用户名: 密码: 验证码:
以聚醚(PEO)为主链的新型两亲性接枝共聚物的分子设计、合成及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于聚合技术的发展,特别是可控/“活性”自由基聚合技术的出现,使得人们能够设计合成出各种线形和非线形结构的共聚物。在这些共聚物中,由亲水链和憎水链组成的接枝共聚物,由于它们具有特殊的结构,丰富的自组装形态以及在化学、物理和生物领域中具有广泛的用途而引起人们的广泛兴趣。但是,就目前的两亲性接枝共聚物而言,其主链大部分是由憎水链组成的,而支链则由亲水链组成。由亲水主链和憎水支链组成的接枝共聚物,由于其合成的困难,迄今为止很少有文献报道。本文提出了一个合成该接枝共聚物的新方法,并在实践中成功地加以了实施。我们的主要结果如下:
     1.利用传统的阴离子聚合技术,通过二缩三乙二醇与二苯甲基钾(DPMK)组成的引发剂体系引发1-乙氧基乙基-2,3-环氧丙醚(EPEE)均聚或其与环氧乙烷(EO)共聚,分别得到线形的窄分布的均聚物PEPEE和共聚物poly(EO-co-EPEE)。得到的聚合物用甲酸水解去保护,并在二氧六环和甲醇的混合溶剂中用氢氧化钾溶液皂化后,得到了聚合物链的侧端挂有羟甲基官能团的线形聚醚linear Polyglycidol(lPG)和poly(EO-co-Gly)。共聚物poly(EO-co-Gly)的羟基与2-溴异丁酰溴进行酯化反应,得到侧链挂有2-溴异丁酸酯基结构的可以用于原子转移自由基聚合(ATRP)体系的大分子引发剂Poly(EO-co-Gly)_((ATRP))。然后通过ATRP聚合技术,分别引发聚合了苯乙烯(St)、丙烯酸甲酯(MA)、丙烯酸叔丁酯(tBA)和甲基丙烯酸-2-(N,N-二甲氨基)乙酯(DMAEMA)等单体,得到了一系列结构明确的以PEO为主链的两亲性接枝共聚物:PEO-g-PS、PEO-g-PMA、PEO-g-tBA、和PEO-g-PDMAEMA,并由PEO-g-tBA通过选择性水解(三氟乙酸)得到双亲水性接枝共聚物PEO-g-PAA。其中,我们对由大分子引发剂Poly(EO-co-Gly)_((ATRP))引发苯乙烯和丙烯酸甲酯这两种单体的ATRP聚合过程进行了动力学研究,结果证明聚合过程是可控的。在丙烯酸甲酯的聚合过程中,用乙腈作为溶剂时,其聚合反应比本体聚合体系有更好的可控性,共聚物产物的分子量分布也更窄,同时没有出现均聚物。用核磁共振(~1H NMR)、红外光谱(FT-IR)、元素分析、气相色谱—质谱(GC-MS)、凝胶渗透色谱(GPC)和基质辅助激光解吸附电离飞行时间质谱(MALDI-TOF-MS)等手段对中间产物及最终产物进行了详细地表征,证明了这种合成聚醚(PEO)为主链的接枝共聚物的方法是可行的,并且是成功的。
     2.在阴离子共聚EPEE单体和环氧乙烷(EO)单体的过程中,通过变换引发剂体系中的醇的结构(由原来的二元醇变成多元醇,如三羟甲基丙烷和季戊四醇),合成了星形结构的共聚物,通过水解反应脱去保护基团后,再与2-溴异丁酰溴反应,得到链的侧端挂有很多2-溴异丁酸酯基的星形大分子引发剂,通过ATRP聚合机理引发苯乙烯聚合得到PEO为主链,PS为侧链的星形一接枝共聚物。用核磁共振(~1H NMR)、红外光谱(FT-IR)和凝胶渗透色谱(GPC)等手段对中间产物及最终产物进行了详细地表征,证明了这种合成聚醚(PEO)为主链的星形—接枝共聚物的方法是可行的,并且是成功的。
Recently, various of linear and non-linear copolymers were designed and prepared owing to the development of synthetic technology, especially in the field of the controlled/"living" radical polymerization. Amphiphilic graft copolymers containing hydrophilic and hydrophobic chains have received much attention due to their unique structures, morphologies in solution as well as their potential applications in chemistry, physics, biology, and so on. However, most of these amphiphilic copolymers are composed of hydrophobic main chain and hydrophilic side chains. The inversed architecture graft copolymers with hydrophilic main chain and hydrophobic side chains are scarcely reported because of the difficulties of synthesis. Here, an efficient and universal method is introduced to synthesize the well-defined graft copolymer, three- and four-arm star graft copolymers with PEO as main chain. The essential work completed by us shows as follows:
    1. Some novel well-defined graft copolymers of poly(ethylene oxide) as main chain is successfully prepared by combination of anionic and atom transfer radical polymerization (ATRP). The glycidol is protected by ethyl vinyl ether first to form 2,3-epoxypropyl-1-ethoxyethyl ether (EPEE), then polymerized or copolymerized with EO by initiation with the mixture of diphenylmethylpotassium and triethylene glycol to give the well-defined poly(EO-co-EPEE). The latter is hydrolyzed in the acidic conditions, then the recovered copolymer of EO and glycidol (Gly) with multi pending hydroxymethyls [(poly(EO-co-Gly)] is esterified with 2-bromoisobutyryl
    bromide to produce the ATRP macroinitiator with multi pending bromoisobutyryl groups [poly(EO-co-Gly)(ATRP)]. Subsequently, the latter initiates the polymerization of styrene (St), methacrylate (MA), tert-butyl acrylate (tBA) and 2-(dimethylamino) ethyl methacrylate (DMAEMA) respectively to form the corresponding amphiphilic graft copolymer PEO-g-PS, PEO-g-PMA, PEO-g-PtBA and PEO-g-PDMAEMA. The double hydrophilic graft copolymer PEO-g-PAA is acquired by the hydrolysis of the amphiphilic graft copolymer PEO-g-PtBA. The polymerization kinetic of styrene and methacrylate initiated by poly(EO-co-Gly)(ATRP) are investigated respectively and found that both are well controlled. The object products and intermediates are characterized by ~1H NMR, IR, element analysis, GC-MS, MOLDI-TOF-MS and GPC in detail. It is proved that this route suggests to prepare the graft copolymers with PEO as main chain copolymer is successful.
