用户名: 密码: 验证码:
桩承式加筋路堤的设计计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩承式加筋路堤作为一种新型的地基处理技术,其具有可快速填筑施工,施工工期短,无须预压和二次开挖,能有效地控制地基的沉降和侧向变形,而造价与常规搅拌桩地基基本相当等突出优点,为建设在软弱地基上的路堤、堤坝、挡土墙、储油罐等提供了一种即经济又有效的解决方法,其应用范围和领域正在不断扩大,特别是需快速施工或者对沉降要求较严格的高速公路工程。但因其工作机理非常复杂,研究工作相对滞后,目前我国还没有相应的设计方法及规范,主要沿用常规复合地基理论和依靠经验进行设计,往往与实际有较大的出入,影响其应用的科学性,从而严重限制了它的应用。
     本文首先从由路堤填料、加筋垫层、桩及桩帽、桩间土层和下卧持力层组成的桩承式加筋路堤整体受力体系分析着手,分别建立路堤填料的土拱作用、加筋垫层的兜提作用、桩土之间的摩擦作用、桩端持力层的支撑作用的分析模型及其基本微分方程,并以各部分应力连续和应变协调的边界条件,得到整体的分析模型及其联立方程组,获得了桩土沉降、荷载分担比、加筋体拉力、等沉面高度、桩身轴力、桩侧摩阻力等的计算方法。运用MATLAB计算工具,编制软件求解联立方程组,并以窗口界面的形式,快速方便求解。
     其次,运用建立的分析模型及编制的软件,通过大量的计算,系统分析了桩承式加筋路堤的桩和桩间土沉降及其沉降差、路堤等沉面高度、桩体荷载分担比、加筋体的拉力、中性点位置、持力层等沉面深度等随各参数的变化规律,进一步探讨了桩承式加筋路堤各组成部分的相互作用的力学性状。
     然后,选取三个典型的高速公路桩承式加筋路堤,埋设应力和变形的观测仪器,进行现场原型试验,通过大量的现场观测,获得了沉降,荷载分担,桩身轴力等随填筑荷载及时间的变化规律;同时应用FLAG计算软件,对其中的二个典型试验路段进行数值分析,获得其沉降、荷载分担、水平加筋体的应力与变形、桩身轴力、桩侧摩阻力等计算结果。并将分析模型、现场试验、数值分析三者的结果进行了比较分析,验证了分析模型基本能够反映桩承式路堤真实的工作性状,其计算结果具有一定的可靠性和工程实用性。
     最后,从实际工程的设计角度出发,探讨了桩承式加筋路堤的设计思路及应用范围,并以分析模型的计算方法为基础,提出了桩承式加筋路堤的加筋垫层、桩帽、桩布置的设计方法以及沉降、承载力、整体稳定的计算方法,形成了一套较完善的桩承式加筋路堤的实用分析计算方法,部分成果已被纳入到交通部标准《公路软土路堤设计与施工技术指南》(报批稿)。
Pile-supported reinforced embankment is a new type of ground improvement technology. It has some distinctive merits in rapid construction rate, short construction time, unnecessary of preloading and additional excavation, effective control of ground settlements and lateral displacements, and basically the same construction cost as conventional soil cement mixing piles, etc. It offers an economical and effective solving method for the construction of roads, dams, retaining walls, and oil silos on soft grounds. The extents and realm of its applications are increasingly expanding, particularly to the highway projects where the rapid construction is required and the settlement is seriously controlled. The working mechanism of the pile-supported reinforced embankment is very complicated, and hence the research works are lagged behind. Currently there is no design method and specification in our country. Its design depends mainly on the compound ground theory and the practical experiences, sometimes leading to inconsistent results with the reality. This has an influence on the scientific applications, and hence restricts its applications.
