用户名: 密码: 验证码:
特种SOI材料及相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成电路从微电子发展到微纳电子时代,SOI技术以其优于体硅的高性能、全集成、低功耗、低成本的诸多优势成为取代现有体硅材料的核心支撑技术。SOI器件虽然因为它独特的埋层结构有很多优于体硅器件的性能,但也同时由于这种埋层结构散热能力较差,导致SOI器件和电路存在自加热效应,并且随着器件尺寸的缩小,电流密度的增加,这种效应对SOI器件性能的影响更是不容忽视;又由于在解决高频混合集成电路中信号串扰的问题,虽然常规的SOI的氧化埋层可以实现有源元件和基片之间的完全隔离,但在更高频率下,埋层氧化物对信号来说又几乎是透明的,因此随着SOI技术在射频电路中的应用日渐重要,解决其信号隔离问题也变得更关键。有鉴于此,探索研究新的SOI结构和材料就成为SOI研究领域新的热点。
     本论文结合我们承担的国家自然科学基金项目等任务,一方面开展了以AlN为埋层的新型SOI结构、引入WSix埋层的GPSOI新结构等的制备、性能及其应用的研究;另一方面,研究了SOI材料新的应用领域以及相关的SOI器件新工艺。获得的主要新结果如下:
     (1)采用脉冲准分子激光沉积(PLD)技术在Si衬底上制备了AlN薄膜;为减轻传统SOI器件/电路的自加热效应,采用Smart-cut技术首次成功获得以AIN为埋层的新型SOI材料(即SOAN);采用Medici二维器件模拟以AlN为埋层的SOAN MOSFET在抑制自加热效应方面的所表现的优越性,其结果表明SOAN结构可以有效地抑制自加热效应。
     (2)采用Smart-cut技术和硅、钨的高温固相反应结合在一起成功制备了SOI结构中高电导率的WSix(1     (3)采用超高真空电子束蒸发法在全耗尽SOI衬底上成功制备了ZrO2/Al2O3新型纳米层状高κ层结构,深入研究了全耗尽SOI MOS电容的高频C-V特性,结果表明全耗尽SOI MOS电容的高频C-V特性是由少子决定的。
     (4)制备了六种不同衬底材料上的共平面波导(CPW)传输线,并比较了它们的损耗大小,结果表明:采用SOI衬底结构和地屏蔽技术均能有效地减少传输线的插入损耗。
     (5)结合微天平(QCM)技术在石英晶体上制作了薄膜形式的ZnO纳米线湿度传感器,同时研究了所制备的传感器对湿度检测的敏感特性,数据的稳定性和重复性;结合SOI结构在传感器领域的应用前景,设计了以SOI结构为基片衬底的新型ZnO纳米线传感器的模型,为下一步的研究工作打下良好的基础。
SOI (Silicon-on-insulator) technology is expected to replace bulk silicon technology in microelectronics industry because it possesses many advantages as compared to bulk silicon, such as easier electrical isolation, significant reduction of parasitic capacitances, excellent sub threshold slope, elimination of latch up and resistance to radiation. But it is inevitable that the buried silicon dioxide layer also thermally insulates the MOSFETs (metal-oxide-silicon field-effect transistors) from the bulk due to the low thermal conductivity. So self-heating effects becomes a critic problem for a MOSFETs built-in SOI because it would eventually degrade the device electrical characteristics under prolonged high temperature operation and limit SOI materials in application to high temperature and high power integrate circuit. At the same time, with the improvement of operation frequency and integration of radio frequency circuit, although SOI shows excellent ability of mixed process and devices and compatibility with CMOS process to incorporate digital and analog circuits on one chop, noise impact still is a serious problem. In order to resolve the problems and meet the demand of special device/circuit, there has been a strong interest in the development new SOI structures.
    So in this project we have made a series of investigations on the Self-heating effect of SOAN(silicon-on-aluminum nitride) device with the buried layer of AlN and the new materials of GPSOI (Ground Plane SOI) with the buried layer of WSix to reducing noise in RFIC. Besides, we have studied the new applications and advanced technologies of SOI materials.
    The main results acquired are drawn as follows:
    (1) AlN thin films were fabricated successfully on silicon substrates by pulsed laser deposition and their properties were investigated; a novel SOAN structure were prepared via Smart-cut technology; a two-dimensional numerical analysis was performed by using a device simulator called MEDICI to discuss the influence caused by all kinds of the parameters of SOI device, such as the doping concentration of
    source/drain region, the doping concentration of the channel region, the thickness of the top silicon layer, the thickness of the buried oxide layer; MEDICI also have been used to simulate the electrical characteristics and temperature distribution by comparing with those of bulk and standard SOI MOSFETs, which results suggested that A1N is a suitable alterative to silicon dioxide as a buried dielectric in SOI and expands the applications of SOI to high temperature conditions.