    2. Two novel well-defined star-graft copolymers with poly(ethylene oxide) as main chain are successfully prepared by combination of anionic and atom transfer radical polymerization (ATRP). Anionic copolymerized 2,5-epoxypropyl-1-ethoxyethyl ether (EPEE) with EO by initiation of mixture of diphenylmethylpotassium and polyol [1,1,1-tris(hydroxymethyl)propane (TMP) or pentaerythritol] to give the well-defined three-arm star poly(EO-co-EPEE) and four-arm star poly(EO-co-EPEE). Both star copolymer precursors are hydrolyzed in the acidic conditions, then the corresponding recovered star copolymers of EO and glycidol (Gly) with multi pending hydroxylmethyls [three-arm star poly(EO-co-Gly) and four-arm star poly(EO-co-Gly)] are esterified with 2-bromoisobutyryl bromide to produce the ATRP macroinitiators with multi pending bromoisobutyryl groups [three-and four-arm star poly(EO-co-Gly)(ATRP)]. Then the latters initiate the polymerization of styrene (St) to form the corresponding amphiphilic three- and four-arm star PEO-g-PS. The object products and intermediates are characterized by ~1H NMR, IR and GPC in detail. It is proved that this method to synthesize the graft copolymers with PEO as main chain copolymer is successful.
引文
[1] Szwarc, M.; Levy, M.; Mikovich, R. J. Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers. J Am Chem Soc 1956, 78: 2656-2657.
    [2] Szwarc, M. Living Polymers Nature (London) 1956, 178: 168-169.
    [3] Vebster, O. W. Living Polymerization methods Science 1991, 251: 887-888.
    [4] 何天白,胡汉杰.海外高分子科学的新近展[M],北京:化学工业出版社,2001,5.
    [5] Szwarc, M. Living polymers. Their discovery, characterization, and properties. J Polym Sci, Polym Chem 1998, 36: Ⅸ-ⅩⅤ
    [6] Uhrig, D.; Mays, J. W. Experimental Techniques in High-Vacuum Anionic Polymerization J Polym Sci, Polym Chem 2005, 43: 6179-6222.
    [7] Bourissou, D.; Martin-Vaca, B.; Dumitrescu, A.; Graullier, M.; Lacombe, F. Controlled Cationic Polymerization of Lactide Macromolecules 2005, 38: 9993-9998.
    [8] Kennedy, J. P.; Desai, N. V.; Sivaram, S. Alkylation of tertiary alkyl halides with trialkylaluminums. Model for initiation and termination in cationic polymerizations J Am Chem Soc 1973, 95: 6386-6390.
    [9] Yoshida, T.; Kanaoka, S.; Watanabe, H.; Aoshima, S. Stimuli-responsive reversible physical networks. Ⅱ. Design and properties of homogeneous physical networks consisting of periodic copolymers synthesized by living cationic polymerization J Polym Sci, Polym Chem 2005, 43:2712-2722.
    [10] Magnusson, H.; Malmstrom, E.; Hult, A. Influence of Reaction Conditions on Degree of Branching in Hyperbranched Aliphatic Polyethers from 3-Ethyl-3-(hydroxymethyl)oxetane Macromelocules 2001, 34:5786-5791.
    [11] Bednarek, M.; Kubisa, P.; Penczek, S. Multihydroxyl Branched Polyethers. 2. Mechanistic Aspects of Cationic Polymerization of 3-Ethyl-3-(hydroxymethyl)-oxetane Macromelocules 2001, 34:5112-5119.
    [12] Yan, D.; Hou, J.; Zhu, X.; Kosman, J. J.; Wu, H. S. A new approach to control crystallinity of resulting polymers: Self-condensing ring opening polymerization Macromol Rapid Commun 2000, 21: 557-561.
    [13] Hou, J.; Yan, D. Y. Synthesis of a star-shaped copolymer with a hyperbranched poly(3-methyl-3-oxetanemethanol) core and tetrahydrofuran arms by one-pot copolymerization. Macromol Rapid Commun 2002, 23: 456-459.
    [14] Webster, O. W.; Hertler, W. R.; Sogah, D. Y.; Farnham, W. B.; RajanBabu, T. V. Group-transfer polymerization. 1. A new concept for addition polymerization with organosilicon initiators J Am Chem Soc 1983, 105: 5706-5708.
    [15] Webster, O. W.; Hertler, W. R.; Sogh, D. Y.; Farnham, W. B.; RajanBabu, T. V. Synthesis of reactive-ended acrylic polymers by group transfer polymerization: initiation with silyl ketene acetals J Macromol Sci: Chem 1984, A21: 943-952.
    [16] Sogah, D. Y.; Hertler, W. R.; Webster, O. W.; Cohen, G. M. Group transfer polymerization-polymerization of acrylic monomers Macromolecules 1987, 20: 1473-1488.
    [17] Otsu, T.; Yoshida, M. A model for living radical polymerization Makromol Chem Rapid Commun 1982, 3: 133-139.
    [18] Otsu, T.; Kuriyama, A. Living radical polymerization of methyl methacrylate with a tetrafunctional photoiniferter synthesis of a star polymer Polymer J 1984, 16: 511-514.
    [19] Turner, S. R.; Blevins R. W. Photoinitiated block copolymer formation using dithiocarbamate free radical chemistry Macromolecules 1990, 23: 1856-1859.
    [20] Stoffelbach, F.; Poli, R.; Richard, P. Half-sandwich molybdenum(Ⅲ) compounds containing diazadiene ligands and their use in the controlled radical polymerization of styrene J Organometal Chem 2002, 663: 269-276.
    [21] Moad, G.; Rizzardo, E.; Solomon, H.J. Selectivity of the reaction of free radicals with styrene Macromolecules 1982, 15: 909-914.
