间—磁县断裂带和郯庐断裂带存在三个北东走向的剪应变梯度带。不过二维模型预测的张家口—渤海断裂带水平运动速度为1.35~1.45mm/year,远高于其他断层以及三维模型结果。数值模拟结果可以推论:华北地区岩石层水平形变运动主要受控于周边大型构造块体的相对运动,其次才是岩石横向、纵向非均匀性的影响。同时,在周边块体运动的控制下,区内主要断裂带现今的错动方式基本是继承性的,且错动速率较低。只有张家口—渤海断裂带错动速度较高,值得关注。
     论文考虑岩石应力—应变遵从幂指数本构关系,基于三维模型3DCM_Ⅰ,3DCM_Ⅱ的基本框架,采用弹性—蠕变静力学有限元方法对华北地区晚近时期(~4Ma)构造运动进行数值模拟,探讨华北地区现今地壳运动演化的动力学环境和驱动力因素。模拟时以模型周边GPS观测数据作为表层的边界约束,计算时顾及岩石的流变性、重力作用以及大变形导致的位移—应变非线性。本文通过选择侧面、底面边界约束方式,调整岩石的物性参以及分析板块运动、周边块体运动、断层活动、岩石层流变分层等因素的影响,寻求与区内GPS观测、构造应力场观测数据最佳符合的预测模型。论文计算了22个模型。结果表明,当侧面以深部稍快、浅部稍慢的方式运动,并考虑岩石层下部的拖曳运动时,则模拟预测果更接近实际观测。在该约束方式下,相应于模型3DCM_Ⅰ、3DCM_Ⅱ框架的预测与GPS观测的最低平均离散度分别为1.1529mm~2/year、1.1451mm~2/year,低于弹性模型,而且断层错动与地质研究结果相一致。在相同边界条件下,3DCM_Ⅱ结果优于3DCM_Ⅰ结果,考虑断层运动结果优于不考虑断层运动结果。模型预测应力场显示,深度10Km处的最小主压应力轴均接近水平,方向为NNW向,最大主压应力轴在南部区域接近水平,在北部区域则垂直于水平面,方向以NEE为主。这与其它研究显示的最大、最小应力主轴的方向基本吻合,但与现有的最大、最小主应力轴均接近水平的基本认识存在一定差别。预测应力场随深度的变化明显受控于边界加载方式(应力环境),而断层的影响仅局限于断层内部以及断层附近较小区域内。
     为研究局部特别是隐伏构造对地表形变的影响,提取形变异常信息,论文发展了GPS差异形变分析方法。并用此方法,对华北地区和中国大陆GPS观测结果进行了GPS差异形变分析。华北地区GPS差异形变分析显示,张家口—渤海断裂带、唐山—河间—磁县断裂带为该地区现今构造活动较强烈区域,在未来若干年内需密切关注及防范强震发生。对中国大陆而言,论文分别使用三种有限元模型(均一、分块和多驱动力模型)而进行了GPS差异形变分析。结果表明,中国大陆现今构造运动是多种驱动力共同作用的结果。其中,印度板块向北的强烈推挤以及地幔对流对岩石层底部的拖曳作用占据着非常重要的地位。前者主导了以青藏高原为中心的大陆西部地区构造变形运动,而后者则对华北、华南地区的影响重大。同时,现今构造运动十分活跃大型断裂系(如阿尔金、张家口—渤海等)对大陆岩石层构造变形的影响也是不可忽视的。
     综合数值模拟结果可以得到如下认识:华北地区岩石层形变的区域动力学环境和驱动力十分复杂。总体而言,一方面在太平洋板块的俯冲和印度—欧亚板块的碰撞挤压作用下,鄂尔多斯活动地块、华南活动地块以及东北亚活动地块的运动状态决定了华北地区表层运动的基本格局。另一方面,地幔对流对岩石层底部的拖曳作用将直接影响该区域岩石层形变运动。与此同时,以张家口—渤海断裂为代表的现今构造运动十分活跃大型断裂系以及岩石层内流变性非均匀分布(特别是中地壳软弱层的存在),对区域构造变形的影响也是不可忽视的。
North China Region is situated in the north of the China main land, bounded by the Ordos Plateau in the west, the East Coast in the east, Yin Shan Mountain and Yan Shan Mouthtain in the north, and Qin Ling Mountain and Dabie Shan Mountain in the south. Its longitude and latitude range is 112° -124° E, 31°~42° N. This region is the economical, cultural and political center of China. In addition, located among Pacific Plate, Philippine Plate and Indian Plate, the tectonic activity of this region is remarkable during Cenozoic. It's one. of the areas where strong earthquakes frequently occur in China. Studying the crustal movement and deformation pattern, the feature of the constructional stress field, and its dynamic mechanics of this region is of great theoretical and practical importance.
    Based on Finite element method and ANSYS software, the thesis establishes several lithosphere modeling frames (crust-up mental) of North China region by incorporating existing geological and geophysical information of this region. Using digital simulation, and taking GPS observation, crustal deformation observation and focal mechanism results as basic boundary condition and testing standard, the thesis studies the present-day crustal movement, the strain and stress field of this region. And by connecting the surface movement with its deep tectonic movement, the thesis discusses the dynamic mechanics of the region, focusing on its dynamic setting and the driving force.
    According to the Cenozoic tectonic feature and deep geophysical observation, the author choose a rectangular region of 112° -124° E and 31° -42° N to establish the geometrical frame of the finite element models. In addition, present-day active faults distributing, topography and crust-up mantle structure of this region is included. The author creates and tests three finite element models, 3D model, 3DCM_I,3DCM_II, and 2D model, 2DDM_I. Ignoring the real crust-up mantle stratum structure of this region, Model 3DCM_I contains 7 layers with each layer being of equal thickness, including upper crust, mid-crust, lower crust, and up mantle(4 layers). The layering of Model 3DCM_II is consistent with the deep seismic sounding results. In 3DCM_I / 3DCM_II , faults are treated as weak zones of 5-6 km wide and 10-15km deep. Each model contains 14736 nodes and 24829 3D solid elements. In Model 2DDM_I faults are treated as discontinuous contact boundary. And it contains 1843 nodes and 3547 2D solid elements.
    Using static structural finite element analysis method, taking GPS observations around the model area as boundary condition, the horizontal velocity field of lithosphere deformation, stress increment field, and strain increment field are calculated. Using GPS observation within the model area as standard, the optimum solution which fits the GPS observation best is searched by adjusting the parameter of fault elements in those models. The results show that the average discreteness between the optimum calculations and GPS observations is 1.171mm~2/year (3D model) and 1.176 mm~2/year (2D model). In addition, the predicted slip features and slip velocities of main faults( ~0.1mm/year in 3D model results, ~0.3mm/year in 2D model results) are consistent with geological observations and deformation survey across those faults. In 3D models calculation, the stress field in depth of 10~15 Km shows that the maximum and the least principal stress axis is nearly horizontal, the principal tensile stress is about 2~8 times of the principal compressive stress, and their orientations are NNW and NEE, respectively, which are consistent with focal mechanism results and field stress survey. The calculated strain rate in the whole region is rather low, ~10~(-9)/year, which is in accord with former study. Besides, there are three north-east trend high gradient shear strain zones along Shanxi fault zone, Tangshan-Hejian-Cixian fault zone and Tanlu fault zone, respectively. However, in 2D result, the predicted horizontal slip velocity of Zhangjiako-Bohai fault zone is 1.35~ 1.45 mm/year, more higher than that of other faults and 3D model results. 2D model and 3D model calculations imply that the present-day horizontal lithosphere deformation movement pattern in North China region is controlled by the movement of large tectonic blocks surrounding the region. And the influence from the vertical and lateral heterogeneity of lithosphere is secondary. At the same time, Controlled by large tectonic blocks around, the slip features of the main faults within the region inherit their fashions of geological time scale and assume rather low slip velocity, except Zhangjiakou-bohai fault zone which needs to pay more concern.
