用户名: 密码: 验证码:
西藏冈底斯带驱龙含矿斑岩的特征及与Cu(Mo)成矿的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来在西藏开展的地质调查和研究工作已揭示出冈底斯斑岩铜矿带具有巨大的资源潜力,其中驱龙斑岩铜(钼)矿床以其规模大、并含多金属更为引人瞩目。在充分搜集、利用前人资料及成果的基础上,本论文力求以地球动力学和现代成矿理论为指导,采用先进的分析测试手段和野外地质工作相结合的方法,通过重点研究驱龙斑岩铜矿床的岩石学、同位素地球化学、常量与微量元素地球化学及成矿年代学,并与冈底斯其它斑岩矿床对比,探讨在印度—欧亚大陆碰撞条件下,冈底斯斑岩铜(钼、金)矿带的大陆动力学背景及成矿规律。所取得的主要结论如下:
     1.驱龙含矿斑岩体为石英二长斑岩和黑云母花岗闪长斑岩,其中黑云母花岗闪长斑岩属于偏铝质的钙碱性~高钾钙碱性系列岩石;石英二长斑岩属于偏铝质~过铝质的高钾钙碱性系列~钾玄岩系列岩石。
     2.对驱龙铜钼矿床进行了锆石SHRIMP U-Pb同位素定年及辉钼矿Re-Os同位素定年,获得新的年龄数据:含矿斑岩锆石SHRIMP U-Pb年龄为16.35~17.58Ma,矿石的辉钼矿Re-Os同位素年龄为15.36~16.85Ma。这两组年龄在误差范围比较接近,成岩、成矿的时代都大约持续1Ma,前者略早于后者。考虑到含矿斑岩中锆石的封闭温度高,而辉钼矿的形成处于岩浆作用的晚期阶段,驱龙矿床的成岩与成矿作用是一个连续的岩浆—热液作用过程。
     3.从整个冈底斯斑岩成矿带看,各个矿床的成矿时代略有差异,冲江矿区的成矿时代为:12.2~15.6Ma,拉抗俄为:12.0~13.6Ma,甲马为:12.3~15.2Ma,南木为:13.6~14.9Ma,帮浦:13.3~16.5Ma。总之,冈底斯斑岩铜(钼)矿带成矿时间介于12~17Ma,从西向东,成矿时代略有变新的趋势。
     4.驱龙含矿斑岩的元素地球化学特征表明,它们与冈底斯带其它矿床的含矿斑岩一样,也具有埃达克岩的地球化学属性;但其富钾的特点,又与起源于俯冲洋壳的经典的埃达克岩有所不同。含矿斑岩富集轻稀土元素,不显示Eu异常,在微量元素方面有强不相容元素Rb、Ba、U、Th的富集和Nb、Ta、Ti的负异常,Yb明显亏损。
     5.从铅同位素组成看,冈底斯带含矿斑岩体的~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(204)Pb值变化范围分别为18.408~18.661,15.567~15.733和38.561~39.153,显示其成矿物质来源于深下地壳,受幔源影响较大。
     6.从Nd、Sr同位素组成看,冈底斯带的~(87)Sr/~(86)Sr、~(143)Nd/~(144)Nd和ε_(Nd)的变化范围为:0.704914~0.707920,0.512313~0.512731和-6.18~1.81。冈底斯带含矿斑岩的ε_(Nd)值变化范围在-6.18~1.81,玉龙成矿带ε_(Nd)值变化在-4.2~-0.8,表明冈底斯斑岩成岩物质来于深下地壳,受富集型地幔源影响;而玉龙成矿带含矿斑岩~(87)Sr/~(86)Sr在0.705817~0.708311之间,基本反映幔源岩浆特征。
     7.冈底斯斑岩型矿床的矿石、蚀变矿物和流体包裹体,与含矿斑岩在同位素组成、微量元素、金属元素组合与丰度等方面的对比研究表明,斑岩矿床的成矿金属、成矿流体及热源,均来源于含矿斑岩岩浆。而斑岩岩浆可能经历了地幔、以及下地壳部分熔融和上地壳物质混染多种地质作用,具有十分复杂的来源和演化过程。
Recent studies on Tibetan plateau show that there are a huge amount of potential resources in the Gangdese porphyry belt, especially Qulong porphyry copper deposit. In this his dissertation, the field geological work and modern analysis were finished on the Qulong ore-bearing porphyries. The mineralization chronology, petrology, element and isotopic geochemistry were studied on the porphyries. This dissertation also compare this work in Qulong ore-bearing porphyries with other ore-bearing porphyries in Gangdese belt, in order to probe into dynamical background and mineralization features of the ore belts in the condition of India-Eurasia collision. The main conclusions were drawn as follows:
    1. The Qulong ore-baring porphyries include beschtauite and biotite granodiorite porphyry. The biotite granodiorite porphyry is metaluminous, from calcalkaline to high-K calcalkaline; the beschtauite is from metaluminous to peraluminous, and high-K calcalkaline to shoshonitic.
