用户名: 密码: 验证码:
义敦岛弧构造演化与普朗超大型斑岩铜矿成矿模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
义敦岛弧带是“三江”多岛弧盆系中一个重要的地质构造单元,也是十分重要的铜、铅、锌、银、金、钨、、锡、钼多金属成矿带,资源潜力巨大。十多年来,笔者和潘桂棠、莫宣学、侯增谦、曾普胜等,在国家科技攻关、国土资源部、中国地质调查局科技攻关及地质大调查项目的支持下,对义敦岛弧带的形成演化,中甸岛弧斑岩铜矿的成矿机理,成矿规律进行了研究,本文在总结以往成果的基础上,系统解剖了中甸普朗超大型斑岩铜矿的矿床特征,建立了成矿模型,指出了找矿方向。在此基础上,预测了普朗地区铜矿的资源潜力大于1000万吨。
     义敦岛弧是“三江”古特提斯四个洋盆(昌宁-孟连洋、澜沧江洋、金沙江-哀牢山洋、甘孜-理塘洋)中甘孜—理塘洋壳向西俯冲形成的。甘孜-理塘洋壳边缘向西俯冲,最早发生于早三叠晚期(本项目研究首次提出),于晚三叠世晚期开始大规模俯冲消减于中咱-中甸微陆块之下,由于板片的结构差异和俯冲速度的不均匀性,可能导致了向西俯冲时板片撕裂而产生俯冲角度的不同。北段洋壳板片俯冲角度较陡,速度较快,发育以弧间裂谷和弧后盆地为特征的张性弧,即昌台弧,并导致VMS型Pb-Zn-Cu矿床和浅成低温热液型Au-Ag-Hg矿床形成。南段洋壳板片俯冲角度较缓,速度较慢,发育以安山质火山岩和中酸性斑岩为特征的压性弧,即中甸弧,并导致斑岩和矽卡岩多金属矿床的形成。义敦岛弧经历了洋壳俯冲造山(238-208Ma),碰撞造山(208-138Ma),造山后伸展(138-75Ma)走滑转换造山(15-65Ma)几个阶段,各阶段形成各自不同的矿床。
     普朗斑岩铜矿床是中甸火山岩浆弧中的典型代表,是我国青藏高原继玉龙斑岩铜矿之后的又一重要的斑岩铜矿床之一。矿床由南、北两个复式岩体(矿段)组成,代表了两个相对独立的斑岩铜矿中心。两个矿段均由一系列NW向构造控制的石英闪长玢岩、石英二长斑岩小岩株组成,南部岩体6.5km~2,其中石英二长斑岩面积1.09km~2;北部岩体1.19km~2。普朗斑岩铜矿形成于印支期,填补了我国印支期斑岩铜的空白(冈底斯斑岩铜矿带、玉龙斑岩铜矿带为喜马拉雅期;土屋延东斑岩铜矿带为海西期;德兴斑岩铜矿带为燕山期)。通过对该区的野外观察和典型地质体取样作辉钼矿Re-Os年龄、黑云母Ar/Ar年龄和K-Ar年龄测定,首次确定了钾长石-黑云母化阶段的成矿热液活动时间为235.4±2.4Ma-221.5±2.0Ma,石英-辉钼矿阶段辉钼矿Re-Os年龄为213±3.8Ma,矿体的黑云母单矿物做Ar/Ar测年,其成矿年龄(坪年龄Tp)
The Yidun Island Arc Belt (YIAB) is one of the important tectonic units in the archipelagic arc-basin system in the Sanjiang Area (the three rivers: Jinsha, Lanchang, and Nujiang River) , and is also a very important metallogenic belt of the polymetal as copper, lead, zinc, silver, gold, tungsten , tin, molybdenum, and so on, with a great resources potential. For over ten years, under the supporting of the programs granted by the Ministry of the Science & Technology, the Ministry of Land & Resources, and the China Geological Survey, the author conducted the studies about the formation and evolution of YIAB, metallogenic mechanism of the porphyry copper deposits within the Zhongdian Island Arc Belt (ZIAB) with the other scientific researchers including Professors Pan Guitang, Mo Xuanxue, Hou Zengqian, and Zeng Pusheng etc. This paper systematically depicts the characteristics of the Pulang supperlarge porphyry copper deposit in Zhongdian and establish the ore-forming model of the deposit. Furthermore, the author analysis the great copper resources potential of over 10 Mt, and delineate the targets for exploration.