    [22] Georges, M.K.; Veregin, R.P.N.; Kazmaier, P.M.; Hamer, G. K. Narrow molecular weight resins by a free-radical polymerization process Macromolecules 1993, 26: 2987-2988.
    [23] Veregin, R.P.N.; Georges, M.K.; Kazmaier, P.M.; Hamer, G. K. Free radical polymerizations for narrow polydispersity resins: electron spin resonance studies of the kinetics and mechanism Macromolecules 1993, 26: 5316-5320.
    [24] Hawker, C.J.; Bosnian, A.W.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations Chem Rev 2001, 101: 3661-3688.
    [25] Wang, J.S.; Matyjaszewski, K. Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes J Am Chem Soc 1995, 117: 5614-5615.
    [26] Wang, J.S.; Matyjaszewski, K . "Living"/Controlled Radical Polymerization. Transition-Metal-Catalyzed Atom Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator Macromolecules 1995, 28: 7572-7573.
    [27] Wang, J.S.; Matyjaszewski, K. Controlled/"Living" Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox Process Macromolecules 1995, 28: 7901-7910.
    [28] Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris- (triphenylphosphine) ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization Macromolecules 1995,28: 1721-1723.
    [29] Ando, T.; Kato, M.; Kamigaito, M.; Sawamoto, M. Living radical polymerization of methyl methacrylate with ruthenium complex: Formation of polymers with controlled molecular weights and very narrow distributions Macromolecules 1996,29: 1070-1072.
    [30] Curran, D.P. The design and application of free radical chain reactions in organic synthesis Synthesis 1988, (6): 417-139.
    [31] Patten, T.E.; Xia, J.H.; Abernathy, T.; Matyjaszewski, K. Polymers with very low polydispersities from atom transfer radical polymerization Science 1996, 272: 866-868.
    [32] Percec, V.; Barboiu, B.; Neumann, A.; Ronda, J. C; Zhao, M. Metal-Catalyzed "Living" Radical Polymerization of Styrene Initiated with Arenesulfonyl Chlorides. From Heterogeneous to Homogeneous Catalysis Macromolecules 1996,29:3665-3668.
    [33] Sawamoto, M.; Kamigaito, M. Living radical polymerization based on transition metal complexes Trends Polym Sci 1996, 4: 371-377.
    [34] Moineau, G; Dubois, P.; Jerome, R.; Senninger, T.; Teyssie, P. Alternative Atom Transfer Radical Polymerization for MMA Using FeCl_3 and AIBN in the Presence of Triphenylphosphine: An Easy Way to Well-Controlled PMMA Macromolecules 1998, 31: 545-547.
    [35] Xia, J.; Matyjaszewski, K. Controlled/"Living" Radical Polymerization Homogeneous Reverse Atom Transfer Radical Polymerization Using AIBN as the Initiator Macromolecules 1997, 30: 7692-7696.
    [36] Matyjaszewski, K. Controlling polymer structures by atom transfer radical polymerization and other controlled/living radical polymerizations Macromol Symp 2003, 195:25-31.
    [37] Hawker, C. J.; Hedrick, J. L.; Malmstrom, E. E.; Trollsas, M.; Mecerreyes, D.; Moineau, G.; Dubois, P.; Jerome, R. Dual Living Free Radical and Ring Opening Polymerizations from a Double-Headed Initiator Macromolecules 1998, 31: 213-219.
    [38] Gaynor, S. G; Matyjaszewski, K. Step-Growth Polymers as Macroinitators for "Living" Radical Polymerization: Synthesis of ABA Block Copolymers Macromolecules 1997, 30: 4241-4243.
    [39] Ueda, J.; Matsuyama, M.; Kamigaito, M.; Sawamoto, M. Multifunctional Initiators for the Ruthenium-Mediated Living Radical Polymerization of Methyl Methacrylate: Di- and Trifunctional Dichloroacetates for Synthesis of Multiarmed Polymers Macromolecules 1998, 31: 557-562.
    [40] Angot, S.; Murthy, K. S.; Taton, D.; Gnanou, Y. Atom Transfer Radical Polymerization of Styrene Using a Novel Octafunctional Initiator: Synthesis of Well-Defined Polystyrene Stars Macromolecules 1998, 31: 7218-7225.
    [41] Pyun, J.; Matyjaszewski, K. The Synthesis of Hybrid Polymers Using Atom Transfer Radical Polymerization: Homopolymers and Block Copolymers from Polyhedral Oligomeric Silsesquioxane Monomers Macromolecules 2000, 33: 217-220.
    [42] Cheng, G; Boker, A.; Zhang, M.; Krausch, G; Muller, A. H. E.Amphiphilic Cylindrical Core-Shell Brushes via a "Grafting From" Process Using ATRP Macromolecules 2001, 34: 6883-6888.
    [43] Zhang, M.F. Breiner, T.; Mori, H.; Muller, A.H.E. Amphiphilic cylindrical brushes with poly(acrylic acid) core and poly(n-butyl acrylate) shell and narrow length distribution Polymer 2003, 44: 1449-1458.
    [44] Boerner, H.G.; Beers, K.; Matyjaszewski, K.; Sheiko, S.S.; Moeller, M. Synthesis of Molecular Brushes with Block Copolymer Side Chains Using Atom Transfer Radical Polymerization Macromolecules 2001, 34: 4375-4383.
    [45] Boerner, H.G.; Duran, D.; Matyjaszewski, K.; da Silva, M.and Sheiko, S.S. Synthesis of Molecular Brushes with Gradient in Grafting Density by Atom Transfer Polymerization Macromolecules 2002, 35: 3387-3394.
    [46] Gaynor, S. G; Edelman, S.; Matyjaszewski, K. Synthesis of Branched and Hyperbranched Polystyrenes Macromolecules 1996, 29: 1079-1081.
    [47] Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.;Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G; Rizzardo, E.; Thang, S. H Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process Macromolecules 1998, 31: 5559-5562.
    [48] Le, T.P.; Moad, G.; Rizzardo, E.; Yhang, S.H. PCT Int. Appl. WO 9801478 AI 980115
    [49] Chong, Y. K.; Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang, S. H. A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization: The RAFT Process Macromolecules 1999, 32: 2071-2074.