    2. This dissertation got the deposit forming of Qulong copper (molybdenum) porphyry copper deposit by SHRIMP zircon U-Pb and Re-Os molybdenite methods. The SHRIMP age range from 16.35 Ma to 17.58 Ma, while the Re-Os molybdenite age is 16.85 Ma. The two groups of age sapan are very close. The age for rock-forming and ore-forming in Qulong porphyry Cu (Mo) ore deposit both lasts about 1 Ma. Further studies show that rock-forming and ore-forming processes are continuously in Qulong ore deposit.
    3. In the whole Gangdese porphyry ore deposit belt, the ore-forming ages are varied in differences places. Such as, 12.2-15.6 Ma in Chong jiang, 12.0-13.6 Ma in Lakange, 12.3-15.2 Ma in Jiama, 13.6-14.9 Ma in Nanmu, and 13.3-16.5 Ma in Bangpu. The ages for these ore-forming in Gangdese porphyry ore deposit belt range from 12 Ma to 17 Ma, showing eastward younger in the belt.
    4. The element geochemical features in Qulong ore-bearing porphyries show adakite magmatic affinity, similar to other ore deposits in Gangdese. But they are different to the subducted oceanic crust-origin classical adakitic rocks because of their high-K features. The rocks are enriched in LILE (e.g. Rb, Sr, U, Th) and LREE, and depleted in HFSE (e.g., Nb, Ta, Ti, Y), without significant Eu negative anomaly.
    5. The ~(206)Pb/~(204)Pb, ~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb values of the Gangdese ore-bearing porphyries range from 18.408 to 18.661 , from 15.567 to 15.733 and 38.561 to 39.153. This indicate magma originate from lower crust and are affected by neo-Tethys ocean crust.
    6. Comparison of Nd and Sr isotopic composition between Gangdese belt with Yulong ore deposit in eastern Tibet, show that ε_(Nd) values range from -6.18 to 1.81 in Gangdese, from -4.2 to -0.8 in Yulong. This indicate magma originate from lower crust or from neo-Tethys ocean crust. The ~(87)Sr/~(86)Sr values range from 0.704914 to 0.707920 in Gangdese, from 0.705817 to 0.708311 in Yulong, which show that ore-bearing porphyries originate from mixture of crust and mantle.
    7. Comparing the ores, alteration minerals and fluid inclusions of Gangdese ore deposits to isotope composition, trace elements, metal elements and other features, suggests that the ore-forming metals, ore fluid and heat source arte all originated from ore-bearing porphyry magmas.
引文
Amelin, Y. V., and Semenov, V. S. Nd and Sr isotope geochemistry of marie layered intrusions in the eastern Baltic Shield: Implications for the sources and contamination of Paleoproterozoic continental marie magmas: Contributions to Mineralogy and Petrology, 1996, v. 124, p: 255-272.
    Andrew, A., and Godwin, C. I. Lead- and strontium-isotopegeochemistry of Paleozoic Sicker Group and Jurassic Bonanza Group volcanic rocks and island intrusions, Vancouver Island, British Columbia: Canadian Journal of Earth Sciences, 1989, v. 26, p: 894-907. Burg J. P. and G. M. Chen. Tectonics and structural zonation of southern Tibet, China. Nature, 1984, 311(5983): 219-223.