    (2) Single-crystalline Si/SiO_2/poly-WSix/Sub-Si structure has been successfully fabricated by a new method incorporating standard smart-cut technology and high temperature solid phase reaction between tungsten and silicon; The characteristics of poly-crystalline WSix (1    (3) A two clear nanolaminate layered structure of ZrO_2/Al_2O_3 on ultra-thin SOI substrate via ultrahigh vacuum electron-beam evaporation and post-annealed in N_2 at 450℃ for 30min; The results of its high frequency capacitance voltage (C-V) characteristics of the fully depleted (FD) SOI MOS capacitor showed that the minority carriers determined the high frequency C-V properties and the series resistance of the SOI substrate is the determinant factor of the high frequency characteristics of the FD SOI MOS capacitors.
    (4) A non-source device with high-performance — CPW transmission lines on different substrates were fabricated and the characterization of their radio wastage were investigated, which showed that the depletion of CPW transmission lines on GPSOI substrate would reduce effectively.
    (5) ZnO nanotetrapods were synthesized by evaporating highly pure zinc pellets (99.999%) at 900℃ in air and a humidity sensors with ZnO anotetrapods as a sensing element were featured by combination of a quartz crystal as a transducer. The experimental results indicated that ZnO nanotetrapods was a potential humidity
    sensing material because the response of the sensors had a good sensitivity, frequency stability and reproducibility; A new structure of ZnO anotetrapods humidity sensor on SOI substrate was designed in order to develop the next investigation about SOI sensors.
    We hope we could develop farther the application of SOI technology and materials through the results of this project.
引文
1. J. P. Colinge, Silicon on Insulator Technology: Materials to VLSI, 2nd Edition, Publisher, Kluwer Academic Publishers (2000).
    2. J. E. Lilienfield, US Patents 1,745,175 (filed 1926, issued 1930) and 1.900.018 (filed 1928, issued 1933). )
    3. J. P. Collinge, SOI Technology: Materials to VISL, Kluwer Academic Pub.1991:84
    4.林成鲁、张苗,SOI—二十一世纪的微电子技术,功能材料与器件学报,5,1,1999.)
    5. H. M. Manasevit, W. I. Simpson, Recent News Paper, Publisher, America Phys. Soc., Edmonton, Canada (1963).
    6.SOI之旅Peter L.F.Hemment在《第十一届SOI器件工艺国际会议》上的邀请报告2003年4月30—5月2日,法国巴黎)
    7. G. W. Cullen, M. T. Dully, A. C. Ipri, Silicon on Insulator Technology and Devices, Ed. S. Cristoloveanu, ECS Proc., 94-11, 5-15 (1994).
    8. H. W. Lam, R. F. Pinizzotto, et al., IEEE Circuits and Devices Magzine, 3 (1987) 11
    9. J. C. C. Fan, M. W. Geis, and B. Y. Tsaur, Appl. Phys. Lett., 38 (1981) 365.
    10. K. Imai, Solid State Electron, 24 (1981) 59] [S. S. Tsao, IEEE Circuit and Devices Magzine, 3 (1987)
    11. Proc of the First SIMOX Workshop (SW1-88), Eds. J. A. Kilner et al, Vacuum 42, 5/6, (1991), ISSN 0042-207X.
    12. K. Izumi, M. Doken and H. Ariyochi, Electron Lefts 14, (1978), 593
    13. C. Jaussaud et al, Appl. Phys. Lett., 46, 1064 (1985).
    14. Y. Li et al, Appl. Phys. Lett., 63(20), 2812-2814 (1993).
    15. S. Nakashima, K. Izumi, J. Mater. Res., 8, 523 (1993).
    16. U. Bussman et al, Nucl. Instrum. Meths. B, 55, 856-859 (1991).
    17. D. K. Sadana, this conference.
    18. A. Ogura, Jpn. J. Appl. Phys., 40, L1075-L1077 (2001) and A. Ogura, H. Ono, Appl. Surf. Sci., 159, 104 (2000).
    19. M. Tachimori et al, Electrochem. Soc. Proc., 96-3, 53-62 (1996).
    20. R. Steny, T. Tan, and U. Gossel, Jpn. J. Appl. Phys. 28, 1735 (1989)
    21. M. Bruel, Electron Letts., 31(14), (1995).1201
    22. Philips and SOITEC, European Semiconductor, February 2002, p20.
    23.《SOI CMOS技术及其应用》P3黄如 张国艳 李映雪 张兴编著
    24. http://www.Bookham.com
    25.《今日电子》,2002年第2期
    26. S. S. Chen and J. B. Kuo, "An Analytical CAD Kink Effect Model of Partially-Depleted SOI NMOS Devices Operating in Strong Inversion," Sol. St. Elec., Vol. 41, No.3, pp.447-458, March 1997.
    27. R. Werner, C. Zimmermann, and A. Kalz, "Light Dependence of Partially Depleted SOI MOSFET's" IEEE Elec. Dev. Let., Vol. 5, No.12, pp.505-507, Dec.1984.