    [50] Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Krstina, J.; Moad, G.; Postma, A.; Thang, S. H. Living Polymers by the Use of Trithiocarbonates as Reversible Addition-Fragmentation Chain Transfer (RAFT) Agents: ABA Triblock Copolymers by Radical Polymerization in Two Steps Macromolecules 2000, 33: 243-245.
    [51] Riess, G. Micellization of block copolymers Prog Polym Sci 2003, 28: 1107-1170.
    [52] Mori, H.; Muller, A. H. E. New polymeric architectures with (meth)acrylic acid segments Prog Polym Sci 2003, 28: 1403-1439.
    [53] Advincula, R. C.; Brittain, W. J.; Caster, K. C.; Ruhe, J., Eds. Polymer Brushes [M] Wiley-VCH: Weinheim, 2004.
    [54] Zhang, M. F.; Muller, A. H. E.; Cylindrical polymer brushes J Polym Sci Part A: Polym Chem 2005, 43: 3461-3481.
    [55] www.chem.cmu.edu/groups/maty/about/research/about-research-brush.html.
    [56] Matyjaszewski, K.; Qin, S. H.; Boyce, J. R.; Shirvanyants, D.; Sheiko, S. S. Effect of initiation conditions on the uniformity of three-arm star molecular brushes Macromolecules 2003, 36:1843-1849.
    [57] Lord, S. J.; Sheiko, S. S.; LaRue, I..; Lee, H. I.; Matyjaszewski, K. Tadpole Conformation of Gradient Polymer Brushes Macromolecules 2004, 37: 4235-4240.
    [58] Neugebauer, D.; Zhang, Y.; Pakula, T.; Sheiko, S. S.; Matyjaszewski, K. Densely-Grafted and Double-Grafted PEO Brushes via ATRP. A Route to Soft Elastomers Macromolecules 2003, 36: 6746-6755.
    [59] Tsukahara, Y.; Mizuno, K.; Segawa, A.; Yamashita, Y. Study on the radical polymerization behavior of macromonomers Macromolecules 1989, 22: 1546-1552.
    [60] Ito, K.; Kawaguchi, S. Poly(macromonomers): Homo- and copolymerization Adv Polym Sci 1999, 142: 129-178.
    [61] Hadjichristidis, N.; Pitsikalis, M.; Iatrou, H.; Pispas, S. The strength of the macromonomer strategy for complex macromolecular architecture: Molecular characterization, properties and applications of polymacromonomers Macromol Rapid Commun 2003, 24: 979-1013.
    [62] Wintermantel, M.; Gerle, M.; Fischer, K.; Schmidt, M; Wataoka, I.; Urakawa, H.; Kajiwara, K.; Tsukahara, Y. Molecular Bottlebrushes Macromolecules 1996, 29: 978-983.
    [63] Dziezok, P.; Sheiko, S. S.; Fischer, K.; Schmidt, M.; Moller, M. Cylindrical molecular brushes Angew Chem Int Ed 1997, 36: 2812-2815.
    [64] Nomura, E.; Ito, K.; Kajiwara, A.; Kamachi, M. Radical Polymerization Kinetics of Poly(ethylene oxide) Macromonomers Macromolecules 1997, 30: 2811-2817.
    [65] Pantazis, D.; Chalari, I.; Hadjichristidis, N. Anionic Polymerization of Styrenic Macromonomers Macromolecules 2003, 36: 3783-3785.
    [66] Tsukahara, Y.; Inoue, J.; Ohta, Y.; Kohjiya, S.; Okamoto, Y. Study on the solvent effect on radical polymerization of polystyrene macromonomer Polym J 1994,26: 1013-1018.
    [67] Kanaoka, S.; Sueoka, M.; Sawamoto, M.; Higashimura, T. Star-shaped polymers by living cationic copolymerization .7. Amphiphilic graft polymers of vinyl ethers with hydroxyl-groups-synthesis and host-guest interaction J Polym Sci Part, Polym Chem 1993, 31: 2513-2521.
    [68] Asami, R.; Takaki, M.; Moriyama, Y. Polymerization of macromers 2. Group transfer polymerization of methacrylate terminated polystyrene macromer Polym Bull 1986, 16: 125-130.
    [69] Nomura, K.; Takahashi, S.; Imanishi, Y. Synthesis of Poly(macromonomer)s by Repeating Ring-Opening Metathesis Polymerization (ROMP) with Mo(CHCMe_2Ph)(NAr)(OR)_2 Initiators Macromolecules 2001, 34: 4712-4723.
    [70] Heroguez, V.; Breunig, S.; Gnanou, Y.; Fontanille, M. Synthesis of α-Norbornenylpoly(ethylene oxide) Macromonomers and Their Ring-Opening Metathesis Polymerization Macromolecules 1996, 29: 4459-4464.
    [71] Yamada, K.; Miyazaki, M.; Ohno, K.; Fukuda, T.; Minoda, M. Atom Transfer Radical Polymerization of Poly(vinyl ether) Macromonomers Macromolecules 1999, 32: 290-293.
    [72] Neiser, M. W.; Okuda, J.; Schmidt, M. Polymerization of Macromonomers to Cylindrical Brushes Initiated by Organolanthanides Macromolecules 2003, 36: 5437-5439.
    [73] Senoo, K.; Endo, K. Synthesis of a novel syndiotactic poly(macromonomer) consisting of styrene-terminated polyisoprene macromonomers using half-titanocene catalysts Macromol Rapid Commun 2000, 21: 1244-1247.
    [74] Candau, F.; Afchar, F.; Taromi, F.; Rempp, P. Synthesis and characterization of polystyrene-poly(ethylene oxide) graft copolymer Polymer 1977, 18: 1253-1257.
    [75] Deffieux, A. Schappacher, M. Synthesis and characterization of star and comb polystyrenes using isometric poly(chloroethyl vinyl ether) oligomers as reactive backbone Macromolecules 1999,32: 1797-1802.
    [76] Schappacher, M.; Bernard, J.; Deffieux, A. Functional polystyrene combs and dendrigrafts, 1 - Selective introduction of dihydroxymethyl functions at their periphery Macromol Chem Phys 2003, 204: 762-769.
