用户名: 密码: 验证码:
CO_2流体—砂岩相互作用的实验研究及其在CO_2气储层中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在自行设计、改装的FYX-1型高压釜的基础上,进行了不同温度下CO2流体与石英、长石单矿物,CO2流体与长石砂岩,CO2流体与石英砂岩,CO2流体与含片钠铝石砂岩的水热实验;同时还进行了地层水与含片钠铝石砂岩的水热实验。实验的目的为:1)研究CO2流体与不同类型砂岩的相互作用;2)研究潜在固碳矿物-片钠铝石的稳定性。通过扫描电镜观察及溶液化学成分分析发现:1)随着温度的升高,CO2流体对不同类型砂岩的改造作用逐渐增强,片钠铝石的稳定性逐渐减弱;2)反应后,样品表面有新矿物生成(菱铁矿、水铝矿、绿泥石、高钠长石等);3)在现今地层条件下,片钠铝石能够稳定存在,其稳定存在的温度上限为100-150℃。
     在水热实验基础上,总结出CO2流体与砂岩相互作用的过程及机理,在此基础上对海拉尔盆地乌尔逊凹陷的含片钠铝石砂岩储层进行孔隙类型、地层水特征、储层物性进行研究,进而研究CO2流体对储层砂岩的改造及对储层物性的影响。
CO2 is a kind of active gas that can be dissolved into water and then form acid fluid. The acid fluid can cause dissolution of soluble mineral such as feldspar and deposition of some new carbonate minerals. The transformation of CO2 charging on the reservoir sandstone is a new question of reservoir research. And laboratory simulation under high temperature and high pressure is one of useful methods to answer the question. At present, injecting CO2 into the subsurface to form stable carbonate minerals is a feasible method to reduce CO2 releasing into atmosphere. If the fixed carbonate minerals by carbon dioxide can exist stably in reservoir is another question that scholars at home and aboard concerned all along. The Yingcheng Formation Debris arkosic sandstone from well SN78-1 in southern Songliao Basin, dawsonite-bearing sandstone from well Tong6 of Wuerxun sag in Hailaer basin, quartz sandstone、monomineralic quartz and feldspar from outcrop were used to carry out hydro-thermal experiments on sandstone- CO2- H2O system at different temperatures(100℃,200℃,300℃). The process of sandstone- CO2 interaction was described semiquantitatively. The solution was prepared according to the features of stratum water in dawsonite-bearing sandstone of Wuerxun sag, then hydro-thermal experiments at different temperature(100℃,200℃,300℃) were made to verify the stability of dawsonite under the stratum water condition since dawsonite had formed. In addition, the features of stratum water, diagenetic paragenesis and reservoir features of dawsonite-bearing sandstone are analyzed in Wuerxun sag, Hailaer basin in order to study CO2-sandstone interaction in CO2 gas reservoir.
     Through SEM and analysis of liquid chemical constitution of 6 series 20 hydro-thermal experiments of carbon dioxide fluid and sandstones, and the hydro-thermal experiment in stratum water-dawsonite-bearing sandstone system such conclusions are made.
     (1)It is indicated that the higher the temperature rise, and the harder the samples are dissolved. Analysis the change of total salinity and the weight of the samples show that the sandstones dissolved harder as the temperature rise, through the series experiments of carbon dioxide fluid and feldspar、quartz,carbon dioxide fluid and arkosic sandstone、quartz sandstone, carbon dioxide fluid and dawsonite sandstone, stratum water and dawsonite-bearing sandstone.
     (2)As the temperature rise, feldspar, quartz, calcite and dawsonite dissolved harder. Through the hydro-thermal experiment of sandstone and monomineralic, found that feldspar, quartz, calcite and dawsonite dissolved harder as the temperature rise. At the same condition, calcium feldspar dissolved harder than sodium feldspar, sodium feldspar dissolved harder than potassium feldspar. The stability of dawsonite weaken. Dawsonite was severely dissolved at 200℃of carbon dioxide fluid and dawsonite sandstone hydro-thermal experiment, and was dissolved harder at 150℃of stratum water and dawsonite sandstone hydro-thermal experiment.