    This dissertation analyses the global force system of the pile-supported reinforced embankment, which is composed of filled materials, reinforced cushion, pile and pile cap, soils in-between piles, and soils underlying piles. The analyzing models and the governing equations were established for the soil arching effect of the filled materials, the uplifting effect of the reinforced cushion, the frictional effect of the pile-soil interaction, the supporting effect of the pile-end bearing layer. With the boundary conditions of stress continuity and strain compatibility, the global analyzing model and the simultaneous equation groups were obtained. Also obtained were the calculation methods for the pile-soil settlement, load sharing ratio, tension force of the reinforcement, elevation of equal settlement plane, axial force and skin friction of the piles, etc. MATLAB package was used to code a program in window form for rapidly and conveniently solving the simultaneous equations.
    By a large amount of computations with the established analyzing model and coded program, the parametric influences were systematically analysed for the pile-supported reinforced embankment, such as the settlements and settlement differences of the piles and the soils in-between piles, the elevation of the equal settlement plane of the embankment, the load sharing ratio of the piles, the tension
    force of the reinforcement, the location of the neutral point, and the depth of the equal settlement plane of the bearing layer, etc. Further investigated is the mechanical behavior of the interactions of the composed parts of the pile-supported reinforced embankment.
    Three typical sections of the pile-supported reinforced embankments of a highway were selected for the field tests with the stress and strain instruments buried. By a large number of field measurements, the variation patterns with the placed load and the observation time were obtained for the settlements, the load sharing, and the axial forces of the piles. Numerical analyses were also carried out for two typical tested sections using the FLAC software. Calculated results were obtained for the settlements, load sharing, the stresses and strains of the horizontal reinforcement, and the axial forces and skin frictions of the piles. Results from the analyzing model, the field tests and the numerical analyses were compared. It verifies that the analyzing model is capable of reflecting the real working behavior of the pile-supported reinforced embankment. The calculated results are reliable and applicable to the engineering practice.
    Finally, from the point view of the design of the practical engineering, the design routine and its application extents were investigated. The design methods were proposed for the reinforced cushion, the pile cap, and the pile layout of the pile-supported reinforced embankment. Also proposed were the calculation methods for the settlements, the bearing capacity and the global stability. These made up of a set of practical methods for the analyses and calculation of the pile-supported reinforced embankment. They have also been included into the Technical Guide of the Design and Construction of Roads on Soft Soils, which is a standard of the Ministry of Transportation.
引文
1. Jones C J F P, Lawson C R, Ayres D J. Geotextile reinforced piled embankments. Proc. 4th Int. Conf on Geotextiles: Geomembranes and related products, Den Hoedt(ed), 1990, Rotterdam: Balkema, 155-160.
    2. Han J, Gabr M A. Numerical analysis of Geosynthetic-reinforced and pile-supported earth platforms over soft soil. J of Geotechnical and Geoenvironmental Engineering, ASCE. 2002, 128(1): 44-53.
    3. Han J, Akins K. Use of geogrid-reinforced and pile-supported earth structures. Proceedings of International Deep Foundation Congress, ASCE, 2002, Orlando, 668-679.
    4. C. P. AUBENY, Y. LI & J. L. BRIAUD Geosynththetic reinforced pile supported embankments:numerical simulation and design needs. Geosynthetics -7th ICG-Delmas, Gourc & Girard(eds)(?)2002 Swets & Zeitlinger, Lisse ISBN 90 58095231. 365-368
    5. American Association of State Highway and Transportation Officials (AASHTO), Innovative Technology for accelerated construction bridge and embankment foundations. AASHTO Preliminary Summary Report, 2002, 1-11.
    6.徐立新.杭甬高速公路红垦至沽渚段拓宽工程桩承式加筋路堤方案设计,浙江省交通规划设计研究院,1998.10
    7.杭甬高速公路红垦至沽渚段拓宽工程施工图设计,浙江省交通规划设计研究院,1999.4
    8.桂炎德,徐立新.沪杭甬高速公路(红垦至沽渚段)拓宽工程设计方法.华东公路,2001,133(6):3-6.
