用户名: 密码: 验证码:
地震物理过程模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震的孕育、发生及其后续影响是一系列复杂的物理过程。对这些过程进行研究有助于认识地震发生的机制,了解将来可能的地球物理状态。本文从以下几方面对地震物理过程进行研究:
     1、地震应力触发研究
     目前地震断层相互作用问题已引起地震学家的广泛关注。许多研究表明一条断层的破裂可以影响附近其他断层趋于破裂的进程,两条断层的确切作用取决于它们的相对位置、破裂机制、错动量和介质力学性质。
     首先对青藏高原北部东昆仑破裂带大地震之间的应力转移和断层相互作用进行研究。考虑1937年以来沿此破裂带发生的5个M≥7的地震:1937年M7.5花石峡地震,1963年Ms7.1都兰地震,1973年Ms7.3玛尼地震,1997年Mw7.5玛尼地震和2001年Mw7.8可可西里地震。模拟了黏弹性成层介质中地震断层错动产生的应力演化过程,并计算了在后续地震破裂面上产生的库仑破裂应力变化。结果表明,前面四个地震均造成2001年可可西里地震断层面上库仑破裂应力的增加,并且中地壳和下地壳的黏弹性松弛效应使得库仑破裂应力场随着时间的推移而逐渐加强。在计算过程中定量估计了可可西里地震发生时前面四个地震同震形变和黏弹性松弛导致可可西里地震破裂面上库仑破裂应力变化之间的比值,发现前三个地震由黏弹性松弛造成的变化远远大于同震形变所造成的变化。可可西里地震之后应力场的模拟表明东昆仑断层中段的东大滩—西大滩断层段(位于可可西里地震破裂以东及都兰地震以西)的库仑破裂应力显著增加,变化值达0.05~0.1MPa,预示这一地区地震危险性的增加。
     其次,我们研究自1920年以来青藏高原东北部和华北地区700年米由于长期构造加载及地震断层错动导致的累积库仑破裂应力变化( )的演化过程。长期构造加载场由GPS观测得到的地壳平均应变率场给出。考虑粘弹性成层介质地壳模型,计算长期构造加载和地震形变(同震及震后介质粘弹性驰豫变形)造成的累积应力场变化。将累积应力场变化投影到后续地震断层面和滑动方向上得到,并研究其对后续地震发生的触发作用。结果表明,青藏高原东北部的20个M≥7.0地震中,17个人地震均发生在库仑破裂应力变化为正的区域,触发率达85%;对1303年以来华北地区发生的49个M≥16.5地震研究结果表明:对48个后续地震中的39个有触发作用,触发率达到81.3%。研究表明与发生后续的地震有很好的相关性。当前 显著上升的地区包括渤海及其邻域地区、西秦岭北缘断裂带、张家口—渤海地震带西端和太原盆地,其地震危险性应引起重视。
     根据前人研究的唐山地震破裂分布、地壳波速和黏性结构,计算了该地震产生的投影到滦县和宁河余震上的库仑破裂应力变化。结果表明,随后发生的滦县地震和宁河地震均发生在前面地震产生的库仑破裂应力为正的区域。为研究唐山地震、滦县地震和宁河地震与后续小震位置之间的相关关系,根据前人对该地区构造应力场和地震破裂分布的研究,假定构造应力量值为10MPa,求得了震源附近各处可能的小震震源机制,将上述三个地震产生的应力变化投影到可能的小震破裂面和滑动方向上,发现唐山地震、滦县地震和宁河地震产生的库仑破裂应力变化的“蝴蝶”花瓣分布与后续小震发生的空间模式有较好的一致性。说明唐山地震序列中前面的大震对后续小震的发生起到了调制作用。
The genesis and occurrence of earthquakes and their subsequent impacts are complex physical processes. Studies of these processes help understand the mechanics of earthquakes and the future physical state of the Earth. The physical processes of earthquakes are studied in the following aspects in this paper:
    1. Study on seismic stress triggering
    Fault interaction and earthquake occurrence have attracted much attention in seismological community during recent years. Many studies showed that rupture of one fault could encourage or discourage earthquake nucleation on a neighboring fault, depending on the relative geometry of the two faults and the earthquake rupture mechanisms.