     (3)After the hydro-thermal experiment , gibbsite of any shape deposited at the surface of the grains. When the feldspar and arkosic sandstone reacted with the carbon dioxide fluid, gibbsite deposited at 200℃and 300℃at the surface of the grains, its shape include spherulitic, claviform, needle-leaved, efflorescent, radiate, and the higher the temperature was, the better the gibbsite grown. Gibbsite deposited at 200℃when the quartz sandstone reacted with carbon dioxide fluid. Gibbsite deposited at 100℃and 200℃when the dawsonite sandstone reacted with carbon dioxide fluid. The concentration of Al3+ ion was very low even below the detection limit, because the deposition of gibbsite.
     (4)Siderite, iron oxide and some unknown carbonate minerals formed after the hydro-thermal experiment which indicated that some minerals were dissolved by carbon dioxide fluid, but at the mean time they were fixed as carbonate minerals. At 200℃, feldspar(potassium feldspar and plagioclase), quartz and dawsonite sandstone reacted with carbon dioxide fluid , siderite was formed at the surface of the grains. At 200℃, iron oxide was formed when quartz sandstone reacted with carbon dioxide fluid. At 300℃, iron oxide was also formed when plagioclase reacted with carbon dioxide fluid. At 150℃and 200℃, some unknown carbonate mineral was found through the analysis of X-ray diffraction when dawsonite-bearing sandstone reacted with stratum water.
     (5)After the hydro-thermal experiment , new minerals appeared such as chlorite and albite. Through the experiment of carbon dioxide fluid and dawsonite-bearing sandstone at 300℃, foliated chlorite deposited in the surface of the grains. Through the experiment of dawsonite-bearing sandstone and stratum water at 200℃, foliated chlorite also deposited in the surface of the grains, and a large mount of albite formed as cubic monomer or spherulitic aggregation.
     By studying on the formation condition and stabilization of dawsonite through the combine of hydro-thermal experiment and geological example, it is found that dawsonite was formed at high pressure of carbon dioxide and alkalinity condition, and it is easy to identification, can exist stability in present stratum. Dawsonite is a kind of white carbonate mineral with sodium and aluminum, which grows in sandstone, dolomite, oil shale and volcanic ash of continental facies stratum, some were also found in marine facies and coal measures. Dawsonite grows in the pores of sandstone or replaces feldspars and rock debris, and it has generally a shape of radial, fascicular, trichoid, platelike. In Wuerxun sag ,the dawsonite-bearing sandstone distributes between 1300m and 2000m. Through hydro-thermal experiment at 100℃, it is found that dawsonite wasn’t dissolved or only dissolved slightly. So under current stratum condition, dawsonite can exist stably even generating the phenomenon of carbon dioxide charging and interacting with stratum water, if a small amount of dawsonite is dissolved that siderite or other carbonate minerals can be formed, this made it possible to store carbon dioxide as carbonate minerals forever.
     The comparison of dawnsonite-bearing sandstone and sandstone showed that the stratum water of Wuerxun sag are characterized by high salinity and high concentration of Na+,K+ +Na+,HCO3-,CO32-. The value of pH is about 8.36, showing the alkalescent fluid. The total salinity is 22.832g/L. The water-type is NaHCO3, the concentratin Na+ of is 6.466g/L,the concentration of HCO3- is 14.533g/L, with the characteristics of high salinity and high concentration of Na+,K+ +Na+,HCO3-,CO32-. The origin of this is the carbonic acid made the content of HCO3- increase, which forming from igneous magma of Yanshan Stage carrying the carbon dioxide to Nantun formation along the deep fracture. At the mean time , feldspar was replaced by acid, made the content of Na+,K+,Ca2+ increase, and some of the Ca2+ combine with the CO32- forming cement of carbonate.
     And other minerals formed earlier than dawsonite in dawsonite-bearing sandstone from Wuerxun sag. The diagenetic paragenesis include clay mineral coating-calcite-feldspar erosion, secondary growth of quartz, kaolinite-injection of oil and gas-injection of carbon dioxide-dawsonite-ankerite. The combination of authigenic minerals before carbon dioxide filling are calcite、secondary growth of quartz and kaolinite , and these mineals are all dissolved. The authigenic minerals are dawsonite and ankerite after CO2 charging.
     Because the solution of calcite, quartz overgrowth and kaolinite by the CO2 acid fluid, the pore types of dawsonite-bearing sandstone are mainly secondary porosity. And the cementation of authigenic carbonate minerals such as dawsonite made the reservoir condition poorer. The average porosity of dawsonite-bearing sandstone in Wuerxun sag is 10.73%, permeability is 3.94×10-3μm2. So poor reservoir condition was caused by that abundant carbonate minerals such as dawsonite formed as CO2-sandstone interaction, and no dissolution happened.