    The YIAB is the product of the westward subduction of the Ganze-Litang Ocean, one of the four paleo-oceans(i.e., the Changning-Menglian, the Lancangjiang, the Jinshajiang, and the Ganze-Litang) of the Tethyan tectonic domain. The earliest westward subduction formed in Early Triassic (first suggested by this study), up to the Late Triassic, the slab of the Ganze-Litang Ocean dubducted beneath the Massif Zhongza, the slab was split and subducted with different angle for the differences of the fabric of the subducted slab and the varying velocity of subduction. In the north part, for the subduction with a relative rapid velocity and steep angle, there developed the extensional arc, the Changtai Arc, characterized by the intra-arc rift and the backarc basin, resulted in the Kuro-type massive sulfide deposits of Pb-Zn-Cu, and epithermal deposits of Au-Ag-Hg, whereas in the south part, the relative slow subduction with a gentle angle resulted in the compressional arc, the Zhongdian Arc, characterized by the andesitic volcanic rocks and intermediate-acid intrusions and resulted in the formation of the skarn and porphyry deposits. The TIAB experienced several orogenic stages including subduction of oceanic crust (238-208Ma), collision (238-208Ma), extension of the post-collision (138-75Ma), and strike-slip transfer (15-65Ma), each stage exists an individual deposit type.
    The Pulang porphyry copper deposit is the representative within the Zhongdian volcanic arc, and become one of the most important porphyry copper deposits in China succeed to the Yulong porphyry copper deposit in east Tibet Plateau. The Pulang porphyry copper deposit is consists of the two composite intrusions (blocks) in the north and the south, which represent relatively dependent porphyry copper centers. The two blocks are comprise of a series of quartz diorite porphyry and quartz monzonite porphyry stocks controlled by the NW-trend structures. Of which, the south one is 6.5 km~2 outcropped (contained monzonite of 1.09km~2) and the north one is 1.19km~2. The Pulang porphyry copper deposit was produced during Indosinian, and fill the blank of the Indosinian porphyry copper deposit in China (,different from the those porphyry copper deposits formed during Himalayan in the east Tibet Plateau, such as Gangdese Porphyry Copper Belt or Yulong Porphyry Copper Belt, and from those formed in the paleoasian metallogenic domain during Hercynian such as Tuwu-Yandong porphyry copper belt and