    Camus F, Dilles J H, 2001. A special issure devoted to porphyry copper deposits of northern Chile-perface[J], Econ. Geol., 96: 233-238
    Carlier G., J. P. Lorand, J. P. Lie' geois et. al. Potassic-ultrapotassic maric rocks delineate two lithospheric mantle blocks beneath the southern Peruvian Altiplano. Geological Society of America. 2005, 33(7): 601-604.
    Chen J F, Jahn B M. Crustal evolution of southeastern China: Nd and Sr evidence[J]. Tectonophysics. 1996, 255(2): 103-108.
    陈衍景,陈华勇,刘玉琳等.碰撞造山过程内生矿床作用的研究历史和进展[J].科学通报,1999,44(16):1681-1689.
    从柏林,王清晨.大陆深俯冲作用研究引起的新思维.自然科学进展,2000,10(9):777-782.
    Conticelli, S., D' Antonio, M., Pinarelli, L., and Civetta,. L. Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassie volcanic rocks: Sr-Nd-Pb isotope data from Roman Province and southern Tuscany: Mineralogy and Petrology, 2002, v. 74, p: 189-222.
    程力军,李志,刘鸿飞等.冈底斯东段铜多金属成矿带的基本特征[J].西藏地质,2001,19(1):43-53.
    Denis Thieblemont, G. Stein, and J. L. Lescuyer. Gisements epithermaux et porphyriques; la connexion adakite. Sciences de la Terre et des Planetes, 1997, 325(2): 103-109.
    DePaolo, D. J. Trace dement and isotopic effects of combined wallrock assimilation and fractional crystallization: Earth and Planetary Science Letters, 1981, v. 52, p: 177-184.
    Du Andao, Shuqi Wu, Dezhong Sun et al. Preparation and Certification of Re-Os Dating Reference Materials: Molybdenite HLP and JDC, Geostandard and Geoanalytical Research, 2004, 28(1): 41-52.
    杜安道,何红蓼,殷宁万等.辉钼矿的铼-锇同位素地质年龄测定方法研究.地质学报,1994,68(4)339-347.
    杜安道,赵敦敏,王淑贤等.Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试,2001,20(4):247-252.
    Fred W. McDowell, Todd B. Housh and David A. Wark. Nature of the crust beneath west-central Chihuahua, Mexico, based upon Sr, Nd, and Pb isotopic compositions at the Tomóchic volcanic center. Geological Society of America Bulletin, 1999, 111(6): 823-830.
    高合明.斑岩铜矿床研究中存在的问题与复杂性科学.
    高合明.斑岩铜矿床研究综述.地球科学进展.1995,10(1):40-46.
    高和明.1995.斑岩铜矿床研究综述.地球科学进展.10(1) 40-46.
    高永丰,候增谦,魏瑞华.冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义.岩石学报,2003,019(03):418-428.
    桂林冶金地质研究所同位素地质研究室.怎样应用硫同位素组成判断金属矿床硫源.地质与勘探,1977,4:24-27.
    韩吟文,马振东.地球化学.北京:地质出版社,2003.
    Hou ZQ, et al. 2001. The Yulong porphyry copper belt: product of large-scale strike-slip faulting in East Tibet[J], Econ. Geol., 2001
    Hou ZQ, Gao YF, Qu XM, et al. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220: 139-155
    侯增谦,高永丰,孟祥金等.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制[J].岩石学报.2004,20(2):239~248.
    侯增谦,孟祥金,曲晓明.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束.矿床地质.2005,24(2):108-121.
    侯增谦,莫宣学,高永丰等.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩—以西藏和智利斑 岩铜矿为例[J].矿床地质,2003,22(1):1~12.
    侯增谦,曲晓明,王淑贤等.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限和动力学背景应用.中国科学(D辑),2003,33(7):609-618.
    黄志英,李光明.2004.西藏雅鲁藏布江成矿区斑岩型铜矿基本特征与找矿潜力.地质与勘探,40(1),1-6.
    简平,刘敦一,张旗等.蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年.地学前缘.2003,10(4):439-455.
    江万,莫宣学,赵崇贺等.青藏高原冈底斯带中段花岗岩及其中铁镁质微粒包体地球化学特征[J].岩石学报,1999,15(1):89-97.