引文
[1] 蔡进功,谢忠怀,田芳等. 济阳坳陷深层砂岩成岩作用及孔隙演化[J]. 石油与天然气地质. 2002, 23(1): 84-88.
    [2] 邸世祥等. 中国碎屑岩储集层的孔隙结构[M]. 西安:西北大学出版社,1991.
    [3] 杜韫华. 一种次生的片钠铝石. 地质科学,1982,4:434-437.
    [4] 杜韫华. 具二氧化碳气顶储层的成岩作用研究. 石油与天然气地质,1985,6(1):91-95.
    [5] 高玉巧,刘立,曲希玉. 片钠铝石的成因及其对CO2天然气运聚的指示意义. 地球科学进展,2005a,20(10):1083-1088
    [6] 高玉巧,刘立,蒙启安等. 海拉尔盆地与澳大利亚 Bowen-Gunnedah-Sydney 盆地系片钠铝石碳来源的比较研究. 世界地质,2005b,24(4): 344-349.
    [7] 高玉巧,刘立,曲希玉. 海拉尔盆地乌尔逊凹陷片钠铝石及研究意义. 地质科技情报,2005c,24(2): 45-50.
    [8] 高玉巧,刘立. 含片钠铝石砂岩的基本特征及地质意义[J]. 地质论评. 2007,53(1): 104-110.
    [9] 郭巍,刘彦杰,王建功,李志政,张伟. 松辽盆地英台地区储层砂岩体微观结构特征研究. 长春科技大学学报,1998,28(21):162-165.
    [10] 何生,唐仲华,陶一川等. 松南十屋断陷低压系统的油气水文地质特征[J]. 地球科学—中国地质大学学报, 1995, 20: 79-84.
    [11] 黄福堂,邹信方,张作祥. 地层水中主要酸类对储层物性影响因素研究[J]. 大庆石油地质与开发. 1998,17(3): 7-9.
    [12] 黄善炳. 金湖凹陷阜宁组砂岩中片钠铝石特征及对物性的影响. 石油勘探与开发,1996,23(2):32-34.
    [13] 黄思静,杨俊杰,张文正等. 不同温度条件下乙酸对长石溶蚀过程的实验研究[J]. 沉积学报. 1995, 13(1): 7-17.
    [14] 胡瑞林,岳中琦,王立朝等. 斜长石溶蚀度:一种评价花岗质岩石风化度的新指标[J]. 地质论评. 2005, 51(6): 649-655.
    [15] 霍秋立,汪振英,李敏等. 海拉尔盆地贝尔凹陷油源及油气运移研究吉林大学学报(地球科学版),2006, 36(3): 377-383.
    [16] 李春梅,何可. 江汉掩护盆地盐间非砂岩储层特征及储层类型[J]. 江汉石油学院学报,2001,23(3):6-9.
    [17] 李汶国,张晓鹏,钟玉梅. 长石砂岩次生溶孔的形成机理[J]. 石油与天然气地质. 2005, 26(2): 220-223.
    [18] 刘宝珺,张锦泉. 沉积成岩作用[M]. 北京: 科学出版社. 1992: 138.
    [19] 刘立, 高玉巧, 曲希玉等. 海拉尔盆地乌尔逊凹陷无机CO2气储层的岩石学与碳氧同位素特征[J]. 岩石学报. 2006, 22(08): 2229-2236.
    [20]刘玉山,张桂兰. 250-500℃、100MPa 下海水一玄武岩反应的实验研究[J]. 地球化学. 1996, 25(1): 53-62.
    [21] 罗孝俊,杨卫东,李荣西等. pH 值对长石溶解度及次生孔隙发育的影响[J]. 矿物岩石地球化学通报. 2001, 20(2): 103-107.
    [22] 罗孝俊. 长石溶解反应的热力学及吐哈盆地侏罗系储层地球化学研究,中国科学院地球化学研究所硕士论文,2001b,6.
    [23] 邱隆伟,姜在兴,陈文学等. 一种新的储层孔隙成因类型-石英溶解型次生孔隙[J]. 沉积学报. 2002, 20( 4) : 621- 627.