    Based on 3D model (3DCM_I/3DCM_II), taking power law constitutive relation of rock into account, and using elastic-creep static structural finite element analysis method, the tectonic process during later geological era (~4Ma) is simulated to study the dynamic environment and driving forces of the present-day crustal movement evolvement in North China. In the calculation, the GPS observations surrounding the model area are taken as boundary condition, and the rheology of lithosphere, gravity factor, displace-strain nonlinearity induced by large deformation are also considered. Through choosing boundary conditioning for side faces and bottom of model, together with adjusting rheologic parameters of model element, the influence factors such as the plate tectonics, surrounding block movement, faults activity, and the lithosphere heterogeneity are analyzed to find the most plausible calculation that fits GPS observations and tectonic stress information within the region. The thesis gives 22 model calculations. The results shows that when the nodes on upper side faces of the models move little faster than that of the lower side faces, coupled with the drag movement on the model bottom, the simulation brings its better accordant with observation. Under such conditioning, the lowest average discreteness between the predicted surface velocities and GPS observations is 1.1529mm~2/year (model 3DCM_I), 1.1451mm~2/year (model 3DCM_II), respectively. It's lower than elastic structure finite element analysis result. And the predicted fault slipping rates is consistent with geological information. Under the same boundary conditioning, 3DCM_I model result is better than 3DCM_I model and the simulation including fault slipping are better than the opposite one. The predicted stress field in the depth of 10-15km shows that the least compressive principal stress axis is NNW trend, nearly horizontal. The maximum compressive principal stress axis is NEE trend, nearly horizontal in south area and nearly vertical in north area. The orientation of the predicted principal stress axis is accord with existing information. However, the state of the predicted stress axis is different with the existing cognition to some extent, which favors the maximum and least principal stress axis all being horizontal. The predicted stress field variation feature with depth is obviously controlled by boundary conditioning ( dynamic setting ). The influence of faults on the predicted stress field only focuses on local area or within fault itself.
    In order to study the surface deformation influenced by local construction movement, especially by the activity of blind faults, finding the method to obtain such movement message, the thesis develops GPS differential deformation analysis method. Using this method, the GPS observations in North China region and China Continent are analyzed, respectively. The differential velocity field between the simulation and GPS observations in North China shows that Zhangjiako- Bohai fault zone and Tangshan-Hejian-Cixian fault zone are recent intensively active area, and need closely observe against strong earthquake in future. As for China continent, three models (homogenous model, block model and multi-driving model) are tested for GPS differential deformation analysis. The results show that the present-day tectonic movement in China continent is controlled by multi-driving forces. Among them, the northward indention of India plate and the mantle convection induced dragging force on the bottom of lithosphere play important roles. The former determines the tectonic fashion and surface movement pattern in west continent including Tibet and surrounding region. The latter exerts significant influence on east continent including North China region and South China block. In addition, the influence from the main fault zones, such as Altyh fault zone and Zhangjiakou-Bohai fault, exert their influence on the local surface horizontal movement and should not be ignored.
    Assembling the digital simulations above, we can draw the conclusion as follows. The regional dynamic environment and driving forces of lithosphere deformation in North China is very completed. In one hand, under the subduction of Pacific slab and the northward indention of India plate, the movement of Ordos active block, South China active block and East-North active block controls the surface movement pattern of North China region. In another hand, mantle convection process may directly influence the surface deformation movement of the region. At the same time, the influence from present-day large active fault systems such as Zhangj iakou-Bohai fault and lithosphere heterogeneity, especially the existent of mid-crustal shear zone, should not be ignored.
引文
[1] Andrew M. Freed, Jian Lin, 1998, Time-dependent changer in failure stress following thrust earthquakes, J.Geophysical Res., 103(B10), 24393-24409
    [2] Chi-fen shieh, Shyh-sheu, Ruey-chyuan Shih, 2001, Correlation between surface damage and the coseismic displacement and stress relaxation of the 1999 chi-chi,t aiwan earthquake, GRL, 28(17),3381-3384
    [3] Chen Z., Burchfiel B.C., et al., 2000, Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation, J. Geophys. Res.,Vol.105, 16215-16277.
    [4] Bird P., 2003, An updated digital model of plate boundaries, Geochemistry Geophysics Geosystems,4(3),252-304
    [5] Bird P., 1999, Thin-plate and thin-shell finite-element programs for forward dynamic modeling of plate deformation and faulting, Computers and Geoscience Vol.25,383-394
    [6] Bird P., 1989, New finite element techniques for modeling deformation histories of continents with stratified temperature-dependent rheologies, J. Geophys. Res., Vol.94, 3967-3990.
    [7] Bird P., 1996, Computer simulations of Alaskan neotectonics, Tectonics, Vol.15, 225-236.
    [8] Bird P., Kong X.H., 1994, Computer simulations of California tectonics confirm very low strength of major faults, Geol. Soc. Am. Bull., Vol.106, 159-174
    [9] Bendick R., Bilham R., Freymueller J., Larson K., 2000, Geodetic evidence for a low slip rate in the Altyn Tagh fault system, Nature, Vol.404, 69-72
    [10] Courant R., 1943. Variational Method for Solutions of Problems of Equilibrium and Vibrations,Bull.Am.Math.Soc, Vol.49, 1-23
    
    [11] Clough R W., 1960, The Finite Method in Plane Stress Analysis. Proc.2nd ASCE Conference on Electronic Computation. Pittsburgh, PA., 345-378, Sept.
    
    [12] Deng J., Gurnis M., Kanamori H., Hauksson e., 1998, Viscoelastic flow in the lower crust after the 1992 Kabdersmcakufirbua earthquake, science,282,1689-1692
    [13] Deng J., Hudnut K., Gurnis M., Hauksson E., 1999, stress loading from viscous flow in the lower crust and triggering of aftershocks following the 1994 Northridge, California earthquake, GRL, Vol.26, 3209-3212
    
    [14] Donald L.Turcotte, Gerald Schubert, 2001, Geodynamics, Cambridge university press
    [15] David Hindle, Jonas Kley, et al, 2002, Consistency of geologic and geodetic displacements during Andean orogenesis, Geophysical Res. L., 29(8), 13757-13761
    [16] D.L. Kohlstedt, Brian Evans, et al., 1995, Strength of the lithosphere: Constrains imposed by laboratory experiments,J. Geophysical Res., 100 (B9) ,17587-17602
    [17] E. H. Hearn, B.H.Hager ,et aI,2002, Viscoelastic deformation from North Anatolian Fault Zone earthquakes and the eastern Mediterranean GPS velocity field, Geoph. Res. L. 29(11),14889-13761
    [18] England P., and Houseman G., 1985, Role of lithospheric strength heterogeneities in the tectonics of Tibet and neighboring regions, Nature, Vol.315,297-301.