    Firstly we study stress transfer and triggering of large earthquakes along the East Kunlun fault system, northern Tibetan Plateau. Five M >7 earthquakes occurred along the fault zone during the past 70 years are considered: the 1937 M7.5 Huashi Canyon, the 1963 MS 7.1 Dulan, the 1973 MS 7.3 Manyi, the 1997 MS7.5 Manyi, and the 2001 MW 7.8 Kokoxili earthquakes. We simulate stress evolution process produced by seismic dislocation in layered viscoelastic media, and calculate Coulomb failure stress change on the fault plane of each subsequent earthquake. The result shows that the Coulomb failure stress on the fault plane of the Kokoxili earthquake was increased by the previous 4 earthquakes, and viscoelastic relaxation gradually enhanced the Coulomb failure stress field as time elapsed. By evaluating Coulomb failure stress change produced by coseismic rupture and viscoelastic relaxation of the 4 preceding large earthquakes, we find that Coulomb failure stress change produced by viscoelastic relaxation is much more significant than that produced by coseismic deformation in 3 of the 4 earthquakes. The stress field simulation indicates that after the Kokoxili earthquake Coulomb failure stress in the Xidatan-Dongdatan segment (between the Kokoxili and Dulan segments) of the East Kunlun fault is increased as much as 0.05~0.10MPa, implying significantly increased earthquake potential in this region.
    Secondly we simulate the evolution process of cumulative Coulomb failure stress change ( ) in Northeast Tibetan Palteau since 1920 and North China since 1303, manifested by secular tectonic stress loading and occurrence of large earthquakes. Secular tectonic stress loading is averaged from crustal strain rates derived from GPS. Assuming a layered visco-elastic medium, we calculate stress evolution resulted from secular tectonic loading and coseismic and postseismic deformation. At the eve of each large earthquake the accumulated stress field is project to the fault surface of that earthquake and the is evaluated to assess the triggering effect of . Our results show that in northeast Tibet Planetau, 17 out of 20 earthquakes occurred in the regions with positive , yielding a triggering rate of 81.3%. In North China, statistics shows that 39 out of the 48 subsequent events were triggered by positive , yielding a triggering rate of 81.3%. Our study shows very high correlation between positive and earthquake occurrences. Relatively high in North China at present time is concentrated around the Bohai Sea, the west segment of the Northern Qinling fault, western end of the Zhangjiakou-Bohai seismic zone, and the Taiyuan basin, Shanxi graben, suggesting relatively higher earthquake potential in these areas.
引文
白武明、林帮慧、陈祖安.2003.1976年唐山大地震发生对华北地区各块体运动与变形影响的数值模拟研究,中国科学(D辑),32(12):99~107.
    陈杰,陈宇坤,丁国瑜,等.2003.2001年昆仑山口西8.1级地震地表破裂带[J].第四纪研究,23(6):629~639
    陈培善,谷继成,李文香.1977.从断裂力学观点研究地震的破裂过程和地震预报[J].地球物理学报,20(3):185~202
    陈培善.1981.分析地震波估算地壳内的应力值[J].地震学报,3(3):251~263
    陈培善,白彤霞,肖磊.1995.根据环境应力场寻找中国大陆地区的潜在地震危险性[J],地震学报,17(3):294~304
    陈运泰,黄立人,林邦慧,等.1979.利用大地测量资料反演的1976年唐山地震的位错模式,地球物理学报,3:201~217.
    陈修启、张国民.1988.强震孕育及高潮中成串地震发生的数学模拟分析,八十年代中国地球物理学进展,83~99.