    [24] 曲希玉,刘立,王志国等. 乌尔逊凹陷含片钠铝石砂岩地层水特征及成因[J]. 大庆石油学院学报. 2006,30(5): 7-10.
    [25] 曲希玉,刘立,胡大千,马瑞,尤丽.CO2 流体对含片钠铝石砂岩改造作用的实验研究. 吉林大学学报(地球科学版),2007a,37(4):691-698.
    [26] 曲希玉,刘立. 含片钠铝石砂岩-地层水相互作用实验研究[J]. 天然气工业,2007b(已录用).
    [27] 曲希玉,刘立,高玉巧等. 乌尔逊凹陷苏仁诺尔断裂带含片钠铝石砂岩储层物性特征及成因[J]. 大庆石油地质与开发. 2007c(收到录用通知).
    [28] 史宏才,朱江庆,王诗中等. 高温下矿物—水反应的研究[J]. 石油学报. 1998, 19(2): 73-79.
    [29] 宋荣华,王军,何艳辉等. 荧光图像技术判断储层流体性质研究. 油气井测试,2000,(4):28-32.
    [30] 孙英杰. 乌尔逊凹陷油气成藏机制及主控因素研究. 大庆石油学院博士论文,2004:8-24.
    [31] 孙玉梅,郭迺嬿,王彦. 莺-琼气区天然气主气源及注入史分析. 中国海上油气(地质),2000,14(4):240-247.
    [32] 唐洪明,孟英峰,吴泽柏等. 酸化体系中长石的稳定性研究[J]. 天然气工业. 2004,24(12): 116-118.
    [33] 唐清山,魏桂萍,杜德军. 石英溶解对稠油储层的影响[J]. 特种油气藏. 1996, 3: 28-30.
    [34] 王江,张宏,林东成. 海拉尔盆地乌尔逊含氦CO2气藏勘探前景. 天然气工业, 2002, 22(4):109~111.
    [35] 王平在,李明生,王江. 海拉尔盆地乌尔逊含氦二氧化碳气藏石油地质特征及勘探前景[J]. 特种油气藏,2003,10(6):9-12.
    [36] 王濮,潘兆橹,翁玲宝等.系统矿物学下册[M]. 北京:地质出版社. 1987, 2:415-416.
    [37] 王始波,张小东等. 海拉尔盆地断块群滚动勘探技术研究. 大庆勘探开发研究院勘探研究二室,2001,1-112.
    [38] 吴新民,康有新,姜英泽等. 吉林大安北油田葡萄花储层岩石基本特征. 西安石油学院学报,1999,14(1):6-9.
    [39] 吴新民,康有新,张宁生. 吉林油田大 26 井区储层潜在伤害因素分析. 西安石油学院学报(自然科学版),2001,16(5):29-32.
    [40] 向树安, 姜在兴, 张元福. 盐系地层低电阻率油层形成机理与识别[J]. 天然气地球科学,2006. 17(4): 514-517.
    [41] 向廷生,蔡春芳,付华娥. 不同温度、羧酸溶液中长石溶解模拟实验[J]. 沉积学报, 2004, 22(4): 597-602.
    [42] 徐衍彬,陈平,徐永成. 海拉尔盆地碳钠铝石分布与油气的关系. 石油与天然气地质,1994,15 (4) :322-327
    [43] 徐衍彬, 冯子辉, 要丹. 海拉尔盆地二氧化碳气藏成因[J]. 大庆石油地质与开发, 1995, 14(1): 9-11.
    [44] 薛永超,彭仕宓,朱红卫,张慧杰. 新立油田泉三、四段储层成岩作用及储集空间演化. 西安石油大学学报(自然科学版),2005, 20(4): 11-16.
    [45] 杨俊杰,黄月明,张文正等. 乙酸对长石砂岩溶蚀作用的实验模拟[J]. 石油勘探与开发,1995, 22(4): 82-86.
    [46] 银燕. 东营凹陷西部CO2气藏地质特征及其与气源空间关系分析. 西北大学硕士学位论文,2003:6-13.
    [47] 曾允孚,夏文杰. 沉积岩石学[M]. 北京: 地质出版社,1986: 194-199.
    [48] 张长俊,龙永文. 海拉尔盆地沉积相特征与油气分布[M]. 北京:石油工业出版社,1995.
    [49] 张晨鼎. 美国在开发科罗拉多苏打石矿床资源[J]. 纯碱工业,1999,6:13-15.