    [19] England P., and Houseman G., 1986, Finite strain calculations of continental deformation. 2.Comparison with the India-Asia collision zone, J. Geophys. Res., Vol.91, 3664-3676
    [20] England, P. and Houseman, G., 1988, The mechanics of the Tibetan Plateau, R. Soc London Philos. Trans, Ser A, Vol.326, 301-320
    [21] England P., Mckenzie D.P., 1982, A thin viscous sheet model for continent deformation.Geophys. J. R. Astron. Soc, Vol.70, 295-321
    [22] England P., Mckenzie D.P., 1983, Correction to a thin viscous sheet for continental deformation, Geophys. J. R. Astron. Soc, Vol.73, 523-532
    [23] England P., Molnar P, 1990, Right-lateral shear and rotation as the explanation for strike slip faulting in eastern Tibet, Nature, Vol.344, 140-142
    [24] England P., Molnar P., 1997a, The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults, Geophys. J. Int., Vol.130, 551-582.
    [25] England P., Molnar P., 1997b, Active deformation of Asia: From kinematics to dynamics.Science, Vol.278, 647-650
    [26] England P., Molnar P., 1997, The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults, Geophys. J. Int., Vol.130, 551-582
    [27] Fan, W.M., Chen, X. and Menzies Martin, A., 1993, Geographical variations of major elements for peridotitic xenoliths in relation to crust/lithosphere age and thickness in eastern China, Geotectonica et Metallogenia, 17(3), 221-228.
    [28] Feng shen, Leigh H.Royden, et at, 2001. Large-scale crustal deformation of the Tibetan Plateau, J. Geo. Res., 106(B4), 6793-6816
    [29] Fu, R. S., 1989. Earth's geoid anomalies, mantle convection and strese field under the lithosphere. Phys. Earth and Planet. Inter. Vol.54, 50-54
    [30] Fu, R.S. and Huang, J. H., 1991, Global stress pattern constrained on deep mantle flow and tectonic features, Phys. Earth and Planet. Inter. Vol. 60, 314-323
    [31] Griffin, W.L., O'Reilly, S.Y. and Ryan, C.G., 1992. Composition and thermal structure of the lithosphere beneath South Africa, Siberia and China: proton microprobe studies, Internat. Sympos. Cenozoic volcanic rocks and deep-seated xenoliths of China and its environs, Beijing
    [32] Griffin W. L., Zhang A., O'Reilly S. Y., and Ryan C. G., 1998, Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton, In Mantle Dynamics and Plate Interactions in East Asia, Vol.27, ed. M. F. J. Flower, et al.,107-126, American Geophysical Union.
    [33] Geoffrey C.P. King, Ross S. Stein, and Jian Lin, 1994, Static stress changes and the triggering of earthquakes, Bull. Soc. Seismol. Am., 2 March
    [34] Ge Lin, Yanghua Wang, Feng Guol, et al., 2004, Geodynamic modelling of crustal deformation of the North China block: a preliminary study, J. Geophys. Eng., Vol.1, 63-69
    [35] Gilles Peltzer, Fracois Saucier, 1996. Present-day Kinematics of Asia derived from geologic fault rates, J. Geophysical Res., 101(B12), 27943-27956
    [36] Halls, H.C. et al., 2000, A precisely dated Proterozoic palaeomagnetic pole from the North China craton, and its relevance to palaeocontinental reconstruction. Geophysical Journal International, 143(1), 185-203
    [37] Hains A.J., 1982, Calculating velocity field across plate boundaries from observed sgear rates,Geophys. J. R.Astro. Soc. London, Vol.68, 203-209
    [38] Haines A.J., Holt W.E., 1993, A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rates data.J.Geophys.Res., 98(B7), 12057-12082
    [39] Haines A.J., Jackson J.A., Holt W. E., et al., 1998, Representing distributed deformation by continuous velocity fields, Sci.Rep.98/5, Inst of Geol.And Nucl. Sci., Wellinton, New Zealand
    [40] Holbrook W S, Mooney W D, Christensen N I, 1992, The seismic velocity structure of the continental crust, In The Continental Lower Crust, ed., Fountain D M, Arculus R J, et al.,The Netherlands, Elsevier Science Publishers, 1-43
    [41] Houseman G, England P., 1986b, Finite strain calculations of continental deformation, 1.Method and general results for convergent zones, J. Geophys. Res.,Vol. 91, 3651-3663
    [42] Houseman G, England P., 1993, Crustal thickening versus lateral expulsion in the Indian-Asian continental collision, J. Geophys. Res., 98(B7), 12233-12249.
    [43] Houseman G, England P., 1996, A lithospheric thickening model for the Indo-Asian collision,In the Tectonic Evolution of Asia, ed. Yin A., TM Harrison,3-17, New York: Cambridge University Press.