    1. Adan A O, Naka T. [J]. Electrochemical Soociety Proceedings, 1997,23:340, Vasudev PK. [J]. Solid-State Electronics, 1996,39(4):481
    2. J. Jomaah and G. Ghibaudd., Solid-State Electronic., 1995, 38(3): 615~618
    3. Mcdaid L J, Hall S, Mellor P H, et al. Electronics Letters, 1989; 25(13): 827
    4. Taolei Zheng, Jinsheng Luo, "Exihibition of Self-Heating Effect of Thin-Film SOI LDMOSFET and Investigation of Related Factors," Power Electronics, vol. 34, no.2, pp.51~53, 2000
    5. Naoki Yasuda, Shuichi Yeno. [J]. Japanese Journal of Applied Physics, 1991, 30(12B): 3677~3684
    6. Bunyan R J, Uren M. [J]. IEEE Electron Device Lett, 1992, 13(5):279~281
    7. Anthony L, Agis A. [J]. IEEE Electron Device Lett, 1993, 14(3):133~135
    8. Lisa T, Antoniadis A. [J]. IEEE Electron Device Lett., 1994, 15(10):374~376
    9. Jomaah J, Ghibaudd G. [J]. Solid-State Electronic, 1995, 38(3):615~618
    10. Robert H, Clement Wann. [J]. IEEE Electron Device Lwtt., 1995, 16(2):67~69
    11. Bernard M, Michael S. [J]. IEEE Trans Electron Devices, 1996, 43(12): 2240~2248
    12. Jonathan S, Robert M. [J]. IEEE Trans Electron Devices, 1997, 44(6):957~964
    13.门传玲,郑志宏,多新中,林成鲁,中国电子学会论文集,第十二届全国半导体集成电路/硅材料学术会论文集,2001.4,P292.
    14.郑陶雷,罗晋生,电力电子技术,2000,2:51~53
    15.金曾孙等,特种功能材料学术讨论会论文集,四川,成都,1998.8
    16. Stefan Bengtsson, et al. Jpn. J. Appl. Phys. 35(1996) 4175
    17. Brodsky J. S, Fox R M, Zweidinger. IEEE Trans Electron Devices, 1997, 46(12): 2333-2339
    18. Gamble H S. Variants on bonds SOI for advanced ICS. In: Cristoloveanu S X, Hemment P L. F et al. Silicon-on-insulator technology and devices, Chicago(USA), 2001.4
    19.廖克俊,王万录,宽带隙半导体A1N薄膜的制备及应用,半导体技术,Vol.26,No.1,pp.21-27,2001.
    20. S. BENGTSSON, M. BERGH, M. CHOUMAS, C. OLESEN AND K. O. JEPPSON, [J]. Jpn. J. Appl. Phys. 1996, 35:4175
    21. Geskin E S. Experimental study of copper deoxidation by charcoal filtration [J]. AFS Transaction, 1986,29(4): 155~158.
    22. Philip G. Neudeck, Senior Member, IEEE, Robert S. Okojie, Member, High-Temperature Electronics—A Role for Wide Bandgap Semiconductors, Procedings of the IEEE, Vol.90, No.6, 2002.
    23. Y. WATANABE, [J]. Sur. Eng. 1998, 14: 427.
    24. X. WANG, A. KOLITSCH, F. PROKERT, W. MOLLER, [J]. Sur. and Coat. Tech. 1998, 103/104:334
    25. X.. J. HE, S. Z. YANG, K. TAO, Y. D. FAN, [J]. Mater. Chem. and Phys. 1997, 51: 199.
    26. T. F. Maiman, Phys. Rev. Lett., 123(1961)1145.
    27. X. D. Wu, D. Dijjkamp, et al, Appl. Phys. Lett., 54(1987)861.
    28. D. Dijjkamp, T. Venkatesan, et al, Appl. Phys. Lett., 51(1987)619.
    29. C. Tam, W. P. Leng, et al, J. Appl. Phys., 69(1991)2072.
    30. G. L. Doll, J. A. Sell, et al, Phys. Rev., B43(1991)6816.
    31. D. Soy, et al, Appl. Phys. Lett., 61(1992)2057.
    32. Vispute RD. Talyansky V. Sharma RP. Choopun S. Downes M. Venkatesan T. Li YX. Salamancariba LG. Iliadis AA. Jones KA. Mcgarrity J. Applied Surface Science. 129:431-439, 1998 May
    33. Bathe R. Vispute RD. Habersat D. Sharma RP. Venkatesan T. Scozzie CJ. Ervin M. Geil BR. Lelis AJ. Dikshit SJ. Bhattaeharya R. Thin Solid Films. 398:575-580, 2001 Nov 1
    34. Ogawa T. Okamoto M. Khin YY. Mori Y. Hatta A. Ito T. Sasaki T. Hiraki A. Diamond & Related Materials. 6(8):1015-1018, 1997 May