    the Yanshanian Dexin porphyry copper belt in East China). By the field geological observation and the dating of the typical objectives of the Pulang district, such as Re-Os dating for molybdenite and K/Ar, Ar/Ar dating for thermal minerals, such as biotite and orthoclase, and whole rock from Pulang Porphyry Copper, the timing of mineralization of porphyry copper has systematically been determined first time. The duration of thermal activity involving patassic silicates (biotite and K-feldspar) alteration is ranging from 235.4±2.4Ma to 221.5±2.0Ma determined by K-Ar dating, and the timing of the quartz-molybdenite stage is — 213±3.8 Ma by molybdenite Re-Os dating, the plateau ages 214.58±0.91Ma to 216.0±1Ma of the biotite separates from the main Cu-bearing orebody and Cu-Mo-bearing orebody of the Pulang district are Late Triassic Norian, consistent with the Re-Os dating.
    The alteration zoning of the hosted intrusions of the Pulang porphyry copper deposit is distinct: from centre outward, occurring in order the intense silicification zone →K-felspar, biotite zone→quartz, sericite zone→propylitic zone (locally illitite,carbonate minerals developed).The ore body with economic value mainly developed within the K-felspar, biotite zone and quartz, sericite zpne. With a three-layered stair structure of the fmed-grained disseminated, veinlet-stockwork,and the veins, the preliminarily controlled the copper reserves 4.36 Mt with copper of 0.40%, accompanying the gold of 213 t with Au 0.18 g/t.
引文
陈衍景.影响碰撞造山成岩成矿模式的因素及其机制.地学前缘,1998,5(21):109-118
    邓军,吕古贤.构造应力场转化与界面成矿.地球学报,1998
    邓军,杨立强.构造体制转化与流体多层循环成矿动力学,地球科学,2000
    邓军,翟裕生.构造演化与成矿系统动力学,地学前缘,1999,6(2)
    邓晋福,莫宣学.中国大陆根.柱构造一大陆动力学的钥匙.北京:地质出版社,1996
    董方浏,侯增谦,高永丰等.滇西腾冲大硐厂铜-铅-锌矿床的辉钼矿Re-Os同位素定年Re-Os.矿床地质 2005
    董树文.造山带构造岩浆演化与成矿作用.北京:地震出版社,1999
    杜安道,何红蓼,殷宁万等.辉钼矿的铼.锇同位素地质年龄测定方法研究[J].地质学报,1994,68(4):339-347
    杜安道,赵敦敏,王淑贤等.Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼.锇同位素地质年龄[J].岩矿测试,2001,20(4):247-252
    杜安道,赵敦敏,王淑贤等Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试,2001.20(4):247-252.
    范玉华,李文昌.云南普朗斑岩铜矿床地质特征.中国地质,2006
    侯立玮,戴丙春,俞如龙等.四川西部义敦岛弧碰撞造山带与主要成矿系列.地质出版社,1994
    侯增谦,侯立纬,叶庆同等.三江地区义敦岛弧构造—岩浆演化与火山成因块状硫化物矿床.地震出版社,1995
    侯增谦,李光明,赵志丹等.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用.2006,《矿床地质》
    侯增谦,莫宣学,高永丰等.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩—以西藏和智利斑岩铜矿为例.2003矿床地质
    侯增谦,曲晓明,周继荣等.三江地区义敦岛弧碰撞造山过程:花岗岩记录.2001,地质学报