    [50] 张金亮. 陆东凹陷九佛堂组储层岩石学及成岩作用[J]. 西安石油大学学报(自然科学版),1995,10(2): 4-10.
    [51] 张生,李统锦. 二氧化硅溶解度方程和地温计[J]. 地质科技情报,1997, 16(1): 53-58.
    [52] 张向峰,温兆银,吴梅梅,林祖纕. 片钠铝石的水热合成研究[J]. 硅酸盐学报,2003,31(4): 336-340.
    [53] 张晓东,刘光鼎,王家林. 海拉尔盆地的构造特征及其演化[J]. 石油实验地质, 1994, 16(2): 119-127.
    [54] Alexandra N. Golab, Paul F. Carr, Daniel R. Palamara. Influence of localised igneous activity on cleat dawsonite formation in Late Permian coal measures, Upper Hunter Valley, Australia[J]. International Journal of Coal Geology, 2006, 66:296–304.
    [55] Amerhein C. and Surez D. L.. The use of a surface complexation modelto describe the kinetics of ligand-promoted dissolution of anorthite at 25℃ [J]. Geochim.et Cosmuchim. Acta, 1988, 52vo1:2785-279
    [56] Astrid Berg, Steven A. Carbon dioxide mediated dissolution of Ca-feldspar: implications for silicate weathering [J]. Banwart.. Chemical Geology, 2000, 163: 25-42.
    [57] Bachu, S., Gunter, W.D., Perkins, E.P.. Aquifer disposal of CO2: hydrodynamic and mineral trapping[J]. Energy Convers. Manage, 1994, 35: 269-279.
    [58] Bader E. Uber die buidung and konstitution des dawsonite and seine synthetic darstelling[J]. Neues. Jahr. Mineral. Geol. Palaont, Teil,1938, 74:449-465.
    [59] Baker J C. Diagenesis and reservoir quality of the Aldebaran Sandstone, Denison Trough, east-central Queensland, Australia [J]. Sedimentol, 1991, 38: 819- 838.
    [60] Baker J C, Bai G P, Hamilton P J, Golding S D and Keene J B. Continental scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney basin system, Eastern Australia. J. Sediment. Res, 1995, 65 (3): 522- 530.
    [61] Benezeth P, Palmer D A., Horita J, et al. Experimental determination of dawsonite stability and reactivity: Implications for geological CO2 sequestration[J]. Geophysical Research Abstracts, 2006, 8.
    [62] Bennett P C,Melcer M,Siegel D,et al. The dissolution of quartz in dilute aqueous solutions of organic acids at 25℃ [J]. Geochim. Cosmochim. Acta, 1988, 52: 1521-1530.
    [63] Bennett P C. Quartz dissolution in organic-rich aqueous system[J]. Geochim. Cosmochim. Acta, 1991, 55: 1781-1798.
    [64] Bertier P, Swennen R, Laenen B, et al. Experimental identification of CO2–water–rock interactions caused by sequestration of CO2 in Westphalian and Buntsandstein sandstones of the Campine Basin (NE-Belgium) [J]. Journal of Geochemical Exploration, 2006, xx: xxx–xxx.
    [65]Biniam Zerai, Beverly Z. Saylor, Gerald Matisoff.. Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone, Ohio[J]. Applied Geochemistry, 2006, 21: 223-240.
    [66]Bischoff J L, Dickson F W. Seawater basalt interaction at 200℃ and 500 bars: Implication for origin of sea floor heavy metal deposits and regulation of seawater chemistry. Earth Planet Sci Lett, 1975,25: 385-397.
    [67] Blake R. E.,Walter L. M. Effects of organic acids on the dissolution of orthoclase at 80℃ and pH 6[J]. Chemical Geology, 1996,132: 91-102.
    [68] Blatt H,Middleton G,Murray R. The Origin of Sedimentary Rocks [M]. Second edition. Englewood Cliffs, New Jersey: Prentice2Hall, Inc. .1980: 332 - 362.
    [69]Bowker, K A, Shuler, P J.. Carbon dioxide injection and resultant alteration of the Weber sandstone, Rangely field, Colorado[J]. Amer. Assoc. Petrol. Geol. Bull. 1991, 75: 1489-1499.
    [70] Brady, P. V. The effect of silicate weathering on global temperature and atmospheric CO2[J]. Geophys.Res. 1991, 96: 18101-1810.