    [44] Houseman G, England P., 1986a, A dynamic model for lithosphere extension and sedimentary basin formation, J. Geophys. Res., Vol. 91, 729-729
    [45] Holt W.E., Haines A.J., 1995, The Kinematics of northern South Island, New Zealand, determined from geological strain rates, J .Geophys. Res., Vol.100, 17991-18010
    [46] Holt W. E., Chamot-Rooke N., Le Picheon X., et al., 2000,Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations, J.Geophys.Res.,105(B5), 19185-19209
    [47] Jackson J.A., Mckenzie D.P., 1988,The relationship between plate motions and seismic moment tensors,and region, Gephys. Res. Lett., 28(6), 1083-1086
    [48] Jianye Ren, Kensaku Tamaki,et al., 2002, Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas, Tectonophysics. Vol.344, 175-205
    [49] Jiankun He, Liu Mian, Yanxing Li, 2003, Is the Shanxi rift of northern China extending?, Geo.Res. Let., Vol.30, NO. 23, 2213, doi:10.1029/2003GL018764, 20032213-2220
    [50] Kurt Stuwe, 2002, Geodynamics of the Lithosphere, Springer
    [51] Kong X.H., Bird P., 1996, Neotectonics of Asia: thin-shell, finite element models with faults,The tectonics of Asia, ed. Yin A., TM Harrison, 18-35, New York, Cambridge University Press
    [52] Kong X.H., Yin A., Harrison TM, 1997, Evaluating the role of pre-existing weakness and topographic distributions in the Indo-Asian collision by use of a thin-shell numerical model,Geology, Vol.25, 527-530
    [53] Kong X.H., 1995, Numerical modeling of the neotectonics of Asia: A new spherical shell finite element method with faults, Ph.D. dissertation, University of California, Los Angles
    [54] Kwan D Park, R.Steven Nerem, et al, 2002, Investigation of glacial isostatic adjustment in the northeast U.S. using GPS measurements ,Geophysical Res. L., 29(11), 13782-13786
    [55] Kirby S H , Kronenberg A K. 1987, Rheology of the lithosphere : selected topics. Rev.Geophys., 25(6), 1219-1244
    [56] Kusky, T.M. and Li, J.H., 2003, Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4), 383-397
    [57] Kaj M. Johnson, Ya-Ju Hsu, et al, 2001, Fault geometry and slip distribution of the 1999 Chi-Chi, Taiwan earthquake imaged from inversion of GPS data, Geophysical Res. L.,28(11),2285-2288
    [58] Kostov V.V., 1974, Seismic moment energy of earthquakes and the seismic flow of rock, IZV.Acad. Sci. USSR Phys. Solid Earth Engl.Transl., Vol.10, 23-44
    [59] Liu GuoDong, 1987, The Cenozoic rift system of the North China Plain and the deep internal process, Vol.133. 277-285
    [60] Liu R. X., 1992, Cenozoic basalt in China: geochronology and geochemistry (in Chinese),Seismology Press
    [61] Linette Prawirodirdjo and Yehuda Bock, 2004, Instantaneous global plate motion model from 12 years of continuous GPS observations , J.Geoph. RES., VOL. 109, B08405,doi:10.1029/2003 JB002944,
    [62] Larson K.M., Burgmann R, Bilham R, Freymuleller JT, 1999, Kinematics of the India-Eurasia collision zone from GPS measurements, J. Geophys. Res., Vol.104, 1077-1093
    [63] Liu. M., and Y. Yang, 2003, Extensional collapse of the Tibetan Plateau: Results of three-dimensional finite element modeling, J. Geophys. Res., 108(B8), 2361, doi:10.1029 /2002JB002248
    [64] Liu M. and Youqing Yan, 2005, Contrasting seismicity between the north China and south China blocks: Kinematics and geodynamics, Geo. Res. Let., VOL. 32, L12310,doi:10.1029/2005GL023048
    [65] Liu, M., X. Cui, and F. Liu, 2004, Cenozoic rifting and volcanism in eastern China: a mantle dynamic link to the Indo-Asian collision?, Tectonophysics,Vol.393, 29-42
    [66] Leigh Royden, 1996, Coupling and decoupling of crust and mantle in convergent orogens: implications for strain partitioning in the crust, J. Geo. Res., 101(B8), 17679-17705
    [67] Leigh H.Royden, B.Clark Burchfiel, et al,1997,Surface Deformation and Lower Crustal Flow in Eastern Tibet, Science, Vol.276, 788-790
    [68] Menzies M. A., Fan W. M., and Zhang M., 1993, Paleozoic and Cenozoic lithoprobe and the loss of > 120 km of Archean lithosphere, Sino-Korean craton, China, GSA Special Pub, 76,71-78
    [69] Mattauer M., 2002, New GPS data in China: a key for a better understanding of the Cenozoic tectonics of Asia, C. R. Geoscience, Vol.334, 809-810
    [70] Muneo Hori, Toshio Kameda, et al, 2000, Prediction of stress field in Japan using GPS network data, Earth Planets Space, Vol.52,1101-1105
    [71] Molnar, P., England, P. and Martinod, J., 1993, Mantle dynamics: uplift of the Tibetan Plateau,and the Indian monsoon, Rev. Geophys., Vol.31, 357-396
    [72] Northrup, C.J., Royden, L.H. and Burchfiel, B.C., 1995. Motion of the Pacific Plate Relative to Eurasia and Its Potential Relation to Cenozoic Extension Along the Eastern Margin of Eurasia, Geology, 23(8), 719-722.
    [73] Peltzer G, Saucier F., 1996, Present day kinematics of Asia derived from geologic fault rates, J.Geophys.Res.,Vol.101, 27943-27956
    
    [74] Qin C.Y., Papazachos C, Papadimitriou E., 2002, Velocity field for crustal deformation in China derived from seismic moment tensor summation of earthquakes, tectonophys, Vol.359,29-46
    [75] Ren, J. S., The Geotectonic Map of China and Its Adjacent Area (1:5,000,000) and Its Explanatory Text, Geological Publishing House, Beijing (in Chinese and English), 1999
    [76] Ren, J.Y., Tamaki, K., Li, S.T. and Junxia, Z., 2002, Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas, Tectonophysics, 344(3-4), 175-205
    [77] Smith.R.B., Bruhn.R.L., 1984, Intraplate extensional tectonics of the eastern Basin-Range:inferences on structure style from seismic reflection data,regional tectonics,andthermal-mecahnical model of brittle-ductile deformation, J. Geophys. Res., Vol.89,5733-5762
    [78] Shen Z.-K., Zhao C.-K., Yin A., et al., 2000, Contemporary crustal deformation in east Asia constrained by Global Positioning Measurements, J. Geophys. Res., Vol.105, 5721-5734.
    [79] Shen Z.-K, Wang M., et al, 2001,Crustal deformation along the Altyn Tagh fault system,western China, from GPS, J. Geophysical Res., 106(12), 30607-30621
    [80] Shyh-yang Sheu, Chiou-fen Shieh, 2004, viscoelatic-afterslip concurrence: a possible mechanism in the early post-seismic deformation of the Mw 7.6,1999 chi-chi(Taiwa),GJI,Vol.159,1112-1124
    [81] Turcotte D L , Schubert G. 1982, Geodynamics Applications of Continuum Physics to Geological Problems, New York: John Wiley & Sons ,450
    [82] Tapponnier P., Mercier J.L., Proust F., et al., 1981, The Tibetan side of the India-Eurasia Collision, Nature, Vol.194, 405-410.