    [77] Bywater, S. Prog Polym Sci 1974, 4: 27-69.
    [78] Takaki, M.; Asami, R.; Kuwata Y. Side Reactions in the Grafting Reaction of Living Polystyrene with Polymers Having Pendant Benzylic Halides Macromolecules 1979, 12: 378-382.
    [79] Gauthier, M.; Moeller, M. Uniform highly branched polymers by anionic grafting: arborescent graft polymers Macromolecules 1991, 24: 4548-4553.
    [80] Ruokolainen, J.; Torkkeli, M.; Serimaa, R.; Komanschek, E.; ten Brinke, G.; Ikkala, O. Order-Disorder Transition in Comblike Block Copolymers Obtained by Hydrogen Bonding between Homopolymers and End-Functionalized Oligomers: Poly(4-vinylpyridine)-Pentadecylphenol Macromolecules 1997, 30: 2002-2007.
    [81] Ruokolainen, J.; Tanner, J.; Ikkala, O.; ten Brinke, G; Thomas, E. L. Direct Imaging of Self-Organized Comb Copolymer-like Systems Obtained by Hydrogen Bonding: Poly(4-vinylpyridine)-4-Nonadecylphenol Macromolecules 1998, 31: 3532-3536.
    [82] Antonietti, M.; Conrad, J.; Thuenemann A. Polyelectrolyte-Surfactant Complexes: A New Type of Solid, Mesomorphous Material Macromolecules 1994, 27: 6007-6011.
    [83] Bazuin, C. G.; Tork, A. Generation of Liquid Crystalline Polymeric Materials from Non Liquid Crystalline Components via Ionic Complexation Macromolecules; 1995, 28: 8877-8880.
    [84] Ruokolainen, J.; Tanner, J.; ten Brinke, G.; Ikkala, O.; Torkkeli, M.; Serimaa R. Poly(4-vinyl pyridine)/Zinc Dodecyl Benzene Sulfonate Mesomorphic State Due to Coordination Complexation Macromolecules 1995, 28: 7779-7784.
    [85] Fredrickson, G. H. Surfactant-induced lyotropic behavior of flexible polymer solutions Macromolecules 1993, 26:2825-2831.
    [86] Huh, J.; Ikkala, O.; ten Brinke, G. Correlation Hole Effect in Comblike Copolymer Systems Obtained by Hydrogen Bonding between Homopolymers and End-Functionalized Oligomers Macromolecules 1997, 30:1828-1835.
    [87] Ruokolainen, J.; ten Brinke, G.; Ikkala, O.; Torkkeli, M.; Serimaa, R. Mesomorphic Structures in Flexible Polymer-Surfactant Systems Due to Hydrogen Bonding: Poly(4-vinylpyridine)-Pentadecylphenol Macromolecules 1996, 29: 3409-3415.
    [88] Tal'roze, R. V.; Kuptsov, S. A.; Sycheva, T. I.; Bezborodov, V. S.; Plate N. A. Order and Liquid Crystalline Phase Behavior of Polyacid-Tertiary Amine Complexes Macromolecules 1995, 28: 8689-8691.
    [89] Qin, S. H.; Borner, H. S.; Matyjaszewski, K.; Sheiko, S, S. Densely grafted molecular brushes with high molecular weight backbone by ATRP and raft techniques Polym Prepr (Am Chem Soc Div Polym Chem) 2002, 43:237-23
    [90] Venkatesh, R.; Yajjou, L.; Koning, C. E.; Klumperman, B. Novel brush copolymers via controlled radical polymerization Macromol Chem Phys 2004, 205: 2161-2168.
    [91] Ishizu, K.; Kakinuma, H. Synthesis of nanocylinders consisting of graft block copolymers by the photo-induced ATRP technique J Polym Sci, Polym Chem 2005,43:230-233.
    [92] Bates, F. S.; Fredrickson, G. H. Block copolymers - Designer soft materials Phys. Today 1999, 52: 32-38.
    [93] Hamley, I.W. The Physics of Block Copolymers [M]; Oxford University Press: 1998
    [94] Trejo-O'Reilly, J. A.; Cavaille, J. Y.; Gandini, A. The surface chemical modification of cellulosic fibres in view of their use in composite materials Cellulose 1997, 4: 305-320.
    [95] Stiriba, S.E.; Kautz, H.; Frey, H. Hyperbranched Molecular Nanocapsules: Comparison of the Hyperbranched Architecture with the Perfect Linear Analogue J Am Chem Soc 2002, 124: 9698-9699.
    [96] Trubetskoy, V. S. Polymeric micelles as carriers of diagnostic agents Adv Drug Deliv Rev 1999,37: 81-88.
    [97] Djalali, R.; Li, S. Y.; Schmidt, M. Amphipolar Core-Shell Cylindrical Brushes as Templates for the Formation of Gold Clusters and Nanowires Macromolecules 2002, 35:4282-4288.
    [98] Zhang, M.F.; Drechsler M.; Muller, A.H.E. Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core-shell cylindrical polymer brushes Chem Mater 2004, 16: 537-543.
    [99] Zhang, M.F.; Estournes, C; Bietsch, W. Muller, A.H.E. Superparamagnetic hybrid nanocylinders Adv Funct Mater 2004, 14: 871-882
    
    [100] He, L.H.; Huang, J.; Chen, Y.M.; Xu, X.J.; Liu, L.P. Inclusion Interaction of Highly Densely PEO Grafted Polymer Brush and α-Cyclodextrin Macromolecules 2005, 38: 3845-3851.
    [101] Sandier, S. R.; Berg, F. R. Room temperature polymerization of glycidol J Polym Sci, Polym Chem 1966, 4: 1253-1259.
    [102] Vandenberg, E. J. Polymerization of glycidol and it's derivatives: a new rearrangement polymerization J Polym Sci, Polym Chem 1985, 23: 915-949.
    [103] Tsuruta, T.; Inoue, S.; Koenuma, H. Polymerization of expoxyorganosilanes Makromol Chem 1968, 112: 58-65
    [104] Vandenberg, E. J. "Coordination Polymerization", in "Polymer Science and Technology", Price C. C. and Vandenberg, E. J. Eds., vol. 19, Plenum Press, New York 1983, p.11.