    [71] Brady, P.V. and WaIther, J.V. Control on silicate dissolution rates in neutral and basic pH solution at 25℃ [ J]. Geochim et Cosmochim Acta. 1989, 53 vo1: 2823-2830.
    [72] Burch T. E.,Nagy K. L.,Lasaga A. C.. Free energy dependence of ablate disslutoin kinetic at 80℃ and pH 8.8[J]. Chem. Geol. 1993, 105: 137-162.
    [73] Casey W H, Westrich H R, Arnold G W. Surface chemistry of labradorite feldspar reacted with aqueous at ph=2,3 and 12[J]. Geochim. et Cosmochim. Acta, 1988, 52: 2795-2807.
    [74] Chesworth W. Laboratory synthesis of dawsonite and its natural occurrences[J]. Nat. Phys.Sci.1971, 231:40-41.
    [75] Dibble Jr W E, Potter J M. Non-equilibrium water-rock interactions. 57th Annunal Falt Technical Conference and Exhibition of the Society of Petroleum Engineer of AIME, Abstract. Washington D C: AIMPE, 1982.
    [76] Dove P M,Crerar D A. Kintrics of quartz dissolution in electrolyte solutions using ahydrothermal mixed flow reactor[J]. Geochim. Cosmochim. Acta, 1990, 54: 955-969.
    [77] Emberley S, Hutcheon I, Shevalier M, et al. Geochemical monitoring of fluid-rock interaction and CO2 storage at the Weyburn CO2-injection enhanced oil recovery site, Saskatchewan, Canada[J]. Energy. 2004, 29:1393-1401.
    [78] Golab,A N, Carr b,P F, Palamara, D R. Influence of localised igneous activity on cleat dawsonite formation in Late Permian coal measures, Upper Hunter Valley, Australia. International Journal of Coal Geology, 2005.
    [79] Goldbery R,Loughnan F C . Dawsonite and nord strandite in Permian Berry Form ation of the Sydney Basin, N . S . W . [J]. American Mineralogist, 1970, 55:477-490.
    [80] Goldich S. S.. A Study in rock weathering[J]. Geol, 1938, 46: 17-58.
    [81] Gout R., Oelkers E H., Schott J., Zwick A. The suiface chemistry and structure of acid-leached albite: New insights on the dissolution mechanism of the alkali feldspars[J]. Geochim. et Cosmochim. Acta, 1997, 61: 3013-3018.
    [82] Greg H. Rau, Ken Caldeira. Enhanced carbonate dissolution: a means of sequestering waste CO2 as ocean bicarbonate[J]. Energy Conversion & Management, 1999, 40: 1803-1813.
    [83]Gunter, W.D., Wiwchar, B., Perkins, E.H., 1997. Aquifer disposal of CO2-rich greenhouse gases: extension of the time scale of experiment for CO2-sequestering reactions by geochemical modeling. Mineral. Petrol, 59, 121-140.
    [84] Hajash A, Archer P. An experimental seawater/basalt interaction: effects of cooling. Contrib Miner Petrol, 1980,75: 1-13.
    [85] Hay R L . Zeolite weathering in Olduvai Gorge, Tanganyika[J].Bulletin of Geological Society of America, 1963, 74: 1281-1286 .
    [86] Helge Hellevang, Per Aagaard, Eric H. Oelkers, et al. Can dawsonite permanently trap CO2?[J]. Environ. Sci. Technol, 2005, 39: 8281-8287.
    [87] Hellmann R. The albite-water system: Part Ⅰ. The kinetics of dissolution as a function of pH at 100,200,and300℃ [ J]. Geochim. et Cosmochim. Acta, 1994, 58: 595-611.
    [88] Hellman R, Eggleston C M, Hocehlla M F, Crerar D A. The formation of leached layers on albite surfaces during dissolution under hydrothermal condition[J]. Geochim. et Cosmochim. Acta, 1990, 54: 1267-1281.
    [89] Holdren, Jr, G R and Speyer, P M.. pH dependent changes in rates and stoichiometry ofdissolution of an alksli feldspar at room temperature[J]. Am, J, Sci, 1985b, 285: 954-1026.
    [90] Hosaka M,Taki S. Hydrothermal growth of quartz crystals in KCl solutions[J]. Crystal Growth, 1981, 53: 542-546.