    35. Kumar A. Chan HL. Weimer JJ. Sanderson L. Thin Solid Films. 308: 406-409, 1997 Oct 31
    36. K. J. HUBBARD, D. G. SCHLOM, [J]. J. Mater. Res. 1996, 11: 2757.
    37. S. BAGCHI, S. J. KRAUSE AND P. ROITMAN, [J]. Appl. Phys. Lett. 1997, 71: 2136.
    38. M. BRUEL, [J]. Nucl. Instrum. Methods Phys. Res. B 1996, 108: 313.
    39. T. ADAM. J. KOLODZEY, C. P. SWANN, M. W. TSAO, J. F. RABOLT, [J]. Appl. Sur. Sci. 2001, 175-176: 428.
    40. K. J. HUBBARD, D. G. SCHLOM, [J]. J. Mater. Res. 1996, 11:2757
    41. Yuhua Cheng and Tor A. Fjeldly, IEEE Trans. Electron Devices, 1996,43 (8): 1291~1296.
    42. MEDICI 2000.2 User's Manual
    43. L. J. McDaid, S. Hall, P. H. Mellor, W. Eccleston, and J. C. Alderman, "Physical origin of negative differential resistance in SOI transistors," Electron. Lett., 1989, vol.25, pp.827-828.
    44. O. Rayssae, H. Moriceau, M. Olivier, I. Stoemenos, A. M. Cartier and B. Q. Aspar. "SILICON-ON-INSULATOR TECHNOLOGY AND DEVICESX", 2001-3.
    45. C. Serre, A. Pere-Rodriguez, A. Romano-Rodriguez, J. R. Morante, "SILICON-ON-INSULATOR TECHNOLOGY AND DEVICES X", 2001-3.
    46. Gianni Taraschi, Zhi-Yuan Cheng, "SILICON-ON-INSULATOR TECHNOLOGY AND DEVICES", 2001-3.
    47. Thomas Skotnicki, "Silicon-on-insulator technology and devices", 2001-3.
    1. T. J. Schmerbeck, R. A. Richetta, L. D. Smith. "27 MHz mixed A/D magnetic recording channel DSP using partial response signaling with maximum likelihood detection". ISSCC Digital Technology Papers, 1991
    2. S. Takeuchoi. "30-MHz mixed analog/digital signal processor". IEEE Journal of Solide-State Circuits, 1990; 25(7): pp.1458-1463.
    3. http://www.itri.org.tw/chi/services/ieknews/e0801-B10-02354-54D3-0.doc
    4. Larson L E. "Integrated circuit technology options for RFIC's-present status andfuture directions". IEEE J Sol Sta Circ, 1998; 33(3): 387-399.
    5. Jonghae Kim, Jean-Olivier Plouchar, Noah Zamdmer, Neric Fong, Liang-Hung Lu, et al. "High-Performance Three-Dimensional On-chip Inductors in SOI CMOS Technology for Monolithic RF Circuit Applications" 2003 IEEE MTTS Digest, A77-80.
    6. Hossein Hashemi, and Ali Hajimiri, "Concurrent Multiband Low-Noise Amplifiers—Theory, Design, and Applications" IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 1, JANUARY 2002, 288-301.
    7. Neric H. W. Fong Jean-Olivier Plouchart, Noah Zamdmer, Duixian Liu, Lawrence F. Wagner, Calvin Plett, and N. Garry Tarr, "3.8-5.7GHz Wide-Band VCO With Differentially Tuned Accumulation MOS Varactors for Common-Mode Noise Rejection in CMOS SOI Technology" IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 8, AUGUST 2003, p. 1952.
    8. Lawence E. Larson, "Integrated circuit technology options ofr RF IC's-Present status and future directions". IEEE Journal of Solid-State Circuits, 14:246-248,1993
    9. B. P. Brandt, B. A. Wooley. "50-MHz multibit sigma modulator for 12b 2-MHz A/D conversion". IEEE Journal of Solide-State Circuits, 1991; 26(8): 1746-1756.
    10. L. D. Smith, "CMOS-based analog standard cell product family". IEEE Journal of Solid-State Circuits, 1989; 24(2): 370-379.
    11.黄如、张国艳、李映雪、张兴,“SOI CMOS技术及其应用”,P298
    12. N. Suematsu, workshop notes "Integrated Transceiver Design Using Silicon-based Semi-conductor", June, 2000
    13. P. T. M. van Zeijl, J. Eikenbroek, P. -P. Vervoort, S. Setty et al., "Bluetooth Radio in 0.18μm CMOS". IEEE International Solid-State Circuits Conference, 2002; 45: 86-87.
    14. D. Redmond, M. Fitzgibbo, A. Bannon, D, Hobbs et al. "GSM/GPRS Mixed-Signal Baseband IC". IEEE International Solid-state Circuits Conference, 2002; 45.: 258-259.
    15. L. Connell, N. Hollenbeck, M. Bushman et al., "CMOS Broadband Tunner IC", IEEE International Solid-State Circuits Conference, 2002; 45: 92-93.