    金章东,朱金初,李福春.德兴斑岩铜矿成矿过程的氧、锶、钕同位素证据.矿床地质,2002,21(4):341-349.
    金章东,朱金初,倪培等.再论德兴斑岩铜矿成矿物质来源[J].地质论评,2000,46:255~262.
    康亚龙,王随中,尹利君.西藏自治区驱龙斑岩型铜矿床地质特征及找矿方向.甘肃冶金,2004,26(1):25-27.
    李光明,冯孝良,黄志英等西藏冈底斯构造带中段多岛弧—盆系及其演化[J].沉积与特提斯地质,2000,20(4),38-46.
    李光明,芮宗瑶.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄.大地构造与成矿学,2004,28(2),165-170.
    李光明,芮宗瑶.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄.大地构造与成矿学,2004,28(2):165-170.
    李光明,王高明.西藏冈底斯铜矿资源前景与找矿方向[J].矿床地质,2002,21(增刊):144-147.
    李光明,杨家瑞,丁俊.西藏雅鲁藏布江成矿区矿产资源评价新进展[J].地质通报,2003,22(9):699-703.
    梁华英.青藏高原东南缘斑岩铜矿成岩成矿研究取得新进展[J].矿床地质,2002,21(4):365.
    林培英,田成.晶体光学与造岩矿物-含宝石、玉石矿物.北京:中国地质大学(北京)岩矿教研室,北京市东城商业学校 宝玉石鉴定与营销专业.1999.
    林武,梁华英,张玉泉等.冈底斯铜矿带冲江含矿斑岩的岩石化学及锆石SHRIMP年龄特征.地球化学,2004,33(6):585-592.
    Ling Shengrong, DengJun, Hou Zeng qian et al.. Regional fractures and denudation of gold ore deposits in Gangdise block, Tibet: Evidence of Ag/Au values. Science in China. 2001, 4: 121-127.
    马鸿文.西藏玉龙斑岩铜矿带花岗岩类与成矿[M].武汉:中国地质大学出版社,1990.
    孟祥金,侯增谦,高永丰等.西藏冈底斯东段斑岩铜铅锌成矿系统的发育时限:帮浦铜多金属矿床辉钼矿Re-Os年龄及成矿学意义.矿床地质,2003,22(3):246-252.
    孟祥金,候增谦,高永丰等.碰撞造山带斑岩铜矿蚀变分带模式-以西藏冈底斯斑岩铜矿带为例.地学前缘.2004,11(1):201-214.
    孟祥金.西藏碰撞造山带冈底斯中新世斑岩铜矿成矿作用研究:[博士学位论文].北京:中国地质科学院,2004.
    Mo XX, Zhao ZD, Zhou s, et al. 2002. Evidence for timing of the inititation od India-Asia collsion from igneous rocks in Tibet, EOS Trans. AGU, 83(47) F1003, S62B-1201
    Mo XX, Zhao ZD, Deng JF, et al. 2003. Volcanism in response to India_Asia collsion. Earth Science Frontiers, 10(3): 135-148
    Mo XX, Dong GC, Zhao ZD, et al. 2005. Timing of magma mixing in the Gangdise magmatic belt during the India-Asia collision: Zircon SHRIMP U-Pb dating. Acta Geologica Sinca-English Edition 79(1): 66-76
    Mo XX, Zhao ZD, Deng JF, et al. 2005. Petrology and Geochemistry of post-collisional volcanic rocks from the Tibetan Plateau: Implications for lithospheric heterogeneity and collision-induced asthenosppheric mantle. In: Dilek Y and pavilides S, eds. Post-collisional tectonics and Magmatism in the East Mediterranean Region. GSA Speacial Volume
    莫宣学,董国臣,赵志丹等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息,高校地质学报.2005,11(3):281-290.
    莫宣学,赵志丹,邓晋福等.印度—亚洲大陆主碰撞过程的火山作用响应.地学前缘,2003,10(3):135-148.
    聂凤军,江思宏,赵省民.斑岩型铜金矿床研究新进展.内蒙古地质,2000,02:1-11.
    潘桂棠,陈智梁等.东特提斯地质构造形成演化[M].北京:地质出版社,1997,65-1011.