    [83] Tapponnier P., Molnar P., 1977, Active faulting and tectonics of China, J. Geophys. Res.,Vol.82, 2905-2930
    [84] Tapponnier P., Molnar P., 1979, Active faulting and Cenozoic tectonics of Tien Shan,Mongolia and Baykal regions, J. Geophys. Res., Vol.84, 3425-3459
    [85] Tapponnier P., et al., 1990, Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet, Earth Planet. Sci. Lett., Vol.97,382-403
    [86] Turner M J, Clough R W, Martin H C,et al., 1956, Stiffniess Deflection Analysis of Complex Structures, J. Aero. Sci., Vol.23, 805-823
    [87] Wang, Y.-P., Ma, X., 1995, Basic characteristics of active tectonics in China, Episodes 18,73-76,
    [88] Wang, Y.J. et al., 2004, Geochemical Ar-40/Ar-39 geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca. 1800 Ma event of the North China Craton.Precambrian Research, 135(1-2), 55-77
    [89] Wang H. F., Dai T. M., and Fan C. K., 1985, K-Ar isochron dating of Zhangjiakou Hannuoba basalt, Geochimica (in Chinese), Vol.3, 206-215
    [90] Williams C A, Richardson RM, 1991, A rheologically layered 32D model of the San Andreas fault in central and southern California. J. Geophys. Res., 96(B10), 16597-16623
    [91] Wang.R., 1983, A short note on the inversion of tectonic stress fields, Tectonophysics,100,1-3,405-411,
    [92] Wang Q., P.-Z.Zhang, et al, 2001, Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements, science, Vol.294, 5542,574-577
    [93] Xiong X., P.H. Park, Zheng, Y., et al., 2003, Present-day slip-rate of Altyn Tagh Fault:Numerical result constrained by GPS data, Earth Planet Space, Vol.55, 509-514
    [94] Xu, Y.G., 2001, Thermo-tectonic destruction of the archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism, Physics and Chemistry of the Earth Part a-Solid Earth and Geodesy,26(9-10), 747-757
    [95] Xu Jie, Han Zhujun, Wang Chunhua, et al, 1996, Preliminary study on two newly-generated seismotectonic zones in north and southwest China, Earthquake Reserch in China, 10(4),393-401
    [96] Xiaoping Wu, Michael B. Heflin, et al, 2003, Large-scale global surface mass variations inferred from GPS measurements of load-induced deformation, Geophysical Res. L., 30(14),1742-1747
    [97] Xu, Y.G., 2001,Thermo-tectonic destruction of the archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism. Physics and Chemistry of the Earth Part a-Solid Earth and Geodesy, 26(9-10), 747-757
    [98] Yanghua Wang , G.A. Houseman , G. Lin, F. Guo, et al., 2005, Mesozoic lithospheric deformation in the North China block:Numerical simulation of evolution from orogenic belt to extensional basin system, Tectonophysics, Vol.405, 47- 63
    [99] Ye, H., Zhang, B.T., and Mao, F.Y., 1987, The Cenozoic tectonic evolution of the Great North China: Two types of rifting and crustal necking in the Great North China and their tectonic implications, Tectonophysics, Vol.133, 217-227
    [100] Yang Wang, 2001, Heat flow pattern and lateral variations of lithosphere strength in China mainland: constraints on active deformation , Physics of the Earth and Planetary Interiors,Vol.126, 121-146
    [101] Zhao, G.C., 2001, Palaeoproterozoic assembly of the North China Craton, Geological Magazine, 138(1), 87-91.
    [102] Zhai, M.G. and Liu, W.J., 2003, Palaeoproterozoic tectonic history of the North China craton: a review. Precambrian Research, 122(1-4), 183-199
    [103] Zhang Y Q., Mercier J L., Vergely P., 1998, Extension in the graben system around the Ordos(China) and its contribution to the extrusion tectonics of south China with respect to Gobi-Monglia, Tectonophysics, 285: 41-75
    [104] Zhen Liu, Peter Bird, 2002, Finite element modeling of neotectonics in New Zealand, J. Geophysical Res., 107(B12), 2328-2346
    [105] 安美建,石耀霖等,1998,用遗传有限单元反演法研究东亚部分地球现今构造应力场的力源和影响因素,地震学报,20(3),225—231
    [106] 薄万举,杨国华,郭良迁等,2001,地壳形变与地震预测研究,北京:地震出版社
    [107] 薄万举,杨国华,谢觉民等,1996,郯庐断裂带地壳活动新特征,东北地震研究,12(4)
    [108] 陈连旺,陆远忠,张杰等,1999,华北地区三维构造应力场,地震学报,21(2),140-149
    [109] 陈连旺,陆远忠,郭若眉等,2001,华北地区断层运动与三维构造应力场的演化,地震学报,23(4),349—361
    [110] 陈兵,江在森,王双绪等,2000,利用非连续数值变形方法研究块体构造运动及应力场初探,地壳形变与地震,No.1,38—42
    [111] 陈智梁,张选阳,沈凤等,1999,中国西南地区地壳运动的GPS监测,科学通报,44(8),851-854
    [112] 车兆宏,范燕,2000,成组活动强震跨断层形变前兆相似性特征,地震,20(增刊),38—43
    [113] 车兆宏,1993,首都圈断层活动性研究,华北地震科学,11(2),23—34
    [114] 车兆宏,范燕,1999,华北地区断层现今活动速率与特征,地震地质,21(1),69—76
    [115] 程万正,杨永林,2002,川滇地块边界构造带形变速率变化与成组强震,大地测量与地球动力学,22(4),21-25
    [116] 程万正,刁桂苓,2003,川滇地块的震源力学机制、运动速率和活动方式,地震地震,25(1),71—87
    [117] 丁国瑜,1984,中国的活断层,见:国家地震局科技监测司编,大陆地震活动和地震预报国际学术讨论会论文集,北京:地震出版社,149—163
    [118] 丁国瑜,1991,中国岩石圈动力学概论,北京:地震出版社,
    [119] 邓起东,张培震等,2002,中国活动构造基本特征,中国科学(D辑),Vol.32(12),13—22
    [120] 段永红,张先康,方盛明等,2002,华北地区上部地壳结构的三维有限差分层析成像,Vol.45(3),362-369
    [121] 党亚民,陈俊勇.晁定波,2001a,中国及其邻区地壳形变的应变特征,中国科学(D 辑),32(12),1020-1030
    [122] 党亚民.陈俊勇,中国及其邻区地壳应力场数值特征的研究,测绘科学,2001,26(2)11—14
    [123] 独知行,2002,优化反演方法及数值反演试验初步研究,大地测量于地球动力学,22(4),39—43
    [124] 鄂尔多斯周缘活动断裂系,1988,鄂尔多斯周缘活动断裂系课题组,地震出版社
    [125] 冯向东,魏东平,陈棋福,2005,基于观测应力场的大华北地区动力学机制探讨,地震学报,27(1),1—10
    [126] 傅容珊,刘峡,黄建华,2007,三维热导方程求解的波数域方法(MWN3D)及模型实验研究,地球物理方法,Vol.50(2),509-516
    [127] 傅容珊,黄建华,徐耀民等,1998,青藏高原—天山地区岩石层构造运动的地幔动力学机制,地球物理学报,Vol.41,659—668
    [128] 傅容珊,李力刚,黄建华等,1999,青藏高原隆升过程的三阶段模式,地球物理学报,42(5),609-616.