    16. Tallis Blalack, Youri Leclercq, C. Patrick Yue. "On-chip RF Isolation Techniques". IEEE BCTM. Dec.2002
    17. Kelin J. Kuhn, Shahriar Ahmed, Peter Vandervoorn, "Integration of Mixed-Signal Elements into a High-Performance Digital CMOS Process". Intel Technology Journal, 2002; 6(2): 31-41.
    18. H. Asakura. "System-on-a-chip challenged by stacked system-in-a-package technology". Solid State Technology, 2001; 48:785-796
    19. Jean-pierre Raskin, Alberto Viviani, Denis Flandre et al. "Substrate Crosstalk Reduction Using SOI Technology". IEEE Transactions Electron Devices, 1997; 44(12): 2252-2261
    20. T.Ohuro. "High performance digital-analog mixed device on a Si substrate with resistivity beyond Ik-cm". Proceedings of IEDM-2000, p.757
    21. Mikael Johansson, Jonas Berg, Stefan Bengtsson. "High frequency properties of silicon-on-insulator and novel depleted silicon materials". Solid-state Electronics, 2001; 45(2):567-573
    22. T.Ohuro. "High performance digital-analog mixed device on a Si substrate with resistivity beyond 1k·cm". Proceedings of IEDM-2000, p.757
    23. Mikael Johansson, Jonas Berg, Stefan Bengtsson. "High frequency properties of silicon-on-insulator and novel depleted silicon materials". Solid-state Electronics, 2001; 45(2):567-573
    24. Johansson M, Bergh M, Bengtsson S. "High frequency losses in transmission lines made on SIMOX, bulk silicon and depleted silicon/silicon structures formed by wafer bonding". IEEE Proceeding; 1999: 30-31.
    25. Johansson M, Bengtsson S. "Depleted semi-insulating silicon/silicon material formed by wafer bonding". Journal of Applied Physics, 2000; 42(2): 1118-1123
    26. J. N. Burghartz, D. C. Edelstein, K. A. Jenkins et al., IEEE Trans. Microwave Theory Tech, 45,1961(1996)
    27. J.-B. Yoon, B.-K. Kim, C.-H. Han et al. "Surface Micromachind Solenoid ON-Si and On-Glass Inductors for RF Applications". IEEE Electron Device Lett. 1999; 20(9): 487-489.
    28. R. F. Drayton, R. M. Henderson, L. P. B. Katehi. "Monolithic Packaging Concepts for High Isolation in Circuits and Antennas". IEEE Trans. Microwave Theory Tech. 1998; 46 (7): 900-906.
    29. J. Kim, Y. Qian, G. Feng et al. "Millimeter-Wave Silicon MMIC Interconnect and Coupler Using Multilayer Polyimide Technology". IEEE Trans. Microwave Theory Tech., 2000; 48(9): 1482-1487
    30. Colinge J P. "Silicon-on-insulator Technology: Material to VLSI". London: Kluwer Academic Publishers, 1998
    31. Park S B, Kim Y W, Ko Y G, et al. " 0.25-μm, 600-MHz, 1.5-V, fully depleted SOICMOS 64-bit microprocessor". IEEE Journal of Solid-State Circuits, 1999, 4(11):1436
    32. Bernstein K and Rohrer. "SOI Circuit Design Concepts". London: Kluwer Academic Publishers, 2000
    33. T. Takaramoto, S. Harajiri, M. Sawada, O. Kobayshi, and K. Gotoh, "A bonded-SOI-wafer CMOS 16-bit 50-Ksps delta-sigma ADC," in Proc. IEEE Custom Integrated Circuits Conf., 1991, pp. 18.1.1.-18.1.4.
    34. I. Rahim, I. Lim, J. Foerstner, and B. Y. Hwang, "Comparison of SOI versus bulk silicon substrate crosstalk properties for mixed-mode IC's," in Proc. IEEE Int. SOI Conf., 1992, pp. 170-171.
    35. K. Joardar, "A simple approach to modeling cross-talk in integrated circuits," IEEE J. Solid-State Circuits, vol. 29, pp. 1212-1219, Oct. 1994.
    36. Jean-Pierre Raskin, Alberto Viviani, Denis Flandre and Jean-Pierre 1997 IEEE Transactions on Electron Devices 44 2252
    37. Raskin J-P, Viviana A, Flandre D, Colinge J-P. "Substrate Crosstalk Reduction Using SOI Technology", IEEE Electron Dev. 1997, ED-44(12):2252-61.