    9.沪杭甬高速公路拓宽二期工程施工图设计,浙江省交通规划设计研究院,2002.6
    10.沪杭甬高速公路拓宽三期工程施工图设计,浙江省交通规划设计研究院,2003.10
    11.谢家全,吴赞平,钱永祥.沪宁高速公路扩建工程综述.[J].高速公路扩建工程技术研讨会论文集.南京.2004.10:1-10.
    12.申苏浙皖高速公路(浙江段)施工图设计,浙江省交通规划设计研究院,2001.10
    13.宁波至金华高速公路(宁波段)施工图设计,浙江省交通规划设计研究院,2002.3
    14.台州至缙云高速公路东段软基处理变更设计,浙江省交通规划设计研究院,2005.5
    15.徐立新.土工织物+粉喷桩在桥头路基处理中的应用[J].复合地基理论与实践学术讨论会论文集,杭州:浙江大学出版社,1996:448-451
    16. Terzaghi, K. Theorectical Soil Mechanics[M], John Wiley & Sons, NewYork, USA, 1943.
    17. Giroud J P, Bonaparte R, Beech J F, et al. Design of soil layer-geosynthetic systems overlying voids. Geotextiles and Geomembrane, Elsevier, 1990, 9(1): 11-50
    18. Hewlett W J, Randolph M F. Analysis of Piled embankments. Ground Engineering, 1988, 21(3): 12-18.
    19. British Standard Institution(1995). BS 8006. Code of Practice for strengthened/reinforced soils and other fills. British Standands Institute. London.
    20.陈云敏,贾宁,陈仁朋.桩承式路堤土拱效应分析.中国公路学报.2004,17(4):1-7.
    21.刘吉福.路堤下复合地基桩、土应力比分析.岩石力学与工程学报,2003,22(4):674-677.
    22. Marston, A., Anderson, A. O., 1913. The theory of loads on pipes in ditch and tests of cement and clay drain title and sewer pipe. Bulletin No.31, Iowa, Eng. Expt. Sta.
    23. G. J. HORGAN, R. W. SARSBY. The arching effect of soil over voids and piles incorporating geosynthetic reinforcement. Geosynthetics -7th ICG-Delmas, Gourc & Girard(eds)(?)2002 Swets & Zeitlinger, Lisse ISBN 90 58095231. 373-378
    24. Alexiew D A, Vogel W. Reinforced embankments on piles for railroads. German experience. Geotechnics for roads, rail tracks and earth structures, Gomes and Brandl (eds.), Balkema, Netherlands, 2001:267—274
    25. ir. H. A. A. HABIB, M. H. A. BRUGMAN, ir. BG. J. UIJTING. Widening of Road N247 founded on a geogrid reinforced mattress on piles. Geosynthetics -7th ICG-Delmas, Gourc & Girard(eds)(?)2002 Swets & Zeitlinger, Lisse ISBN 90 58095231. 368-372
    26. H. ZANINGER, E. GARTUNG. Performance of a geogrid reinforced railway embankment on piles. Geosynthetics-7th ICG-Delmas, Gourc & Girard(eds)(?)2002 Swets & Zeitlinger, Lisse ISBN 90 58095231. 381-386
    27. Low B K, Tang S K, Choa V. Arching in piled embankments. Journal of Geotechnical Engineering, ASCE. 1993, 120(11): 1917-1938.
    28. Carlsson B. Reinforced soil, principles for calculation. Terratema AB, Linoping, in Swedish, 1987
    29. Rogbeck Y, Gustavsson S, Sodergren, and Lindquist D. Reinforced piled embankments in Sweden-design aspects. Proceedings 1998 Sixth International Conference on Geosynthetics, 1998, 755-762
    30.饶为国,赵成刚.桩—网复合地基应力比分析与计算.土木工程学报,2002,35(2):74-80.
    31.饶为国,江辉煌,侯庆华.桩—网复合地基工后沉降的薄板理论解.水利学报,2002,(4):23-27.