    [105] Fitton, A.; Hill, J.; Jane, D.; R. Miller. Synthesis of simple oxetanes carrying reactive 2-substituents Synthesis 1987, 1140-1142
    [106] Taton, D.; Le Borgne, A.; Sepulchre,M.; Spassky, N. Synthesis of chiral and racemic functional polymers from glycidol and thioglycidol Macromol Chem Phys 1994, 195: 139-148.
    [107] Dworak, A.; Panchev, I.; Trzebicka, B.; Walach, W. Poly(alpha-tau-butoxy -omega-styrylo-glycidol): a new reactive surfactant Polym Bull 1998, 40: 461-468.
    [108] Dworak, A. Baran, G.; Trzebicka, B.; Walach, W. Polyglycidol-block- poly(ethylene oxide)-block-polyglycidol: synthesis and swelling properties React Funct Polym 1999, 42: 31-36.
    [109] Dworak, A.; Panchev, I.; Trzebicka, B.; Walach, W. Hydrophilic and amphiphilic copolymers of 2,3-epoxypropanol-1 Macromol Symp 2000, 153: 233-242.
    [110] Kaluzynski, K.; Pretula, J.; Lapienis, G; Basko, M.; Bartczak, Z. Dworak, A. Penczek, S. Dihydrophilic block copolymers with ionic and nonionic blocks. I. Poly(ethylene oxide)-b-polyglycidol with OP(O)(OH)(2)COOH, or SO_3H functions: Synthesis and influence for CaCO_3 crystallization J Polym Sci, Polym Chem 2001, 39: 955-963.
    [111] Basinska, T.; Slomkowski, S.; Dworak, A.; Panchev, I.; Chehimi, M.M. Synthesis and characterization of poly(styrene/alpha-t-butoxy-omega- vinylbenzyl - polyglycidol) microspheres Colloid Polym Sci 2001, 279: 916-924.
    [112] Walach, W.; Kowalczuk, A.; Trzebicka, B.; Dworak, A. Synthesis of high-molar mass arborescent-branched polyglycidol via sequential grafting Macromol Rapid Commun 2001, 22: 1272-1277.
    [113] Dimitrov, P.; Hasan, E.; Rangejov, S.; Trzebicka, B.; Dworak, A.; Tsvetanov, C.B. High molecular weight functionalized poly(ethylene oxide) Polymer 2002, 43:7171-7178.
    [114] Dworak, A.; Kowalczuk-Bleja, A.; Trzebicka, B.; Walach, W. Amphiphilic core-shell PEO stars by Williamson etherification reaction Polym Bull 2002, 49:9-16.
    [115] Dworak, A.; Trzebicka, B.; Utrata, A.; Walach, W. Hydrophobically modified polyglycidol - the control of lower critical solution temperature Polym Bull 2003, 50: 47-54.
    [116] Dworak, A.; Trzebicka, B.; Walach, W.; Utrata, A. New thermo-sensitive reactive polyethers basing on glycidol Polymery 2003, 48: 484-489
    [117] Basinska, T.; Slomkowski, S.; Kazmierski, S.; Dworak, A.; Chehimi, M.M. Studies of the surface layer structure and properties of poly(styrene/alpha -t-butoxy- omega- polyglycidol) microspheres by carbon nuclear magnetic resonance, X-ray photoelectron spectroscopy, and the adsorption of human serum albumin and gamma-globulins J Polym Sci, Polym Chem 2004, 42: 615-623.
    [118] Walach, W.; Trzebicka, B.; Justynska, J.; Dworak, A. High molecular arborescent polyoxyethylene with hydroxyl containing shell Polymer 2004, 45: 1755-1762
    [119] Dworak, A.; Trzebicka, B. Walach, W. Utrata, A. Tsvetanov, C. Novel reactive thermosensitive polyethers - Control of transition point Macromol Symp 2004, 210:419-426
    [120] Dimitrov, P.; Rangelov, S.; Dworak, A.; Haraguchi, N.; Hirao, A.; Tsvetanov, C.B. Triblock and radial star-block copolymers comprised of poly(ethoxyethyl glycidyl ether), polyglycidol, poly(propylene oxide) and polystyrene obtained by anionic polymerization initiated by Cs initiators Macromol Symp 2004, 215: 127-139.
    [121] Mendrek, A.; Mendrek, S.; Trzebicka, B.; Kuckling, D.; Walach, J.; Adler, H.J. Dworak, A. Polyether core-shell cylinder-polymerization of polyglycidol macromonomers Macromol Chem Phys 2005, 206: 2018-2026.
    [122] Klajnert, B.; Walach, W.; Bryszewska, M; Dworak, A.; Shcharbin, D. Cytotoxicity, haematotoxicity and genotoxicity of high molecular mass arborescent polyoxyethylene polymers with polyglycidol-block-containing shells Cell Biol Int 2006, 30: 248-252.
    [123] Grzegorz, Lapienis. and Stanislaw, Penczek. Highly Branched (Starlike) Polymers Obtained by Reacting Oligoalcohols with Dicyclic Compounds. 1. Monomethoxy Poly(ethylene oxide) and Diepoxides Macromolecules 2000, 33: 6630-6632.
    [124] Rudloff, J.; Antonietti, M.; Colfen, H.; Pretula, J. Kaluzynski, K. Penczek, S. Double-hydrophilic block copolymers with monophosphate ester moieties as crystal growth modifiers of CaCO_3 Macromol Chem Phys 2002, 203: 627-635.
    [125] Penczek, S.; Pretula, J.; Kaluzynski, K. Simultaneous introduction of phosphonic and carboxylic acid functions to hydroxylated macromolecules J Polym Sci, Polym Chem 2004, 42: 432-443.
    [126] Lapienis, G; Penczek, S. One-pot synthesis of star-shaped macromolecules containing polyglycidol and poly(ethylene oxide) arms Biomacromolecules, 2005, 6: 752-762.