    曲晓明,侯增谦,黄卫.冈底斯斑岩铜矿(化)带:西藏第二个“玉龙”铜矿带?[J].矿床地质,2001,20(4):355-366.
    曲晓明,侯增谦,国连杰等.冈底斯铜矿带埃达克质含矿斑岩的源区组成与地壳混染:Nd、Sr、 Pb、O同位素约束.地质学报,2004,78(6):813-821.
    曲晓明,侯增谦,李佑国.S、Pb同位素对冈底斯斑岩铜矿带成矿物质来源和造山带物质循环的指示.地质通报,2002,21(11):768-776.
    曲晓明,侯增谦,李佐国.冈底斯碰撞造山带发现艾达克岩.矿床地质,21(增刊),2002,215-218.
    屈文俊,杜安道.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼—锇地质年龄.岩矿测试,2003,22(4):254-257.
    Ren, Y. S., Zhang, J. S., Fan, W. Y., et al., Prospective for recasting of Jiama copper polymetallic ore deposit, Tibet. Geology and Prospecting, 2002, 38(5): 30-32
    任云生,张金树,范文玉等,西藏甲马铜多金属矿床远景预测.地质与勘探,2002,38 5):30-32.
    任云生,张金树等,2002.西藏甲马铜多金属矿床远景预测.地质与勘探,38(5):30-32.
    芮宗瑶,侯增谦,曲晓明.冈底斯斑岩铜矿成矿时代及青藏高原隆升.矿床地质,2003,22(3):217-225.
    芮宗瑶,黄崇轲,齐国明等.中国斑岩铜(钼)矿床[M].北京:地质出版.1984.
    芮宗瑶,李光明,王龙生等.西藏斑岩铜矿[J].西藏地质,2002,21(1):3~12.
    芮宗瑶,李光明,张立生等.西藏斑岩铜矿对重大地质事件的响应.地学前缘,2004,11(1):145-152.
    芮宗瑶,张立生,陈振宇等.斑岩铜矿的源岩或源区探讨.岩石学报,2004,20(02):229-238.
    芮宗瑶.西北、华北、东北斑岩铜矿床研究.见:涂光炽等中国超大型矿床.北京:科学出版社,397-425, 2000. S. F. Foley, M. Tiepolo. Trace element partitioning evidence for growth of early continental crust from amphibolites, noteclogites. Geochimica et Cosmochimica Acta, 2002, 66(15A): 238.
    Schares E, Xu R H and Allegre C J. U- Pb geochronology of the Gangdese(Tran Himalaya) plutonism in the Lhasa-Xizang region, Tibet[J]. Earth Planet. Sci. Lett., 1984, 69: 311-320.
    Searle M. P.. Continental crust subduction during ophiolite obduction, Oman, and continental collision, Himalaya. in Sixth meeting of the European Union of Geosciences, Anonymous. March 1991, 3(1): 257.
    Shirey S. B., Walker R. J., Carins tube digestion for low-blank rhenium- osmium analysis, Anal. Chem., 1995, 67: 2136-2141.
    Sillitoe, R. H., 1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum Pacific region. Australian Journal of Earth Sciences, 44: 373-388.
    Sillitoe. R. H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum Pacific region. Australian Joumal of Earth Sciences. 1997, 44: 373-388.
    宋彪,张玉海,万渝生等.锆石SHRIMP样品靶制作,年龄测定及有关现象讨论.地质论评,2002,48(Sup.):26~30.
    Streck. J. M. Dille. J. H.. Sulfur evolution of oxidized arc magmas as recorded in apatite from aporphyry copper batholiths. Geology. 1998, 26: 523-526.
    Tarkian, M., Stridmy, B. Platinum group elements in porphyry copper deposit, a reconnaissance study. Mineralogy and Petrology. 1999, 65: 161-183.
    王奖臻,李朝阳,胡瑞忠.斑岩铜矿研究的若干进展.地球科学进展.2001,16(4):514-519.
    王亮亮,莫宣学,李冰,董国臣,赵志丹.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学.岩石学报,2006,22(4):1001-1008
    王强,许继锋,赵振华.一种新的火成岩—埃达克岩的研究综述.地球科学进展.2001,16(2):201-208.