    38. H.S.Gamble, B.M.Armstrong, P.Baine et al. "Silicon-on-insulator substrate with buried tungsten silicide layer", Solid-State Electronics, 2001; 45(2): 551-557
    39. Jean-Pierre Raskin, Alberto Viviani, Denis Flandre and Jean-Pierre 1997 IEEE, Transactions on Electron Devices 44 2252
    40. J S Hamel, S Stefanou, M bain, B M Armstrong and H S Gamble 2000 IEEE, microwave and guided wave letters 10 134
    41. H S Gamble, B M Armstrong, P Bain, D W mcneill 2001 , solide-state electronics 45 551
    42. C.P.Yue, and S.S.wong, IEEE Transactions of Solid-state Circuits, Vol. 33, No. 5, May 1998: 145-148.
    43. T.Ernst and S.Cristolovemeau, ECS SOI Technology and Devices IX, Seattle 1999
    44. H S Gamble, B M Armstrong, P Bain, D W mcneill 2001 solide-state electronics 45 551
    45. W L Goh, J H Montgomery, S H Raza, B M Armstrong and H S Gamble 1997 IEEE Electron Device Letters 18 232
    46. K Yallup, K McStay, R Wilson, C Quinn, B McDonnell, S Blackstone 1995 IEEE International SOI Conference 137
    47. V Nayar, J Russell, R T Carline, A J Pidduck et al 1998 Thin Solid films 313-314 276
    48. F H Ruddell, M F bain, S Suder, R E Hurley, B M Armstrong, V F Rusco, H S Gamble 2003 Electrochemical society proceedings 5 57
    49. Yang Hee Jounga, Kyoung Won Kimb, Seong Jun Kangc, 2003 Materials Science in Semiconductor Processing 6 185
    50. M F Bain, B M Armstrong, H S Gamble 2002 Vacuum 64 227
    51. S G Telford, M Eizenberg, M Chang, A K Sinha, T R Gow 1993 J.Electrochem. Soc. 140 (12) 3689
    52. J R Chen, Y K Fang, S L Hsu, 1987 Vacuum 37 357
    53. B.Sell, A.Sanger, G.Schulze-Icking, K.Pomplun, W.Krautschneider 2003 Thin Solid Films 443 97
    54. Jean-Pierre Raskin, Alberto Viviani, Denis Flandre and Jean-Pierre, 1997 IEEE Transactions on Electron Devices 44 2252
    1. Andrea Ghetti, Chun-Ting Liu, Marco Mastrapasqua, Enrico Sangirogi, Solid-State Electronics, 2000, 44: 1523-1531
    2. Shin-ichi, Takagi, Mariko Takayanagi, Jpn. J. Appl. Phys. Part 1, 2002, 4B: 2348-2352
    3. J.P. Chang, Y.-S. Lin, Appl. Phys. Lett, 2001, 22: 3666-3668
    4. C.C. Liao, Albert Chin, C. Tsai. J. Crystal Growth, 1999, 201/202: 652-655
    5. 唐晋锋,刘晓彦,王玮等. 半导体学报, 2001, 22(7): 865-869
    6. P. Venkateswarlu, S.S.N. Bharadwaja, S.B. Krupanidhi. Thin Solid Films, 2001, 389: 84
    7. B.K. Moon, H. Ishiwara, E. Tokumitsu, et al. Thin Solid Films, 2001, 385: 307
    8. R. Ramesh, S. Aggarwal, O. Auciello, Materials Science and Engineering, 2001, 32: 191-236
    9. D. A. Muller, T. Sorsch, S. Moccio et al. Nature, 1999, 399: 758-761
    10. Angus I. Kingon, Jon-paul Maria, S.K. Streiffer. Nature, 2000, 406: 1032
    11. Hirofumi FUKUMOTO, Takeshi IMURA and Yukio OSAKA. Japn. J. Appl. Phys., 1988, 27: 1404
    12. 《半导体技术》
    13. E.P. Gusev, M. Copel and E. Cartier. Appl. Phys. Lett, 2000, 76(2): 176
    14. J. Kwo, M. Hong, A.R. Kortan, et al. J. Appl. Phys., 2001, 89(7): 3920
    15. G.D. Wilk, R.M. Wallace, J.M. Anthony. J. Appl. Phys. 2000, 87 (1): 484
    16. M. Copel, M. Gribelyuk, E. Gusev. Appl. Phys. Lett, 2000, 76(4): 436
    17. M. Houssa, M. Naili, H Bender, et al. Semicond. Sci. Technol., 2001, 16: 31
    18. T. Ngai, W.J. Qi, R. Sharma, et al. Appl. Phys. Lett. 2000,76 (4): 502
    19. K. Chu, J.P. Chang, J. Appl. Phys., 2002, 1: 308-316
    20. J.P. Chang, M.L. Steigerwald, R.M. Fleming, R.L. Opila, G.B. Alers, Appl. Phys. Lett, 1999, 24: 3705-3707
    21. Hyungsuk Jung, Kiju Im, Hyunsang Hwang,et al. Appl. Phys. Lett. 2000, 24: 3630
    22. Donggun Park, Ya-chin King, Qiang Lu, et al. IEEE ELECTRON DEVICE LETTERS, 1998, 11: 441
    23. M. Houssa, R. Degraeve, P.W. Mertens, et al. J. Appl. Phys., 1999, 11: 6462
    24. Michael A. Russak and Christopher V. Jahnes. J. Vac. Sci. Technol. A 7 (3), May/Jun 1989