    32.《土工合成材料工程应用手册》编写委员会.土工合成材料工程应用手册(第二版),北京:中国建筑工业出版社,2000.
    33. Jewell R A. The mechanics of reinforced embankments on soft soils. Geotextiles & Geomembranes, 1988, 7(2):37-73.
    34.徐少曼,洪昌华.土工织物加筋堤坝软基的非线形分析,岩土工程学报,1999, 21(4):438-443
    35.白冰.土工织物三向受力状态加筋软基承载力的计算.华东公路.1994.(6):54-57
    36.朱湘,黄晓明,邓学钧.土工格栅加筋路堤机理研究,公路交通科技,2000(1):1-4
    37. Johannessen, I. J., Bjerrum, L. (1965) Measurement of the compresstion of a steel pile to rock due to settlement of the surrounding clay. Proceedings 6th International Conference on Soil Mechanics and Foundation Engineering. 2:261-264.
    38. Bjerrum, L. Johannessen, I. J., Eide, O. (1969) Reduction of negative skin friction on steel piles to rock. Proceedings 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, August 25-29, 1969, 2: 27-34.
    39. Bozozuk, M. (1981) Bearing capacity of a pile preloaded by downdrag. Proceedings 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, June, 1981, 2: 631-636.
    40. Fellenius, B. H., Broms, B. B. (1969) Negative skin friction for long piles driven:in clay. Proceedings 8th International Conference on-Soil Mechanics and Foundation Engineering, Mexico City, August 25-29, 1969, 2: 93-97.
    41. Walker, L. K:, Darvall. L., Lee, P. (1973) Dragdown on coated and uncoated piles. Proceedings 8th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE, Mescow, 2.2: 257-262. Broms, B. (1977) Negative skin friction. Proc. 6th Asian Reg. Conf. Soil Mech., Singapore 2, 1-75.
    42. Clemente, F. M. (1981) Downdrag on bitumen coated piles in a warm climate. Proceedings 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, 2: 673-676.
    43. Fellenius, B. H. (1975) Reduction of negative skin friction with bitumen coated slip layers. Discussion. ASCE. Journal of Geotechnical Division. 101 (GT4): 412-414.
    44. Fellenius, B. H. (1979) Downdrag on bitumen coated piles. Discussion. ASCE. Journal of Geotechnical Division. 105(GT10): 1262-1265
    45. Shibata T, Sekiguchi H & Yukitomo H. Model test and analysis of negative skin friction acting on piles. Soil Foundations, 22(1982):29-39.
    46. Terzaghi, K., Peck, R. B. (1967) Soil Mechanics in Engineering Practice, 2nd Edn. New York: Wiley.
    47. Elmasry, M. A. (1963) The negative skin friction of bearing piles. Thesis, Swiss Federal Institute of Technology, Zurich.
    48. Broms, B. (1977) Negative skin friction. Proc. 6th Asian Reg. Conf. Soil Mech., Singapore 2, 1-75.
    49.JGJ94-94建筑桩基技术规范.
    50. Seed, H. B, Reese, L. C. (1957) The action of soft clay along friction piles. Trans. Am. Soc. Civ. Engrs. 122: 731-754.
    51. Reese, L. C. (1964) Load versus settlement for an axially loaded pile. Proc. Symp. Beating Capacity of Piles, Part 2. Roorke, India: Central Building Research Institute.
    52. Reese, L. C., Hudson, W. R., ayvergiya, V. N. (1969) An investigation of the interaction between bored piles and soil. Proceedings 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, August 25-29, 1969.2:211-216.
    53. Poulos, H. Cz, Mattes, N. S. (1969) The analysis of downdrag in end-beating piles. Proceedings 7, th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, August 25-29; 1969.2: 203-208.
    54. Poulos H G, Davis E H. Predication of downdragforce in end-bearing piles. Journal Geotech Engng Div, ASCE, 1975, 101:189-204.