    [91] Huang, W.L. and Longo, J.M.. The effect of organics on feldspar dissolution and the development of secondary porosity[J]. Chem. Geol, 1992, 98:271-292.
    [92] Huggins, Charles W.; Green, Thomas E.; Tuener, T. L. Evaluation of methods for determining nahcolite and dawsonite in oil shales[C]. Report of investigations-United States, Bureau of Mines, 1973: 25.
    [93] John P. Kaszuba, David R. Janecky, Marjorie G. Snow.. Carbon dioxide reaction processes in a model brine aquifer at 200℃ and 200 bars: implications for geologic sequestration of carbon[J]. Applied Geochemistry, 2003,18: 1065- 1080.
    [94] Kamiya H,Shimokata K. The role of salts in the dissolution of powered quartz. In: Cadek J, Paces T, eds. Proceedings of the international symposium on water-rock interaction. Prague, Czechoslovakia, Geol. Surv.,Prague, 1976: 426-429.
    [95] Kennedy G C. A portion of the system silica-water[J]. Econ. Geol. 1950, 45: 629- 665.
    [96] Knauss K G,Wolery T J. The dissolution kinetics of quartz as afunction of pH and time at 70℃ [ J]. Geochim. Cosmochim. Acta, 1988, 52: 43-53.
    [97] Lihui Liu, Yuko Suto, Greg Bignall et al.. CO2 injection to granite and sandstone in experimental rock/hot water systems[J]. Energy Conversion and Management, 2003, 44: 1399-1410.
    [98] Loughnan F C, See G T . Dawsonite in the Greta Coal Measuresat Mus well- brook, New South Wales [J]. American Mineralogist, 1967, 52:1216-1219.
    [99] Loughnan F C, Gold bery R . Dawsonite and analcite in the Singleton Coal Measures of the Sydney Basin [J]. American mineralogist, 1972, 57:1437-1447.
    [100] Martin R. Lee,Ian Parsons. Microtextual controls of weathering of perthitic alkali feldspars[J]. Geochimica et Cosmochimica Acta, 1995, 59(21): 4465-4488.
    [101] Martin R. Lee,Mark E. Hodson,Ian Parsons. The role of intragranular microtextures and microstructures in chemical and mechanical weathering: Direct comparisons of experimentally and naturally weathered alkali feldspars [J]. Geochimica et Cosmochimica Acta, 1998, 62(16): 2771-2788.
    [102] Moore J,Adams M,Allis R,Lutz S,Rauzi S. 2005. Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs: an example fromthe Springerville-St. Johns Field, Arizona, and New Mexico, USA. Chemial Geology, 217: 365-385.
    [103] Mottle M J, Holland H D, Corr R F. Chemical exchange during hydrothermal alteration of basalt by seawater-Ⅱ . Geochim Cosmochim Acta, 1979, 43: 869-884.
    [104] Nicholas E, Ozi mic S. Dawsonite in Sydney Basin wells [J]. Austral ian Bureau of Mineral Research, 1970,7:118-131 .
    [105] Oelkers E H, Schott J, Devidal J L. The effect of aluminum, pH and chemical affinity on the rates of aluminosilicate dissolution reaction[J]. Geochim. et Cosmochim. Acta, 1994, 58: 2011-2024.
    [106]Omole, O., Osoba, J.S.. Carbon dioxide±dolomite rock interaction during CO2 flooding process. 1983: 83-34-17 Petrol. Soc. Canadian Inst. Min. Metal. 1-13, Banff Alberta.
    [107] O’Neil J R,Clayton R N,Mayeda T K. Oxygen isotope fractionation in divalent metal carbonates[J]. Journal of Chemical Physics, 1969, 51:5547-5548.
    [108]Ortoleva P J,Dove P,Richter F. Geochemical perspectives on CO2 sequestration[A]. In: US Department of Energy Workshop on “Terrestrial Sequestration of CO2—An Assessment of Research Needs”[C], Wawersik W R and Rudnicki J W , Editors: 1998, 20-28.
    [109]Patterson, K W.. Fighting downhole corrosion and scale in food CO2 at SACROC[J]. Petrol. Eng. Intl, 1979, 50: 36-44.
    [110] Plummer,L N, Wigley,T M L, Parkhurst, D L.. The kinetics of calcite dissolution in CO2-water systems at 5-60℃ and 0.0-1.0 atm CO2[J]. Am. J. Sci, 1978, 278:179-216.