    25. M. Bahr, G. Hoffmann, R. Ludwig, G. Steiniger, Surf, and coatings Technol. 1998, 98:1211
    26. O. Piot, A. Malaurie, J. Machet, Thin Solid Films 1997, 293: 124
    27. J.J. Yu, J.-Y. Zhang, I.W. Boyd, Appl. Surf. Sci., 2002, 186: 190-194
    28. Seung-Young Bae, etal. Ceramics International, 2000, 26: 213-214
    29. A. Mehner, etal. Thin Solid Films, 1997, 308-309: 363-368
    30. C. Belouet. Applied Surface Science, 1996, 96-98: 630-642
    31. H.Y.Yu, M.F.Li and D.L.Kwong , "Thermally robust HfN metal as a promising gate electrode for advanced MOS devices applications", IEEE. Trans. Electron Devices, v.51,n.4,pp.609-615(2004)
    32. L.-A.Ragnarsson et. Journal of Applied Physics, 2003, 93-7: 3912-3919
    33. A. Nakajima, T, Kidera, H. Ishii, S. Yokoyama, Appl. Phys. Lett. 2002, 81: 2824
    34. M. A. Gribelyuk, A. Callegari, E.P. Gusev, D.A. Buchanan, J. Appl. Phys. 2002, 92: 1232
    35. M. Kundu, N. Miyata, M. Ichikawa, Appl. Phys. Lett. 2001, 78: 1517
    36. M. Wiatr, P. Seegebrecht, Soilid State Electronics 2002, 46: 1799
    37. B. Yu, Z. J. Ma, G. Zhang, C. M. Hu, Soilid State Electronics 1996, 39: 1791
    38. N. Kistler,J. Woo, Soilid State Electronics 1996, 39: 445
    39. C. J. Sheu, S. L. Jang. Solid State Electronics 2000, 44: 2089
    40. M. Wiatr, P. Seegebrecht, Soilid State Electronics 2002, 46: 1799
    41. A. I. Kingon., J. P. Maria and S. K. Streiffer, Nature 2000, 406: 1032
    42. Z.Cheng and C. H. Ling, IEEE Trans. Electron Devices 2001, 48: 388
    1. J. Q. Hu, X. L. Ma, N. G. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee, J. Phys. Chem. B, 106, 3823 (2002).
    2. T. Sato and T. Asari, J. Phys. Soc. Jpn. 64, 1193, 1995
    3.蔡树榛.毫米波技术,复旦大学出版社,1988
    4.苗敬峰.毫米波电路,东南大学出版社,1988
    5.梁昌洪.计算微波.西北电讯工程学院出版社,1985
    6. Luy J - F, Strohm K M, Sasse H - E, et al. "Si/SiGe MMIC's. Microwave Theory and Techniques", April 1995; 43(4): 705~714
    7. Rieh Jae-Sung, Lu Liang-Hung, L. P. B Katehi,, et al. "X- and Ku-band amplifiers based on Si/SiGe HBT's and micromachined lumped components", Microwave Theory and Techniques, May 1998;46(5):685~694
    8. Gamble H S, Armstrong B M, Mitchell S J N, et al. "Low-Loss CPW Lines on Surface Stabilized high-resistivity silicon", Microwave and Guided Wave Letters, 1999;9(10): 395~397
    9. Milanovic V, Gaitan M, Bowen E D, et al. "Micromachined microwave transmission lines in CMOS technology", Microvwave Theory and Techniques, 1997;45(5): 630 635
    10. D. Beck, E. Herrmann, and E. Kasper. "CMOS on FZ-high-resistivity substrate for monolithic integration of SiGe-RF-circuitry and readout electronics", IEEE Trans. Electron Devices, vol. 44. 1997. p. 1091-1101.
    11. J. N. Burghartz, M. Bartek, B. Rejaei, P. M. Sarro, A. Polyakov, N. P. Pham, E. Boullaard, and K. T. Ng. "Substrate options and add-on process modules for monolithic RF silicon technology", Proc. BCTM, 2002. pp. 17-23.
    12. E. Valetta, J. van Beek, A. den Dekke, N. Pulsford, H. F. F. Jos, L. C. N. de Vreede, L. K. Nanver, and J. N. Burghartz. "Design and characterization of integrated passive elements on high-ohmic silicon", MTT-S Dig., vol. 2.2003. p. 1235-1238.
    13. A. B. M. Jansman, J. T. M. van Beek, M. H. W. M. Van Delden, A. L. A. M. Kemmeren, A. D. A. Den. Dekker, and F. P. Widdershoven. "Elimination of accumulation charge effects for high-resistivity silicon substrate", Proc. ESSDERC, 2003. p. 3-6
    14. Michael Stuber, Mohamed Megahed, J. John Lee, T. Kobayashi, H. Domyo. "SOI CMOS with high-performance passive components for analog, RF, and mixed signal design", Proceddings 1998 IEEE International SOI Conference, 1998. p. 99-100
    15. T. M. Hyltin. "Microstrip transmission on semiconductor dielectrics", IEEE Trans. Microwave Theory Tech., vol. MTT-13. 1965. p. 777-781.