    55. Chan, K. S., Karasudhi, P., Lee, S. L. (1974) Force at a point in the interior of a layered elastic half-space. Int. J. Solids and Structures. 10: 1179-1199.
    56. Kuwabara F & Poulos H G. Downdrag forces in group of piles. Geotech. engng ASCE, 1989, 115(GT6):806-818.
    57. Chow, YK., Chin, J. T., Lee, S. L. (1990) Negative skin friction on pile groups. Int. J. Numer. Anal. Meth. Geomech. 14: 74-91.
    58. Chow, YK., Lim, C. H., Karunaratne, GP. (1996)Numerical modeling of negative skin friction on pile groups. Comput. Geotech. 18(3): 201-224
    59. The C I, Wong K S. Analysis of downdrag on pile groups[J], Geotechnique, 1995, 45(2):191-207.
    60.王建华,高绍武,陆建飞.表面堆载作用下群桩负摩阻力研究.计算力学学报,2003,20(2):169-174.
    61.王建华,陆建飞,沈为平.Biot固结理论在单桩负摩擦研究中的应用.岩土工程学报,2000,22(5):590-593.
    62.陆建飞,王建华,沈为平.考虑固结合流变得群桩的积分方程解法.岩土工程学报,2000,22(6):651-653.
    63. Jeong, S. (1992) Nonlinear three dimensional analysis of downdrag on pile groups. PhD thesis. Texas A & M University
    64. Lee C J, Bolton M D, Al-tabbaa. A numerical modeling of group effects on the distribution of dragloads in pile foundation. Geotechnique, 2002, 52(5): 325-335.
    65. Masami Fukuoka (1988) Large Cast-in-place piles in Japan. Proc. 1st International Geotechnical Seminar on Deep Foundation on Bored and Auger Piles:95-106.
    66. Potyondy, J. G (1961) Skin friction between various materials. Geotechnique. 11(4): 339-353.
    67.史佩东主编《实用桩基工程手册》北京:中国建筑工业出版社,1999.:54-56
    68. Poorooshasb H B & Bozozuk M. Skin friction on a single pile to bedrock. 3rd Pan-Am. Conf. S. M. & F. E., 1967, 1:613-621.
    69. Poorooshasb H B & Miura N. Application of an integro-differential equation to the solution of geotechnical problems. Submitted for publication.
    70. Poorooshasb H B & Madhav R M. Application of rigid plastic dilatancy model for prediction of granular pile settlement. Proc. 5th Int. Numer. Meth. Geomech., Nagoya, 1985, 4:1805-1808.
    71. Boonsrang Niumpradit, Pisidhi Karasudhi. Load Transfer from an elastic pile to a saturated porous elastic soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1981, 5:115-138.
    72. Kog Y C, et al. Effects of negative skin friction on piles in layered soil[J]. Geotechnical Engineering, 1986m17:211-234.
    73. Koerner R M & Mukhopadhyay C. Behavior of negative skin friction on model piles in medium plasticity silt. Highway Research Record, 405(1972):34-44.
    74. Lim C H, Chow Y K & Lee S L. Negative skin friction on a single layered half-space. Int. J. Number. Anal. Meth. Geomech, 1993, 17: 625-645.
    75.许峰 桩承式路堤的工作机理研究,2004.浙江大学硕士学位论文.
    76.陈仁朋,许峰,陈云敏,贾宁.软土地基上刚性桩一路堤共同作用分析.中国公路学报,2005(3).8-13.
    77.贾宁,陈仁朋,陈云敏.杭甬高速公路拓宽工程理论分析及监测,岩土工程学报,2004(6),755-760.
    78.雷金波.带帽控沉硫桩复合地基试验研究及作用机理分析.河海大学博士学位论文.2005.3
    79.傅景辉,宋二祥.刚性桩复合地基工作特性分析.岩士力学,2000,21(4):335—339.
    80.池跃君,宋二祥.素混凝土桩复合地基荷载传递机理的试验研究.工业建筑,2001,31(4):39-42.