    王全海,王保生,李金高等.西藏冈底斯岛弧及其铜多金属矿带的基本特征与远景评估[J].地质通报,2002,21(1):35-40.
    王小春,晏子贵,周维德等.初论西藏冈底斯带中段尼木西北部斑岩铜矿地质特征.地质与勘探,2002,38(1):05-08.
    王焰,张旗,钱青.埃达克岩(adakite)的地球化学特征及其构造意义[J].地质科学,2000,35(2):251-256.
    徐正余,陈福忠,等.青藏高原主要矿产及其分布规律[M].北京:地质出版社,1991
    夏代祥,张平,周详,等,1993.西藏自治区区域地质志.北京:地质出版社.
    肖龙,Robert P RAPP,许继峰.深部过程对埃达克质岩石成分的制约.岩石学报,2004,20(02):219-228.
    杨学明,杨晓勇,陈双喜译.岩石地球化学.合肥:中国科学技术大学出版社.2000.
    Yao Cui, J. K. Russell. Nd-Sr-Pb isotopic studies of the southern Coast Plutonic Complex, southwestern British Columbia. Geological Society of America Bulletin, 1995, 107(2): 127-138.
    姚鹏,王全海,李金高.西藏甲马—驱龙矿集区成矿远景.中国地质,2002,29(2):197-202.
    姚鹏,郑明华,彭勇民等.西藏冈底斯岛弧带甲马铜多金属矿床成矿物质来源及成因研究.地质评论,2002,48(5):468-479.
    冶金工业部地质研究所.中国斑岩铜矿.北京:科学出版社.1984.
    叶天竺等.国内外斑岩型铜矿研究进展[M].北京:地质出版社,2002.1.
    Yin A and Harrison T M. Geologic evolution of the Himalayan- Tibetan orogen[J]. J. Ann. Rev. Earth Planet. Sci., 2000, 28: 211~280.
    Yuri Amelin, Chusi Li, Oleg Valeyev, and A. J. Naldrett. Nd-Pb-Sr Isotope Systematics of Crustal Assimilation in the Voisey's Bay andMushuau Intrusions, Labrador, Canada. Economic Geology, 2000, 95: 815-830.
    张连昌,秦克章,英基丰等.东天山土屋-延东斑岩铜矿带埃达克岩及其与成矿作用的关系.岩石学报,2004,20(02):259-268.
    Zhang S Q. Mesozoic and Cenozoic Volcanisrns in CentralGangdese: Implications for Lithosphere Evolution of the Tibet Plateau[D]. Beijing: China University of Geoscienees, 1996.
    张玉泉,谢应雯,邱华宁等.钾玄岩系列:藏东玉龙铜矿带含矿斑岩Sr、Nd、Pb同位素组成.SCIENTIA GEOLOGICA SINICA,1998,33(3):359-366.
    Zheng, Y. Y., Wang, B. S., Fan, Z. H., et al. Analysis of tectonic evolution in the eastern section of the Gangdise Mountains. Tibet and the metallogenic potentialities of copper2gold polymetal. Geological Sciences and Technology Information, 2002. 21(2): 55-60
    赵振华,熊小林,王强等.新疆西天山莫斯早特石英钠长斑岩铜矿床-一个与埃达克质岩石有关的铜矿实例.岩石学报,2004,20(02):249-258.
    郑有业,高顺宝,程力军等.西藏冲江大型斑岩铜(钼金)矿床的发现及意义.地球科学,2004,29(3):333-339.
    郑有业,王保生,樊子珲,等,2002.西藏冈底斯东段构造演化及铜金多金属成矿潜力分析.地质科技情报,21(2):55-60.
    郑有业,薛迎喜,程力军等,2004.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义.地球科学—中国地质大学学报,29(1):103-108.
    钟汉.斑岩型铜矿概论.长春:吉林科学技术出版社.1986.
    周肃,方念乔,董国臣等.西藏林子宗群火山岩的氩氩同位素测年[J].矿物学岩石学地球化学杂志,2001,20:317-319.
    朱弟成,段丽萍,廖忠礼等.两类埃达克岩(Adakite)的判别.矿物岩石,2002,22(3):5-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700