    16. P. J. Stabile, A. Rosen, W. M. Janton, A. Gombar, and M. Kolan. "Millimeter wave silicon device and integrated circuit technology", MTT-S Dig., vol. 84. 1984. p. 448-450.
    17. J. Buchler, E. Kasper, P. Russer, and K. M. Strohm. "Silicon high-resistivity substrate millimeter wave technology", IEEE Trans. Microwave Theory Tech., vol. MTT-34. 1986. p. 1516—1521.
    18. M. H. Hanes, A. K. Agarwal, T. W. O'Keefe, H. M. Hobgood, J. R. Szedon, T. J. Smith, R. R. Siergiej, P. G. McMullin, H. C. Nathanson, M. C. Driver, and R. N. Thomas. "MICROX—an all-silicon technology for monolithic microwave integrated circuits", IEEE Electron Device Lett., vol. 14. 1993. p. 219-221.
    19. A. C. Reyes, S. M. El-Ghazaly, S. Dorn, M. Dydyk, D. K. Schroder, and H. Patterson. "High-resistivity silicon as a microwave substrate", Proc. Electronic Components and Technology Conf., 1996. p. 382-391.
    20. D. Hisamoto, S. Tanaka, T. Tanimoto, and S. Kimura. "Suspended SOI structure for advanced 0.1 mm CMOS RF devices", IEEE Trans. Electron Dev., vol. 45. 1998. p. 1039-1046.
    21. D. Lederer, R. Lobet and J. -P. Raskin. "Enhanced high resistivity SO1 wafers for RF applications", IEEE International SO1 Conference, 2004. p.46-47
    22. E. Comini, G.. Faglia, G. Sberveglieri, Z. Pan, and Z. L. Wang, Appl. Phys. Lett., 81, 1869 (2002)
    23. Yue Jerry, Kriz Jeff. "SOI CMOS Technology for RF System-on-Chip Applications", Microwave Journal, 2002;45(1): 104
    1. Simonton R, "Special report soi wafer technology for CMOS ICS", http://www.icknowledge.com/threshold-simonton/bobsoi.pdf,2002-04-24.
    2. Hane R S, Gaff V, "The promise of generic micromachining technology for mems", http://www.sensorsmag.com/articles/0701/59/main.shtml.2002.10.15.
    3. Mokwa V. "Advanced sensors and microsystems on SOI", Journal of High Speed Electronics and Systems, 2000,10(1): 147-153.
    4. Druzhinin A, Elena L, "Medical pressure sensors on the basis of silicon microcrystals and soi layers", Sensors and Actuators B, 1999, 58:415-419.
    5. Lu C-C, Setiadi D. "3D thermoelectromechanicalsimulations of gas sensors based on SOI membranes", Techn Proc of the 2000 Intern. Conf on Modeling and Simulationg of Microsystems. United Kingdom: ISBN 0-9666135-7-0, Cambridge University. 2000. 297-300.
    6.徐甲强,胡平,秦建华,《功能材料》,1998;29(3):281—283
    7.吴兴惠,《敏感元器件及材料》,电子工业出版社,1992
    8.沙占友等,“湿度传感器的发展趋势”,《电子技术应用》2003
    9.顾磊等,《CMOS集成电容湿度传感器》,工艺与设备,2002
    10. T. Seiyama, A. Kato, K. Fulishi, M. Nagatani, Anal. Chem. 34, (1962) 1502.
    11. H. Nanto, T. Minami, S. Takata, J. Appl. Phys. 60,482 (1986).
    12. A. P. Chatterjee, P. Mitra, and A. K. Mukhopadhyay. J. Mater. Sci. 34, 4225 (1999).
    13. T. Yamazaki, S. Wada, T. Noma, and T Suzuki, Sens. Actuators B 14, 594 (1993).
    14. T. Nenov, and S. Yordanov, Sens. Actuators B 8,117 (1992).
    15. J. Kong, N. R. Franklin, C. Zhou, et. al. Science, 287, 622 (2000).
    16. A. Komakov, Y. Zhang, G. Cheng, and M. Moskovits, Adv. Mater. 15,997 (2003).
    17. C. Li, D. Zhang, X. Liu, S. Han, et. al. Appl. Phys. Lett. 82, 1613 (2003).
    18. X. T. Zhou, J. Q. Hu, C. P. Li, et. al. Chem, Phys. Lett. 369, 220 (2003).
    19. King J, "Piezoecletric Sorption Detector", Anal Chem, 1964, 36:1735—1739.
    20. R. C. Weast, "CRC Handbook of Chemistry and Physics", CRC Press, Boca Raton, FL, 1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700