    侯增谦,吴世迎,Urabe.四川呷村黑矿型矿床的硅质岩的硅、氧同位素组成及其与现代海底硅质烟囱比较研究.地质论评,1996.42(6):531—539.
    侯增谦,杨岳清,曲晓明等.三江地区义敦岛弧造山带演化成矿系统.地质学报,2004,76(1):109-118
    侯增谦,杨岳清,王海平等.三江义敦岛弧碰撞造山过程与成矿系统.北京:地质出版社,2003,1-345
    侯增谦,叶庆同等.三江地区义敦岛弧构造-岩浆演化与火山成因块状硫化物矿床.地震出版社,1995
    侯增谦.三江地区义敦岛弧构造-岩浆演化特征.青藏高原地质文集,1991.(21):153—165.
    胡世华,曾宜君,曾宜君,等.川西义敦岛弧火山—沉积作用等.北京:地质出版社,1992
    胡云中,等.西南“三江”多岛弧造山过程成矿系统与资源评价[M].北京:地质出版社,2003,420
    黄汲清,陈炳蔚.中国及邻区特提斯海的演化[M].北京:地质出版社,1987,1-90
    李文昌,李丽辉,尹光侯,三江地区地球化学数据的多方法处理及其应用2006矿床地质,
    李文昌,卢映祥,尹光候,等.西南三江南段找矿重大凝难问题研究报告.云南省地质调查院,2006
    李祥辉,王成善,胡修棉等.西藏最新非碳酸盐海相沉积及其对新特提斯关闭的意义[J],地质学报,2001,75(3):314-321
    李振兴,江新胜,孙志明等,西南三江地区碰撞造山过程.地质出版社,2002
    李振兴,刘文均,王义昭等.西南三江地区特提斯构造演化与成矿(总论).地质出版社,1999
    刘保明,夏斌,李绪宣等.红河断裂带东南的延伸及其构造演化意义[J].中国科学(嘴),2006,36(10):914-924
    刘本培,冯庆来.滇西古特提斯多岛洋的结构及其南北延伸,地学前缘,2002,9(3):161-171
    刘宇淳,李志伟.洱源地区三叠系双峰式火山岩的地质特征及大地构造意义[J].云南地质,1999.18(4):405-412
    吕伯西,张能德.三江地区花岗岩类及其成矿专属性.北京:地质出版社,1993
    罗建宁,论东特提斯形成与演化的基本特征[A].特提斯地质(19)[C],北京:地质出版社,1995
    罗君烈,杨友华,赵准等.滇西特提斯的演化及主要金属矿床成矿作用地质出版社,1994
    莫宣学,路风香,沈上越等.三江特提斯火山作用与成矿.1993.北京:地质出版社.
    莫宣学,沈上越,朱勤文等.三江中南段火山岩蛇绿岩与成矿.地质出版社,1998
    潘桂棠,陈智梁等.东特提斯地质构造形成演化[M],北京:地质出版社,1997
    潘桂棠,王立全,李兴振等.青藏高原区域构造格局及其多岛弧盆系的空间配置,沉积与特提斯地质,2001,21(3):
    潘桂棠,徐强,王立全等.青藏高原多岛弧-盆系格局机制,矿物岩石,2001,21(3):186-189
    潘桂棠,徐强,侯增谦,等西南“三江”多岛弧造山过程成矿系统与资源评价.2003.地质出版社.
    曲晓明,侯增谦,莫宣学等.冈底斯斑岩铜矿与南部青藏高原隆升之关系—来自含矿斑岩中多阶段锆石的证据.2006,矿床地质
    曲晓明,侯增谦,唐绍华等.义敦岛弧带弧后区板内岩浆作用的时代及意义.2003,岩石矿物学杂志
    芮宗瑶,侯增谦,李光明等.俯冲、碰撞、深断裂和埃达克岩与斑岩铜矿.2006,地质与勘探
    芮宗瑶,张洪涛,陈仁义等.斑岩铜矿研究中若干问题探讨.2006,矿床地质
    沙绍礼.点苍山新生代推覆构造的确立及其地质意义[J].云南地质,2002,21(3):250-255
    沙绍礼.云南中甸、四川木里接壤地带(洛吉—瓦厂)的蓝闪石片岩[J].云南地质,1988,7(1):82-85
    宋保昌,蔡新平,徐兴旺等.云南中甸红山铜.多金属矿床新生代热泉喷流沉积型矿床.2006,地质科学
    孙勇,陈亮,冯涛等.一种古特提斯演化的动力学模型—来自中国古特提斯蛇绿岩的证据[J].西北大学学报(自然科学版),2002,32(1):1-6
    孙启祯.边缘成矿概论[M],北京:地质出版社,2001。
    涂光炽.中国超大型矿床(Ⅰ).科学出版社,2000
    王登红,应汉龙,梁华英等.西南三江地区新生代大陆动力学过程与大规模成矿.地质出版社,2006
    王义昭,李兴林,段丽兰等.三江地区南段大地构造与成矿.地质出版社,2000
    王祖关,谭雪春,曾群望等.滇西东部斑岩和斑岩铜矿.科学技术研究报告,云南省地质科学研究所,1985
    吴世敏,丘学林,周蒂等.南海西缘新生代沉积盆地形成动力学探讨[J].大地构造与成矿学,2005,29(3):346-353。
    肖龙,徐义刚,何斌等.试论地幔柱构造与川滇西部古特提斯的演化[J].地质科技情报,2005,24(4):1-6
    邢学文,胡光道,王正海等.模糊逻辑法在云南中甸地区铜矿潜力预测中的应用.2006。
    徐明基,傅德明等.四川呷村银多金属矿床.成都科技大学出版社,1993
    徐受民,莫宣学,曾普胜等.滇西北衙富碱斑岩的特征及成因.2006,现代地质
    徐兴旺,蔡新平,屈文俊等.滇西北红山晚白垩世花岗斑岩型Cu-Mo成矿系统及其大地构造学意义.2006,地质学报
    许志琴,王宗秀.中国松潘—甘孜造山带的造山过程.北京:地质出版社,1990
    闫全人,王宗起等.西南三江特提斯洋扩张与晚古生代东纲瓦纳裂解:来自甘孜蛇绿岩辉长岩的SHRIMP年代学证据[J]。科学通报,2005,50(2)