    81.池跃君,沈伟,宋二祥.桩体复合地基桩、土相互作用的解析法.岩土力学,2002,23(3):546—550.
    82.池跃君,宋二祥,高文新等.刚性桩复合地基承载及变形特性的试验研究[J].中国矿业大学学报,2002,31(3):237-241.
    83.沈伟,池跃君,宋二祥.考虑桩、土、垫层协同作用的刚性桩复合地基沉降计算方法.工程力学,2003,20(2):36-42.
    84. Ohkubo T, Asada S, and Karube D. A study on the reinforcing effects of geogrids over laid on pile group for the embankment foundations. Earth Reinforcement, Ochiai. Yasufuku, and Omine (eds.), Balkema, Rotterdam. 1996, 641-646
    85. Demerdash M A. An Experimental Study of Piled Embankments Incorporating Geosynthetic Basal Reinforcement. Ph. D. Dissertation, University of Newcastle—Upon-Tyne1996:158-163.
    86. Russell D, Pierpoint N. An assessment of design methods for piled embankments. Ground Engineering, 1997, November: 39-44
    87. Sa C T, Palmeira E M, Dellabianca L M A, et al. Numerical analysis of reinforced embankments on soft soils. Landmarks in Earth Reinforcement, Ochiai etal.(eds.), Swets & Zeitlinger, 2001, 265-270
    88.晏莉.桩承土工合成材料加筋垫层复合地基作用机理数值分析.长沙理工大学硕士学位论文.2004.5
    89.夏旭阳,陈延猛,芮瑞.管桩桩-网式复合地基特性的数值模拟.《高速公路地基处理理论与实践》人民交通出版社.2005:428-433
    90. Jie Huang, James G. Colin, Jie Han. 3D numerical modeling of a geosynthetic-reinforced pile-supported embankment—stress and displacement analysis. Proceedings 16th International Conference on Soil Mechanics and Foundation Engineering, Japan, August 25-29; 2005: 913-916.
    91. Itasca Consulting Group, Inc. FLAC2D, Fast Lagrangian Analysis of Continua, version 4.00, user's manual. USA:Itasca Consulting Group, Inc., 2002
    92.台缙高速公路东段工程现场监测成果及分析报告.浙江大学岩土工程研究所,2005.
    93. Niumpradit B, Karasudhi P. Load transfer from an elastic pile to a saturated porous elastic soil. International Journal for Numerical and Analytical Methods in Geomethanics, 1981, 5: 115-138.
    94.汪克让.固结土体与结构相互作用弹塑性有限元分析.天津大学学报,1994,27(6):728-735.
    95.陈云敏,陈仁朋,凌道盛.考虑相互作用的桩筏基础简化分析方法.岩土工程学报,2001(11):687-691
    96. Zeng G. X.. Study on the vertical pressure on the pipeline under an earth dam. Journal of Zhejiang University, 1960, 5(1):79-97.
    97.董建国,赵锡宏.高层建筑与裙房基础整体设计的若干问题.岩土工程学报,1998,20(6):26-32.
    98. Ing. N. G. Cortlever. Design of Double Track Railway Bidor-Rawang on AuGeo Piling System. Symposium 2001 on soft ground improvement and geosynthetic applications. AIT, Bangkok.
    99.张季如.大规模带桩筏基模拟试验研究.岩土工程学报,1992,14(6):81-89.
    100.谢涛,袁文忠,朱明.群桩基础竖向承载力群桩效应模型试验研究.铁道建筑技术,2002(4):38-40.
    101. Randolph, M. F. & Worth, C. P., An analysis of vertical deformation of pile groups, Geotechnique, 1979, 29(4):423 -439
    102.《桩基工程手册》编写委员会。桩基工程手册.北京:中国建筑工业出版社,1997.
    103.贺武斌,贾军刚,白小红等.承台—群桩—土共同作用的试验研究.岩土工程学报,2002(6):710-715.