    [127] Gadzinowski, M.; Sosnowski, S. Biodegradable/biocompatible ABC triblock copolymer bearing hydroxyl groups in the middle block J Polym Sci, Polym Chem 2003, 41: 3750-3760.
    [128] Przerwa, E.; Sosnowski, S.; Slomkowski, S. Deposition of poly(styrene/alpha -tert-butoxy-omega-vinyl-benzyl-polyglycidol) microspheres on mica plates crossing the liquid-air interface: Formation of stripe pattern Langmuir 2004, 20: 4684-4689
    [129] Slomkowski, S.; Gadzinowski, M.; Sosnowski, S.; Radomska-Galant, I. Polylactide containing nanoparticles - new carriers of active compounds Polymery 2005, 50: 546-554.
    [130] Slomkowski, S,; Basinska, T.; Miksa, B. New types of microspheres and microsphere-related materials for medical diagnostics Polym Advan Technol 2002, 13:906-918.
    [131] Porjazoska, A.; Dimitrov, P.; Dimitrov, I.; Cvetkovska M. Synthesis and aqueous solution properties of functionalized and thermoresponsive poly(D,L-lactide)/Polyether block copolymers Macromol Symp 2004, 210: 427-436.
    [132] Rangelov, S.; Dimitrov, P.; Tsvetanov, C.B. Mixed Block Copolymer Aggregates with Tunable Temperature Behavior J. Phys. Chem. B 2005, 109: 1162-1167.
    [133] Goethals, E. J.; De Clercq, R. R.; De Clercq, H. C; Hartmann, P. J. Synthesis and reactions of telechelic polyacetals Makromol Chem, Macromol Symp 1991,47: 151-162
    [134] Tokar, R.; Kubisa, P.; Penczek S. Cationic Polymerization of Glycidol: Coexistence of the Activated Monomer and Active Chain End Mechanism Macromolecules 1994, 27: 320-322.
    [135] Sunder, A.; Hanselmann, R.; Frey, H. Mulhaupt R. Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization Macromolecules 1999, 32: 4240-4246.
    [136] Haag, R.; Sunder, A.; Stumbe, J.F. An approach to glycerol dendrimers and pseudo-dendritic polyglycerols J Am Chem Soc 2000, 122: 2954-2955.
    [137] Xie, H.Q. Sun, W.B. Advances in polymer synthesis. In: Culberson BM, McGarth JE, editors. Polym Sci Technol Ser No 31, New York: Plenum Press, 1985. pp. 461.
    [138] Kennedy, J.P.; Carter, J.D. The Synthesis, Characterization, and Copolymerization of the Macromonomer α-(p-Phenyl glycidylether)-ω- chloropolyisobutylene(PGE-PIB). 2. The Synthesis of PGE-PIB and Its Copolymerization with Epichlorohydrin and Ethylene Oxides Macromolecules 1990,23: 1238-1243.
    [1] Candau, F.; Afchar, F.; Taromi, F.; Rempp, P. Synthesis and characterization of polystyrene-poly(ethylene oxide) graft copolymer Polymer 1977, 18:1253-1257.
    [2] Shalati, M. D.; Overberger, C. G. Grafting of living poly(ethylene oxide) onto polystyrene via aromatic nucleophilic displacement of activated nitro groups J Polym Sci Polym Chem 1983, 21: 3425-.
    [3] Ito, K.; Tanak, K.; Tanak, H.; Imai, G.; Kawaguchi, S.; Itsumo, S. Poly(ethylene oxide) macromonomers. 7. Micellar polymerization in water Macromolecules 1991, 24:2348-2354
    [4] Riza, M.; Capak, I.; Kirshida, A.; Akashi, M. Graft copolymers having hydrophobic backbone and hydrophilic branches. 8. Effect of temperature on the dispersion copolymerization of poly(ethylene glycol) macromonomers with styrene Angew Makromol Chem 1993, 206: 69-75.
    [5] Capek, I.; Riza, M.; Akashi, M. Dispersion copolymerization of polyoxyethylene macromonomer and styrene. 2. Effect of initiator type and concentration on the copolymerization process Eur Polym J 1995, 31: 895-902.
    [6] Bonaccorsi, F.; Lezzi, F.; Prevedello, A.; Lanzinz, L.; Roggero, A. Synthesis of poly(4-methylstyrene)-graft-poly(ethylene oxide)s and application as polymeric dispersant in coal water mixture Polym Int 1993, 20: 93-100.
    [7] Xie, H. Q.; Liu, J.; Xie, D. Some properties of three types of copolymers with uniform polyoxyethylene grafts Eur Polym J 1989, 25:1119-1123.
    [8] Xie, H. Q.; Liu, J.; Li, H. An improved synthetic methods for preparing polyoxyethylene macromomers and a study of their copolymerization with alkyl acrylates J Macromol Sci Chem 1990, A27(6): 725-741.
    [9] Akashi, M.; Chao, D.; Yasima, E.; Miyauchi, N. Graft-copolymers having hydrophoblic backbone and hydrophilic branches .5. Microspheres obtained by the copolymerization of poly(ethylene glycol) macromonomer with methyl-methacrylate J Appl Polym Sci 1990, 39: 2027-2030.
    [10] Xu, Z. S.; Feng, L. X.; Ji, J.; Cheng, S. Y.; Chen, Y. C. Yi, C. F. The micellization of amphiphilic graft copolymer PMMA-g-PEO in toluene Eur Polym J 1998, 34: 1499-1504.
    [11] Guo, S. R., Shen, L. J., Feng, L. X. Surface characterization of blood compatible amphiphilic graft copolymers having uniform poly(ethylene oxide) side chains Polymer 2001, 42: 1017-1022.
    [12] Xu, Z. S.; Yi, C. F.; Cheng, S. Y.; Feng, L. X., Wu, C. Study on solution properties of amphiphilic graft copolymer PMMA-g-PEO Acta Polymerica Sinica 2000, (6): 701-706.
    [13] Xie, H. Q.; Liu, X. H.; Guo, J. S. Polymers with uniform polyoxyethylene side-chains and ionomers made from them Eur Polym J 1990, 26:1195-1201.