    杨岳清,侯增谦,黄典豪等.2002.中甸弧碰撞造山作用和岩浆成矿系统.地球学报,23(1):17—24.
    杨岳清,侯增谦,黄典豪等.中甸弧碰撞造山作用和岩浆成矿系统.《地球学报》
    叶庆同,胡云中,杨岳清等.三江地区区域地球化学背景和金银铅锌成矿作用.地质出版社,1992
    殷鸿福,吴顺保,杜远生等.华南是特提斯多岛洋体系的一部分.地球科学—中国地质大学学报,1999,24(1):1-12
    殷宁万,黄典豪.铼-锇同位素体系的研究现状及其在地质学中的应用[J].国外矿床地质,1994.,(1):1-11
    俞如龙,骆耀南.西南三江地区造山演化过程及成矿时空分布.2002,矿物岩石云南省地质矿产局,云南省区域地质志.1990,北京:地质出版社.
    曾普胜 喻学惠.滇西北中甸地区中酸性斑岩及其含矿性初步研究.地球学报,1999,20(1):359-336
    曾普胜,李红,罗锡明等..滇西北中甸地区的铜金找矿远景.2000b,黄金地质,6(3):13-18.
    曾普胜,李文昌,王海平等.云南普朗印支期超大型斑岩铜矿床:岩石学及年代学特征.岩石学报
    曾普胜,莫宣学,喻学惠等.滇西北中甸斑岩及斑岩铜矿[J].矿床地质,2003,22(4):393-400
    曾普胜,莫宣学,喻学惠等.滇西北中旬斑岩及斑岩铜矿.2003a.矿床地质,22(4):393-400.
    曾普胜,莫宣学,喻学惠等.中甸岛弧带构造格架及斑岩铜矿前景[A].成都:2003,峨眉地幔柱成矿与环境效应学术研讨会论文集,85-88
    曾普胜,莫宣学,喻学惠等.滇西北中旬地区中酸性斑岩及其含矿性初步研究[J].地球学报,1999,20(增刊):359-336
    曾普胜,王海平,莫宣学等.中甸岛弧带构造格架及斑岩铜矿前景[J].地球学报,2004,25(5):535-540
    曾普胜.云南省中甸地区火山-侵入杂岩及其与铜金矿产的关系.[博士学位论文][D],中国地质大学.2000.130
    翟裕生,邓军,李晓波等.区域成矿学,地质出版社,1999
    翟裕生,邓军,汤中立等.古陆边缘成矿系统[M],北京:地质出版社,2002
    翟裕生,邓军.古陆边缘成矿系统,地质出版社,2002
    张旗,周国庆,王焰。中国蛇绿岩的分布、时代及其形成环境[J].岩石学报,2003,19(1):1-8
    张德会,赵建等.西南三江特提斯洋扩张与晚古生代东纲瓦纳裂解:来自甘孜蛇绿岩辉长岩的SHRIMP年代学证据[J].科学通报,2005,50(2)。
    张能德.川西白玉一稻城地区花岗岩类的年龄.四川地质学报,1994
    陈永清等,中国地质调查局.国内外斑岩型铜矿研究进展.中国地质调查局,2002
    周蒂,吴世敏,陈汉宗等.南沙海区及邻区构造演化动力学的若干问题[J].大地构造与成矿学,2005,29(3):339-345
    朱弟成,段丽萍,廖忠礼等.两类埃达克岩(Adakite)的判别.2002.矿物岩石,22(3):5-9.
    Perello J, Cox D, Garamjav D, Sanjdorj S, Diakov S, Schissel D, Munkhbat T-O, Oyun D. 2001. Oyu Tolgoi, Mongolia: Siluro-Devonian porphyry Cu-Au-(Mo) and high-sulfidation Cu mineralization with a Cretaceous chalcocite blanket. Econ Geol 96: 1407-1428.
    Acharyya S K. Late Mesozoic-early Tertiary basin evolution along the Indo-Burmese range and Andaman Island arc. In: Tandon S K,Pant CC, Casshyap S M. eds. Sedimentary Basins of India: Tectonic Context, Gyanodeya Prakashan, National, India, 30 [04-]
    Barra F, Ruiz J, Mathur R, Titley S. 2003. A Re-Os study of sulfide minerals from the Bagdad porphyry Cu-Mo deposit, northern Arizona, USA. Mineralium Deposita, 38:585-596
    Bernard A, Symonds RS, Rose WI. 1990. Volatile transport and deposition of Mo, W and Re in high temperature magmatic fluids. Applied Geochemistry, 5:317-326.
    Berzina AN, Sotnikov Ⅴ Ⅰ, Eliopoulos G, and Economou-Eliopoulos M. 2003b. Rhenium in molybdenites from porphyry Cu-Mo deposits of Russia (Siberia) and Mongolia. In: Eliopoulos et al.(eds.), Mineral Exploration and Sustainable Development, 235-238.
    