    104.陈仲颐,叶书麟主编.基础工程学.中国建筑工业出版社,1990.
    105.龚晓南.高等土力学.浙江大学出版社,1996.
    106.龚晓南.地基处理新技术.西安:陕西科技技术出版社,1997.
    107.李广信,黄锋.不同加载方式下桩的摩阻力的试验研究.工业建筑,1999,29(12):19-21.
    108.徐建平,周健,许朝阳等.沉桩挤土效应的模型试验研究.岩土力学,2000,21(3):235-238.
    109.许朝阳,周健.软粘土中沉桩效应的模型试验研究及数值模拟.土工基础,2000,14(4):20-24.
    110.黄锋,李广信.单桩在压与拔荷载下桩侧摩阻力的有限元计算研究.工程力学,1999,16(6):97—101.
    111.黄锋,黄文锋,李广信等.不同受载方式下桩侧阻的渗水力模型试验研究[J].岩土工程学报,1998,20(2):10-14.
    112. Indraratna B, Balasubramaniam A S, Sivaneswaran N. Analysis of settlement and lateral deformation of soft clay foundation beneath two full-scale embankments. International Journal for Numerical Methmods in Geomechanics, 1997, 21:599-618.
    113. Jin-Chun Chai, Miura N. Traffic-load-induced permanent deformation of road on soft subsoil. Journal of Geotechincal and Geoenvironmental Engineering, 2002, 128(11):907-915.
    114. Juan M. Pestana, Asce M, Christopher E. Hunt, A. M. Asce, Jonathan D. Bray, M. Asce. Soil deformation and excess pore pressure field around a closed-ended pile. Journal of Geotechincal and Geoenvironmental Engineering, 2002, 128(1): 1-11
    115.刘润,严驰,徐余,阎澍旺.粘性土基坑开挖的模型试验研究.水利学报,1999,12:59-77.
    116. Ellis E A, Springman S M. Modeling of soil-structure interation for a piled bridge abutment in plane strain FEM analyses. Computers and Geotechnics, 2001, 28:79-98.
    117. Springman S M, Bolton M D. The effect of surcharge loading adjacent to piled foundations. UK Transport & Road Research Laboratory Contractor Report 196, 1990.
    118. Branby M F, Springman S M. 3-D finite element modeling of pile groups adjacent to surcharge loads. Computers and Geotechnics, 1996, 19(4): 1-24.
    119. Naylor D J. Finite element study of embankment loading on piles. Report for the Department of Transport(HECB), 1982.
    120.王长科,郭新海.基础—垫层—复合地基共同作用原理.土木工程学报,1996,29(5):30—35.
    121.周万欢.堆载固结过程中单桩负摩擦力性状研究.浙江大学硕士学位论文.2005.3
    122. D. Geddes. Stress in Foundation Soils Due to Vertical Subsurface Loading, Geotechnique, 1966, Vol. 16(3), 231
    123.李静文.联合应用Boussinesq和Mindlin求解桩土复合地基中的应力及其沉降[[J].地基处理,1993,4(4):15-21
    124.黄绍铭,王迪民等.按沉降量控制的复合桩基设计方法(上篇)[J].工业建筑,1992,21(7):34-36
    125.黄绍铭,王迪民等.按沉降量控制的复合桩基设计方法(下篇)[J].工业建筑,1992,21(8):41-44
    126.张忠苗,陈洪.柔性承台下复合地基应力和沉降计算研究[[J].岩土力学,2003,25(3):451-454
    127.杨涛.柔性基础下复合地基下卧层沉降特性的数值分析[[J].岩土力学,2003,24(1):53-56
    128.刘杰,张可能.路堤荷载下复合地基变形及荷载传递规律研究[[J].铁道学报,2003,25(3):107-111
    129.《地基处理手册》编写委员会.地基处理手册.北京:建筑工业出版社,1998.
    130.张建勋等,桩承土工织物加筋地基的研究与工程应用综述.福建工程学院学报,2003(9):11-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700