    [14] Xie, H. Q.; Liu, Y. Acrylic acid polymers with uniform polystyrene side-chains and their intermolecular complexes used as a chemical valve Eur Polym J 1991, 27: 1339-1343.
    [15] Klier, J.; Scranton, A. B.; Peppas, N. A. Self-associating networks of poly(methacrylic acid-g-ethylene glycol)Macromolecules 1990, 23: 4944-4949.
    [16] Hemker, D. J.; Garza, V.; Frank, C. W. Complexation of poly(acrylic acid) and poly(methacrylic acid) with pyrene-end-labeled poly(ethylene glycol), pH and fluorescence measurements Macromolecules 1990, 23: 4411-4418.
    [17] Mathur, A. M. Drescher, B.; Scranton, A. B. Klier, J. Polymeric emulsifiers based on reversible formation of hydrophobic units Nature 1998, 392: 367-370.
    [18] Cui, M. H.; Guo, J. S.; Xie, H. Q. Synthesis, characterization, and conductivities of poly(2-vinylpyridine)-graft-polyoxyethylene using a macromer technique J Macromol Sci, Pure Appl Chem 1995, A32(7): 1293-1303.
    [19] Xie, H. Q.; Cui, M. H. Guo, J. S. Some properties and morphology of poly(2-vinyl pyridine)-g-polyoxyethylene Eur Polym J 1997, 33:1537-1542.
    [20] Xie, H. Q. Sun, W. B. Advances in polymer synthesis. In: Culberson BM, McGarth JE, editors. Polym Sci Technol Ser No 31, New York: Plenum Press, 1985. pp. 461.
    [21] Kennedy, J. P.; Carter, J. D. The Synthesis, Characterization, and Copolymerization of the Macromonomer α-(p-Phenyl glycidyl ether)-ω-chloropolyisobutylene(PGE-PIB). 2. The Synthesis of PGE-PIB and Its Copolymerization with Epichlorohydrin and Ethylene Oxides Macromolecules 1990, 23: 1238-1243.
    [22] Fitton, A. Hill, J. Jane, D. Miller, R. Synthesis of simple oxetanes carrying reactive 2-substituents Synthesis 1987: 1140-1142.
    [23] Normant, H. ; Angelo, B. Metalation ini tetrahydrofuran by sodium in the presence of naphthalene Bull Soe Chim Fr 1960: 354-356.
    [24] Taton, D. ; Le Borgne, A. ; Sepulchre, M. ; Spassky, N. Synthesis of chiral and racemic functional polymers from glycidol and thioglycidol Macromol ChemPhys 1994, 195: 139-148.
    [25] Maier, S. ; Sunder, A. ; Frey, H. Mulhaupt R. Synthesis of poly(glycerol)-block-poly(methyl acrylate) multi-arm star polymers Macromol Rapid Commun 2000, 21: 226-230.
    [26] Burguiere, C. ; Pascual, S. ; Bui, C. ; Vairon, J. -P. ; Charleux, B. ; Davis, K. A. ; Matyjaszewski, K. ; Betremieux, I. Block Copolymers of Poly(styrene) and Poly(acrylic acid) of Various Molar Masses, Topologies, and Compositions Prepared via Controlled/Living Radical Polymerization. Application as Stabilizers in Emulsion Polymerization Macromolecules 2001, 34: 4439-4450.
    [27] Hou, S. ; Chaikof, E. L. ; Taton, D. ; Gnanou, Y. Synthesis of Water-Soluble Star-Block and Dendrimer-like Copolymers Based on Poly(ethylene oxide) and Poly(acrylic acid) Maeromolecules 2003, 36: 3874-3881.
    [28] Qui, Y. ; Yu, X. ; Feng, L. ; Yang, Sh. Synthesis and characterizationi of amphiphilic and microphase-seprated grafi-copolymers. 1. Sythesis and bulk characterization of polystyrene-grafl-omega-stearyl-poly(ethylene oxide) Makromol Chem 1992, 193: 1377-.
    [29] Quirk, R. P. , Lee, B. Experimental criteria for living polymerization Polym Int 1992, 27: 359-367.
    [30] Qiao, J. L. ; Yoshimoto, N. Morita M Proton conducting behavior of a novel polymeric gel membrane based on poly(ethylene oxide)-grafled-poly (methacrylate) J Power Sources 2002, 105: 45-51.
    [31] Qiao, J. L. ; Yoshimoto, N. Ishikawa, M. ; Morita, M. Acetic acid-doped poly(ethylene oxide)-modified poly(methacrylate): a new proton conducting polymeric gel electrolyte Electrochim Acta 2002, 47: 3441-3446.
    [32] Angot, S. ; Murthy, K. S. ; Taton, D. ; Gnanou, Y. Atom Transfer Radical Polymerization of Styrene Using a Novel Octafunctional Initiator: Synthesis of Well-Defined Polystyrene Stars Macromolecules 1998, 31: 7218-7225.
    [33] Colfen, H. Double-Hydrophilic Block Copolymers: Synthesis and Application as Novel Surfactants and Crystal Growth Modifiers Macromol Rapid Commun 2001, 22: 219-252.
    [34] Liu, S. Y. ; Weaver, J. V. M. ; Tang, Y. Q. ; Billingham, N. C. ; Armes, S. P. ; Tribe, K. Synthesis of shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers Macromolecules 2002, 35: 6121-6131.
    [35] Ma, Y. H. ; Tang, Y. Q. Billingham, N. C. Armes, S. P. Lewis, A. L. , Lloyd, A. W. Salvage, J. P. Well-defined biocompatible block copolymers via atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine in protic media Macromolecules 2003, 36: 3475-3484.
    [36] Luo, S. Z. ; Xu, J. ; Zhang, Y. F. ; Liu, S. Y. ; Wu, C. Double hydrophilic block copolymer monolayer protected hybrid gold nanoparticles and their shell cross-linking J Phys Chem B 2005, 109: 22159-22166.
    [1] Matyjaszewski, K. ; Qin, S. H. ; Boyce, J. R. ; Shirvanyants, D. ; Sheiko, S. S. Effect of initiation conditions on the uniformity of three-arm star molecular brushes Macromolecules 2003, 36: 1843-1849.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700