    [129] 傅容珊,黄建华,李力刚等,2000,青藏高原隆升过程三阶段模型的数值模拟,地学前缘Vol.7(4),588-596
    [130] 傅容珊,郑勇等,2004,大陆碰撞及中国大陆应力场的稳定性,中国大陆地球深部结构与动力学研究,科学出版社
    [131] 傅容珊,黄建华,常筱华,2000,青藏高原隆升三阶段模型的数值模拟,地学前沿,7(4),588—596
    [132] 高山,骆庭川,张本仁,等.1999.中国东部地壳的结构和组成,中国科学(D辑),29(3),204~213
    [133] 郭良迁,2000,对中国大陆地壳水平变形的初步探讨,中国地震,16(2),126—134
    [134] 郭良迁,黄立人,2000,中国大陆地壳的应变应力场研究,华北地震科学,18(3),50—58
    [135] 郭良迁,应绍奋,1998,GPS复测结果出版研究华北北部的水平形变及构造活动,中国地震,14(4),11—19
    [136] 郭良迁,薄万举,杨国华,2003,华北地区断裂带的现代形变特征,大地测量与地球动力学,23(2),29—36
    [137] 顾国华,朱红叶,郑贵明等,2000,中国大陆1998~1999年地壳运动观测结果,地震学报,22(6),561-567
    [138] 何建坤,2003,太行山地壳厚度转变带动力学不稳定与前缘盆地构造挤压的关系,地球物理学报,46(2),495—502
    [139] 何丽娟,胡圣标,汪集旸,2001,中国东部大陆地区岩石圈热结构特征,自然科学进 展,11(9),966—969
    [140] 黄立人,杨国华,王敏,2003,用速度场得到的华北地壳活动块体及变形,地震学报,25(1),72—81
    [141] 黄立人,王敏,2000,中国大陆现今地壳水平运动,地震学报,22(3),257-262
    [142] 黄立人,王敏,2003,中国大陆构造块体的现今活动和变形,地震地质,Vol.25(1),P23—32
    [143] 黄立人,宋惠珍,1999,华北部分地区水平变形的力学机制——三维有限[104]单元计算和GPS复测结果分析,地震学报,21(1),50-56
    [144] 黄立人,郭良迁.1998,华北(北部)地区的地壳水平运动特征及其模型-GPS测量结果的初步分析,地壳形变与地震
    [145] 黄少鹏,1992,我国大陆地区大地热流与地壳厚度变化,地球物理学报,35(4),441~450
    [146] 黄福明,马廷著,李群芳等,1995,华北北部构造应力场,中国地震,11(2),121—132
    [147] 黄金莉,赵大鹏,2005,首都圈地区地壳三维P波速度细结构与强震孕育的深部构造环境,科学通报,50(4),348-355
    [148] 黄雨蕊,许忠淮,俞言祥等,1997,下辽河坳陷现代应力场特征,中国地震,13(2),114—119
    [149] 韩竹军,徐杰等,2003,华北地区活动地块与强震活动,中国科学(D辑),33(suppl)
    [150] 嘉世旭,张先康,方盛明等,2001,华北裂陷盆地不同块体地壳结构及演化研究.地学前缘,8(2),259—266
    [151] 江在森,马宗晋,2003,GPS初步结果揭示的中国大陆水平应变场与构造变形,地球物理学报,Vol.46(3),352—357
    [152] 江在森,马宗晋,张希等,2001,青藏块体东北缘水平应变场与构造变形分析,地震地质,23(3),337—345
    [153] 江在森、丁平、王双绪等,2001,中国西部大地形变监测与地燧预报,北京:地震出版社
    [154] 江在森,张希,2000,华北地区近期地壳水平运动与应力应变场特征,地球物理学报,43(5),657—665
    [155] 荆燕,任金卫,2004,利用活断层资料模拟中国大陆及其邻区晚第四纪地壳变形场,地震地质,Vol.26(1),71—90
    [156] 敬少群,吴云,殷志山,2001,中国大陆及其周边块体的现时运动、变形及动力学解释,地壳形变与地震,21(4),8—16
    [157] 焦明若,张国民,车时,刘杰,1999,中国大陆及其周边地区构造应力场的数值计算 及其在地震活动性解释上的应用,地震学报,21(2),123-132.
    [158] 赖锡安,徐菊生,卓力格图等,2000,中国大陆主要构造块体现今运动的基本特征,16(3),213-222
    [159] 赖锡安,黄立人,徐菊生等,2004,中国大陆现今地壳运动,地震出版社
    [160] 李延兴,胡新康,帅平等,2001,中国大陆地壳水平运动统一速度场的建立与分析,地震学报,23(5),453-459
    [161] 李延兴,杨国华,李智等,2003,中国大陆活动地块的运动与应变状态,中国科学(D辑),Vol.33(Suppl),65—81
    [162] 李延兴,李智,张静华等,2004,中国大陆及周边地区的水平应变场,地球物理学报,47(2),222—231
    [163] 李方全,刘光勋,1986,我国现今应力状态及有关问题,地震学报,8(2),156—170
    [164] 李钦祖,靳雅敏,于新昌,1982,华北地区的震源机制与地壳应力场,地震学报,4(1),55—61
    [165] 李祖宁,傅容珊,郑勇,2002,多种驱动力作用下东亚大陆形变及应力场演化,地震学报,45(4),516-524
    [166] 李松林,张先康,宋占隆等,2001,多条人工地震测深剖面资料联合反演首都圈三维地壳结构,地球物理学报,44(3),360-368
    [167] 梁海华,刘树文,候建军等,1999,华北地区深,浅部应力状态的差异及其成因研究,中国地震,15(4),69—76
    [168] 刘国栋,史书林,王宝均,1984,华北地区壳内高导层及其地壳构造活动性的关系.中国科学(B辑),Vol.9,839—848
    [169] 刘国栋,1985,华北平原新生代裂谷系及其深部过程,见:国家地震局地质研究所编.现代地壳运动研究(1),北京,地震出版社,17~25
    [170] 刘光夏,赵文俊,李志雄等,1996,渤海第三纪裂谷扩张的地球物理分析,西北地震学报,18(3),18~24
    [171] 刘建忠,李三忠,周立宏等,华北板块东部中生代构造变形与盆地格局,海洋地质与第四纪地质,Vol.24,No.4,2004,P45-54
    [171] 马林,刘韬,梁尚鸿等,1989,京津张唐地区小震震源机制,地震,Vol.6,69—73
    [172] 马杏垣,刘和甫,王维襄,汪一鹏,1983,中国东部中、新生代裂陷作用和伸展构造,地质学报,Vol.59,22—32,
    [173] 马杏垣,1989,中国岩石圈动力学图,北京:地图出版社,
    [174] 聂文英,祝治平,张先康等,1998,穿过张家口—渤海地震带西缘的折射剖面所揭示的地壳上地幔构造与速度结构,地震研究,21(1),94-102
    [175] 牛树银,候泉林,王宝德等,2003,华北地区拆离滑脱带控震作用初探,地震研究,26(3),257—264
    [176] 潘裕生,1999,青藏高原的形成与隆升,地学前缘,Vol.6(3)
    [177] 裴顺平,陈永顺,2004,东亚地壳上地幔P波速度层析成像,中国地球物理,地球物理学会编,西安地图出版社
    [178] 乔学军,王晓强,王琪,游新兆,2000,新疆伽师地区现今构造运动利地形变GPS监测的初步研究,地壳形变与地震,20(3),49-56.