    [111]Pohl D C, Liou J G. Flow-through reaction of basalt glass and seawater at 300 degree C and 200 degree C, 250 bars pressure. Extended Abstract. Ⅳ Inter-Symp Water-Rock Interaction. Misasa, Japan, 1983: 389-392.
    [112] Pokrovski G S, Schot J, Salvi S et al.. Structure and stability of aluminium-silica complexes in neutral to basic solution, Experimental study and molecular orbital calculations[J]. Mineralogical Magazine, 1998, 62A: 1194-1195.
    [113]Ross, G.D., Todd, A.C., Tweedie, J.A.. The effect of simulated CO2 flooding on the permeability of reservoir rocks. In: Proc. 3rd European Symp. Enhanced Oil Recovery, 1981: 351-366.
    [114] Ryoji Shiraki, Thomas L.. Experimental study on water±rock interactions during CO2fooding in the Tensleep Formation, Wyoming, USA[J]. Applied Geochemistry, 2000, 15: 265-279.
    [115] Ryzhenko B N. Genesis of dawsonite mineralization: Thermodynamic analysis and alternatives[J]. Geochemistry International, 2006, 44(8): 835-840.
    [116] Sayegh, S G, Krause, F F. Girard,Marcel, et al. Rock/fluid interactions of carbonated brines in a sandstone reservoir Pembina Cardium, Alberta, Canada[J].SPE Formation Evaluation, 1990,5(4): 399-405.
    [117] Schott J. Modeling of the dissolution of strained and unstrained multiple oxides: The surface speciation approach[A]. Stumm Wed. Apuatic Chemical Kinetics[C]. New York: John Wiley, 1990: 337-365.
    [118] Seyfried W E, Bischoff J L. Low temperature basalt alteration by seawater: An experimental study at 70℃ and 150℃ . Geochim Cosmochim Acta, 1979,43: 1937-1947.
    [119] Shamugam G. Significance of secondary porosity in interpreting sandstone composition [J]. The American Association of Petroleum Geologists Bulletin, 1985, 69(3): 378-384.
    [120]Shuler, P J. Freitas, E A. Bowker, K.A.. Selection and application of barium sulfate scale inhibitors for a carbon dioxide food, Rangely Weber sand unit, Rangely, Colorado[J]. Proc. SPE Joint Rocky Mountain Regional/Low Permeability Reservoirs Symp, 1989: 451-464.
    [121] Smith J W,Mi lton C. Dawsonite in the Green River Form ati on of Colorado [J]. Economic geology, 1966, 61:1029-1042.
    [122] Stilling L. L. and Brantley S. L.. Feldspar dissolution at 25C and pH 3:Reaction stoichiometry and the effect of cations[J]. Geochim et Cosmochim Acta, 1995, 59vo1: 1483-1496.
    [123] Stilling L. L.,Drever J. J.. Rates of felspar disslution at pH 3-7 with 0-8mM oxalic acid. Chemical Geology[J]. 1996,132: 79-89.
    [124] Susan L, Brantley, Lisa Stillings. Feldspar dissolution at 25℃ and low pH[J]. American Journal of Science, 1996, 296(2): 101-127.
    [125]Tianfu Xu, Apps J A, Pruess, K.. Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep Arenaceous Formations. J. Geophys. Res, 2003, 108 (B2).
    [126] Tianfu Xu, Apps J A, Pruess K. Numerical simulation to study mineral trapping for CO2disposal in deep aquifers. Appl. Geochem, 2004, 19: 917-936.
    [127]Tianfu Xu, John A. Apps, Karsten Pruess. Mineral sequestration of carbon dioxide in a sandstone–shale system[J]. Chemical Geology, 2005, 217:295-318.
    [128] Wolklast R, Chou L. Surface reactions during the early stages of weathering of albite[J]. Geochim. et Cosmochim. Acta, 1992, 56: 3113-3122.
    [129] Worden R H.. Dawsonite cement in the Triassic Lam Formation, Shabwa basin, Yemen: A natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction[J]. Marine and Petroleum Geology, 2006, 23: 61-77.
    [130] Xiang-feng Zhang, Zhao-yin Wen, Zhong-hua Gu, et al. Hydrothermal synthesis and thermodynamic analysis of dawsonite-type compounds[J]. Journal of Solid State Chemistry, 2004, 177:849-855.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700