    Berzina AN, Stein HJ, Zimmermen A, and Sotnikov V I. 2003. Re-Os ages for molybdenite from porphyry Cu-Mo and greisen Mo-W deposits of Southern Siberia (Russia) preserve metallogenic record. In: Eliopoulos et al.(eds.), Mineral Exploration and Sustainable Development, 231-234.
    
    
    Chesley J, Ruiz J. 1997. Preliminary Re-Os dating on molybdenite mineralization from the Bingham Canyon porphyry copper deposit, Utah. In: Thompson TB (ed) Geology and ore deposits of the Quirrh and Wasatch Mountains, Utah. SEG Guideb Ser 29: 165-169
    
    Defant MJ. Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 3 47: 662-665.
    
    
    Drummond MS,Defant MJ. 1990. A model for trondhjemite- tonalite- dacite genesis and crustal growth via slab melting: Archaean to modern comparisons. J Geophys Res, 95: 21503-21521.
    
    
    Du AD, He HL and Yin NW. 1995. A study of the Rhenium-Osmium Geochronometry of Molybdnites. Acta Geologica Sinica. 8(2): 171-181.
    
    Du AD, Wang SX, Sun DZ, Zhao DN, and Liu DY, 2001. Precise Re-Os dating of Molybdenite using Carius tube, NTIMS and ICPMS. In: Piestrzynski et al (eds.), Mineral Deposits at the 21st Century, 405-407.
    
    Gweltaz Maheo, Xavier Fayoux, Stephane Guillot, Eduardo Garzanti, Paul Capiez, Georges Mascal. Relicts of an intra-oceanic arc in the Sapi-Shergol melange zone (Ladakh, NW Himalaya, India): implications for the closure of the Neo-Tethys Ocean. Journal of Asian Earth Sciences, 26(2006): 695-707
    
    Hou ZQ, Ma HW, Zaw K, Zhang YQ, Wang MJ, Wang Z, Pan GT, Tang RL. 2003. The Himalayan Yulong porphyry copper belt: product of large-scale strike-slip faulting in Eastern Tibet. Econ Geol 98: 125-145.
    
    Hou ZQ, Wu SY, and Tetsuro U. 1996. Silicon and oxygen isotopic composition of cherts from the Gacuz Kuroko-type deposit, Sichuan, and comparison with silica chimneys from the modern seafloor. Geological Review, 42(6): 531—539.
    
    Ludwig KR. 2001. Isoplot/Ex version 2.49. A geochronlogical toolkit for Microsoft Excel. Berkeley Geochronological Center Sepc. Publ. 1 a.
    
    McCandless TE, Ruiz J, Campbell AR. 1993. Rhenium behavior in molybdenite in hypogene and near-surface environments: implications for Re-Os geochronology. Geochim. Cosmochim. Acta 57: 889-905.
    
    Metcalfe I. Paleozoic and Mesozoic geological evolution of the SE Asian region: multidisciplinary constrains and implications for biogeography[A]. In: Hall and Holloway Eds. Biogeography and Geological Evolution SE Asia[M]. Leiden: Backhuys Publ., 1998.25-41.
    
    Metcalfe I. The Paleo-Tethys and Paleozoic-Mesozoic tectonic evolution of Southeast Asia. In: Dheeradilok P. Hinthong C. Chaodumrong P. et al. Eds. Proceedings of the International Conference on Stratigraphy and Tectonic Evolution of Southeast Asia and the South Pacific. Bangkok, Thailand, 1997 , 260-272
    
    Qayyum M, Lawrence R D, Niem A R. Discovery of the paleo-Indus delta-fan complex. Journal of the Geological Society, 1997a, 154:753-756
    
    Qayyum M, Lawrence R D, Niem A R. Molasse-Delta-flysch continuum of the Himalayan orogeny and closure of the Paleogene Katawaz Remnant Ocean, Pakistan. International Geology Review, 1997b, 39:861-875
    
    Sengor A M C and BotumU J. The Tethyside orogenic system: an introduction [A]. Sengor A M C. Tectonic Evolution of the Tethyan Region[C]. Dordrecht/Boston/London: Kluwer Acadamic Publishers, 1989.1-22
    
    Shirey SB., Walker RJ., Carius tube digestion for low-blank rhenium- osmium analysis. Anal. Chem., 1995,67:2136-2141
    
    Smoliar ML, Walker RJ. and Morgan JW. 1996. Re-Os ages of group IIA, IIIA, IVA and VIB iron meteorites. Science, 271, 1099-1102
    
    Ward CD, McArthur JM. 1992. Rare earth element behavior during evolution and alteration of the Dartmoor granite, SW England. Journal of Petrology, (33):785-815.
    Zeng PS. 2000. Volcanic-intrusive complex and its relationship with copper and gold mineral resources in Zhongdian area, Yunnan Province, China[D]. Supervisor: Prof. Mo Xuanxue. Beijing: China University of Geosciences. 130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700