    [179] 任金卫,王敏,2005,GPS观测的2001年昆仑山Ms8.1地震地壳形变,第四纪研究.Vol.25(1),34—44
    [180] 任金卫,2001,中国大构造变形及动力学解释,高精度GPS观测资料处理、解释研讨会论文集,武汉,73—92
    [181] 石耀霖,王其允,1993,俯冲带的后撤与弧后扩张,地球物理学报,Vol.36(1),37—43
    [182] 石耀淼,朱守彪,2003,中国大陆震源机制深度变化反映的地壳—地幔流变特征,地球物理学报,46(3),359—365
    [183] 帅平,吴云,周硕愚,1999,用GPS测量数据模拟中国大陆现今地壳水平速度场及应变场,地壳形变与地震,19(2),1—18
    [184] 申重阳,吴云,杨少敏等,2001,华北地块内部主要断层运动模型的GPS数据反演分析,地壳形变与地震,21(4),33—42
    [185] 沈正康,王敏,甘卫军等,2003,中国大陆现今构造应变率场及其动力学成因研究,10(Suppl),93—100
    [186] 孙叶,谭成轩,1995,中国现今区域构造应力场与地壳运动趋势分析,地质力学学报,1(3)
    [187] 唐方头,邓志辉,张培震等,2004,由跨断层形变测量反映的华北地块近期断裂活动特征,中国地震.20(4),399—404
    [188] 万永革,沈正康,甘卫军等,2005,华北地区大地震矩释放率和GPS应变率的一致性研究,中国地震,21(1),33—40
    [189] 万天丰,朱鸿,赵磊等,1996,郯庐断裂带的形成与演化综述,现代地质,Vol.10(2)
    [190] 王若柏,杨国华,1995,华北地区地壳垂直形变场及动态演化特征,地震学报,17(2).148—155
    [191] 王敏,沈正康,牛之俊等,2003,现今中国大陆地壳运动与活动块体模型,中国科学(D辑),Vol.33(Suppl),21—33
    [192] 王仁,梁海华,1985,用叠加法反演东亚应力场,地质矿产部书刊编辑室(编).国际交流地质学术论文集(2),北京:地质出版设,29—36
    [193] 王椿铺,张先康,吴庆举等,1994,华北盆地滑脱构造的地震学证据,地球物理学报,37(5),613—620
    [194] 王泽民,伍岳,刘经南等,2002,利用GPS资料采用非连续变形分析模型确定中国大陆地壳运动速度场,武汉大学学报,27(3),241—245
    [195] 王泽民,2001a,非连续变形分析与现代地壳运动研究,武汉大学博士论文.
    [196] 王泽民,2001b,非连续变形分析与现代地壳运动研究,武汉大学学报·信息科学版,26(2),122-126
    [197] 王琪,张培震,牛之俊等,2001,中国大陆现今地壳运动和构造变形,中国科学(D辑),31(7),592-536
    [198] 王琪.张培震,马宗晋,2002,中国大陆现今构造变形GPS观测数据与速度场,地学前缘,9(2),:416-429.
    [199] 王琪,游新兆,王启梁,1998a,红河断裂的GPS监测与现代构造应力场,地壳形变与地震,18(2),49-56
    [200] 王琪.游新兆,王文颖,杨志强,1998b,跨喜马拉雅的GPS观测数据与地壳形变.地学前缘,9(2),416-429
    [201] 王琪,丁国瑜,乔学军,王晓强,2000a,用GPS研究南天山(伽师)地区现今地壳形变,地震学报,22(3),263-270.
    [202] 王琪,丁国瑜,乔学军,王晓强,游新兆,2000b,天山现今地壳快速缩短与南北地块的相对运动,科学通报,45(14),1543-1547
    [203] 王绳祖,张四吕,田勤俭等,2001,大陆动力学—网状塑性流动与多级构造变形,地震出版社
    [204] 汪素云,陈培善,1980,中国及临区现代构造应力场的数值模拟,地球物理学报,23(1),35—45
    [205] 汪素云,许忠淮,俞言祥等,1996,纵观及其临区周边板块作用力的研究,地球物理学报,23(1),35—45
    [206] 汪素云,许忠淮,1985,中国东部大陆的地震构造应力场,地震学报,7(1),17—31
    [207] 汪素云,1996,中国大陆地震震源分布特征的初步研究,地震研究,19(3),310—314
    [208] 汪素云,高阿甲,许忠淮,1993,中国及邻区地震震源机制特征,中国地震区划文集.北京:地震出版社
    [209] 吴云,孙建中,周硕愚,1996,利用地震矩张量反演地壳运动水平速度场的理论利方法,地壳形变与地震,16(3),132—141
    [210] 吴宗絮,郭才华,1991,冀东陆壳结构的岩石学模型,地震地质.13(4),369~376
    [211] 向宏发,王学潮,郝书俭等,2000,聊城—兰考隐伏单列的第四纪活动特性——中国东部平原区一条重要的隐伏活动断裂,中国地震,16(4),307—315
    [212] 徐菊生,赖锡安,卓立格图,施闯,姜卫平,2000,中国大陆西部地区现今的块体运动,地壳运动与地震,20(2),15-23.
    [213] 徐锡伟,冉勇康,1998,张北—尚义地震的地震构造环境与宏观破坏特征,20(2),135—145
    [214] 徐杰等,1985,华北平原新生代裂谷盆地的演化及运动学特征,现代地壳运动研究(1),地震出版社
    [215] 徐杰,宋长青,楚全芝.1998.张家口—蓬莱断裂带地震构造特征的初步探讨,地震地质,20(2),146~153
    [216] 徐杰,牛娈芳,王春华等,1996,唐山-河间-磁县新生地震构造带,地震地质,18(3),193—198
    [217] 徐杰,高战武,2000,太行山山前断裂带的构造特征,地震地质,22(2),111—122
    [218] 许文良,王清海,王冬艳等,2004,华北克拉通东部中生代岩石圈减薄的过程与机制:中生代火成岩和深源捕虏体证据,地学前缘,11(3),309—317
    [219] 谢觉民,杨国华,郭良迁,2000,华北地区跨断层垂直形变分区特征及其对块体划分的意义,地震地质,22(4),387—394
    [218] 谢富仁,陈群策,崔效锋等,2003,中国大陆地壳应力环境研究,地质出版社
    [219] 谢富仁,崔效锋,赵建涛等,2004,中国大陆及邻区现代构造应力场分区,地球物理学报,47(4),654—662
    [220] 许忠淮,汪素云,黄雨蕊等,1989,由大陆的地震资料推断我国大陆构造应力场,地球物理学报,32(6),636—647
    [221] 许忠淮,阎明,赵忠和等,1983,由多个小震推断的华北地区构造应力场的方向,地震学报,5(3),268—279
    [222] 许忠淮,2001,东亚地区现今构造应力图的编制,地震学报,23(5),492—501
    [223] 许忠淮,1989,由大量的地震资料推断的我国大陆构造应力场,地球物理学报,32(6)
    [224] 许才军,陶本藻,李志才,2000,华北地区地壳形变的GPS及地震矩张量反演分析,武汉测绘科技大学学报,25(6),471—475
    [225] 许才军,董立祥,施闯,华北地GPS地壳应变能密度变化率场及其构造运动分析,
    [226] 许才军,晁定波,1997,用大地测量资料反演青藏高原构造应力场的初步尝试,测绘学报,27(4),371—372
    [227] 许才军,陶本藻,1996,大地测量反演线弹性构造应力场,测绘学报,25(1),17-24
    [228] 许才军,董立祥,李志才,2000,华北地壳地壳形变的GPS及地震矩张量反演分析, 武汉测绘科技大学学报,25(6),471—475
    [229] 杨少敏,游新兆,杜瑞林等,2002,用双三次样条函数和GPS资料反演现今中国大陆构造变形场.大地测量与地球动力学,22(2),75—81
    [230] 杨理华,李饮祖,1980,华北地区地壳应力场,北京,地震出版社
    [231] 杨国华,王若柏,1994,华北北部(大首都圈)地区近十年来的地壳垂直运动的演化,地壳形变与地震,14(2),41—46
    [232] 杨国华.韩月萍,张凤兰,2001,利用GPS复测结果确定华北不同运动性质单元及活动方式,地震学报,23(1),1—10
    [233] 杨国华,谢觉民,韩月萍,2001,华北主要构造单元及边界带现今水平形变与运动机制,地球物理学报,44(5),645—653
    [234] 杨国华,江在森,武艳强等,2005,中国大陆整体无净旋转基准及其应用,大地测量与地球动力学,Vol.4
    [235] 杨国华,江在森,刘峡等,2006,华北地区水平运动场动态特征及其于昆仑山8.1级地震的可能关系,大地测量与地球动力学,Vol.26(4),25—31
    [236] 杨国华,王敏,韩月萍,2001,华北中北部地壳运动与张北地震,中国地震,17(3),304-311
    [237] 杨国华,韩月萍,王敏,2003,近10年华北地壳水平运动的若干特征,中国地震,19(4),324—333
    [238] 游新兆,杜瑞林,王琪,乔学军,华晓伟,2001,中国大陆地壳现今运动的GPS测量结果与初步分析,地壳形变与地震,21(3),1-8
    [239] 游新兆,王启梁,王琪,蔺镜刚,吴星华,1994,青藏高原1993年GPS观测成果的糖度分析,地壳形变与地震,21(3),1-8
    [240] 俞言祥,许忠淮,1994,用钻孔崩落法研究冀中坳陷水平主应力方向,石油勘探与开发,21(2),48—55
    [241] 张文佑,1984,断块构造导论.北京:石油工业出版社,1—23
    [242] 张文佑,汪一鹏,李兴唐,1980,华北断块区的形成与发展,科学出版社
    [243] 张培震,王琪,马宗晋,2002a,中国大陆现今构造运动的GPS速度场与活动地块,地学前缘,V9(2),431—441
    [244] 张培震.王琪,马宗晋,2002b,青藏高原现今构造变形与GPS速度场,地学前缘,V9(2),442—450
    [245] 张培震,2002,主要活动地块划分的说明,内部交流
    [246] 张培震,邓起东等,2003,中国大陆的强震活动与活动地块,中国科学(D辑),Vol.33(Suppl),12—20
    [247] 张培震,王琪,马宗晋等,2002,中国大陆现今构造运动的GPS速度场与活动地块, 地学前缘,9(2)
    [248] 张东宁,曾融生,1995,冀中坳陷滑脱构造动力的数值模拟,17(4),414—421
    [249] 张东宁,许忠淮,1994,青藏高原现代构造应力状态及构造运动的三维粘弹性数值模拟,中国地震,10(2),136-143
    [250] 张东宁,许忠淮,1999,中国大陆岩石层动力学数值模型的边界条件,地震学报,21(2),133-139
    [251] 张强,朱文耀.陈宗颐等,2000,中国地壳各构造块体运动模型的初建,科学通报,45(9),950—967
    [252] 张晓亮,江在森,陈兵,李辉,2002,对青藏东北缘现今块体划分、运动及变形的初步研究,大地测量与地球动力学,22(1),63-67.
    [253] 张跃刚,胡新康,华北地区块体及其边界的相对运动,大地测量与地球动力学,P47—50,Vol.25,No.1,2005,
    [254] 张跃刚,胡新康,2004,华北地区地壳水平运动演化特征研究.大地测量与地球动力学,24(1),56—62,
    [255] 张先康,刘国栋,刘泰升等,1998,华北地壳结构的三维探测和研究,见中国科学院地质与地球物理研究所编,寸丹集——庆贺刘光鼎院士工作50周年学术论文集,北京,科学出版社,715~720
    [256] 张先康,祝治平,张成科等,1998,张家口一渤海地震带及其两侧地壳上地幔构造与速度结构研究,见活动断裂研究编委会和中国地震局科技发展司编,活动断裂研究(6),北京,地震出版社,1~16
    [257] 张先康,王椿镛,刘国栋等,1996,延庆—怀来地区地壳细结构——利用深地震反射剖面,地球物理学报,39(3),356—364
    [258] 张建狮,祝治平,张先康等,山西高原北部地壳上地幔地震波速结构与深部构造,地震地质,Vol.19(3),1997,220—226
    [259] 张成科,张先康,盖玉杰等,1997,文安—蔚县—察右中旗剖面地壳上地幔速度结构与构造研究,华北地震科学,15(3),18—28
    [260] 张成科,张先康,赵金仁等,2002,渤海湾及其邻区壳幔速度结构研究与综述,地震学报,,24(4),428—435
    [261] 张友南,孙君秀,1998,华北地壳岩石速度类型及其地质意义,地震地质,20(1),74~80
    [262] 张希,江在森,张晓亮等,2002,华北地区近期地壳水平运动的非震负位错反演,大地测量与地球动力学,22(3),40—45
    [263] 张祖胜,1982,地形变背景与异常分析,见:一九七八年唐山地震编辑组编,一九七六年唐山地震,北京,地震出版社
    [264] 张雁滨,蒋骏,李胜乐等,2004,滇西地区强震与地形变异常的前兆特祉,地震研究,27(2),119—125
    [265] 赵少荣,陶本藻,于正林,1992,论变形测量数据的反演,测绘学报,21(3),161—172
    [266] 赵金仁,张先康,张成科等,1999,香河—北京—涿鹿及其相邻地区壳幔构造与速度结构特征,地震地质,21(1),29—36
    [267] 祝治平,张先康,张建狮等,1997,北京—怀来—丰镇剖面地壳上地幔构造与速度结构研究,地震学报,19(5),499-505
    [268] 朱文耀,陈宗颐,王小亚等 1997,中国大陆地壳运动的初步研究,中国科学(D辑),27(5),385-389.
    [269] 朱文耀,陈宗颐,王小亚,熊永清,1999,中国大陆地壳运动的背景场,科学通报,44(14),1537-1540.
    [270] 朱文耀,王小亚,陈宗颐等,2000,利用GPS技术检测中国大陆地壳运动的初步结果,中国科学(D辑),30(4),394-400
    [271] 臧绍先,吴忠良,宁杰远等,1992,中国周边板块的相互作用及其对中国应力场的影响(2)印度板块的影响,地球物理学报,35(4),428—440
    [272] 臧绍先,李昶,宁杰远等,2002,华北地区岩石圈三维流变结构的一种初步模型,中国科学(D辑),32(7),588—597
    [273] 臧绍先,刘永刚,宁杰远,2002,华北地区岩石圈热结构的研究,地球物理学报,45(1),56—66
    [274] 臧绍先,宁杰远,刘宝城等,1989,中国周边板块的相互作用及其对中国应力场的影响—(1)太平洋板块,菲律宾海洋板块的影响,八十年代中国地球物理学进展—纪念傅承义教授八十寿辰,地球物理学报编辑委员会,学术书刊出版社,293—306
    [275] 周永胜,何吕容,2003,地壳主要岩石流变参数及华北地壳流变性质研究,地震地质,25(1),109—122
    [276] 周硕愚,施顺英,1997,唐山地震前后地壳形变场的时空分布,演化特征与机理研究,地震学报,19(6),559—565
    [277] 郑勇,傅容珊,熊熊,中国大陆及周边地区现代岩石圈演化动力学模拟,地球物理学报,2006,49(2),415—427

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700