    崔效锋,谢富仁.1999,利用震源机制解对中国西南及邻区进行应力分区的初步研究[J],地震学报,23(5):513~522
    党光明,王赞军.2002.青海昆仑山口西Ms8.1级地震地表破裂带特征与主要震害——对青藏高原区域稳定性评价的制约[J].地质通报,21(2):105~120
    邓起东,张培震,冉勇康,等.2002.中国活动构造基本特征[J],中国科学(D辑),32(12):1020~1030
    杜兴信、邵辉成.1999.由震源机制解反演中国大陆现代构造应力场,地震学报,21(4):354~360
    冯锐,朱介寿,丁韫玉,陈国英,何正勤,杨树彬,周海南,孙克忠.1981.利用地震面波研究中国地壳结构[J],地震学报,3(4):335~350
    黄福明、陈修启.1992.大震广义影响场的讨论,地震学报,14(4),400~406.
    黄立人、杨国华、王敏.2003.用速度场得到的华北活动地块及变形,地震学报,25(1):72~81
    国家地震局地质研究所,宁夏回族自治区地震局.1990.海原地震断裂带[M],北京地震出版社,pp265
    国家地震局兰州地震研究所.1992.昌马地震活动带[M],地震出版社,p207
    侯康明,邓起东,刘百篪.1999.对古浪8级大地震孕育和发生的构造环境及发震模型的讨论[J],中国地震,15(4):339~348
    嘉世旭、齐诚、王夫运等.2005.首都圈地壳网格化三维结构,地球物理学报,48(6):1316~1324
    阚荣举,张四昌,晏风桐,俞林胜.1977.我国西南地区现代构造应力场与现代构造活动特征的探讨[J],地球物理学报,20(2):96~109
    李松林、张先康、宋占隆、等.2001.多条人工测深剖面联合反演首都圈三维地壳结构,地球物理学报,44(3):360~368
    李志才、许才军、赵少荣,等.1979.基于地壳分层的唐山地震断层震后变形分析,地球物理学进展,20(4):961~968
    刘昌铨、嘉世旭.1986.唐山地震区地壳上地幔结构特征—二维非均匀介质中理论地燃图理论地震图计算和结果分析,地震学报,8(4):341~353
    刘桂萍,傅征祥.2001.海原大地震对古浪大地震的静应力触发研究[J],地球物理学报,44(增刊):107~115
    马杏垣.1986.中国岩石圈动力学图[M],北京:地图出版社
    齐诚、赵大鹏、陈颐、陈棋福、王宝善.2006.首都圈地区地壳P波和S波三维速度结构及其与大地震的关系,地球物理学报,49(3):805~815
    乔学军,王琪,杜瑞林,等.2002.昆仑山口西Ms8.1地震的地壳变形特征[J].大地测量与地球动力学,22(4):6~11
    青海省地震局,中国地震局地壳应力研究所.东昆仑活动断裂带.北京:地震出版社,1999,1~186
    青海省地震局、中国地震局地壳应力研究所.东昆仑活动断裂带[M].北京:地震出版社,1999,1~186.
    任金卫,汪一鹏,吴章明等.青藏高原北部东昆仑断裂带第四纪活动特征和滑动速率.见:中国地震局地质研究所编.活动断裂研究(7).北京:地震出版社.1999,147~163
    沈正康,王敏,甘卫军,张祖胜,2003.中国大陆现今构造应变率场及其动力学成因研究[J],地学前缘,10(增刊):93~100
    沈正康,万永革,甘卫军,曾跃华,任群.2003.东昆仑活动断裂带大地震之间的黏弹性应力触发研究[J],地球物理学报,46(6):786~795
    石耀霖.2001.关于应力触发和应力影概念在地震预报中应用的一些思考,地震,2l(3):1~7
    时振梁、张少泉、赵荣国,等.1990.地震工作手册[M],北京:地震出版社,P633
    孙荀英、刘激扬、王仁.1994.1976年唐山地震震时和震后变形的模拟,地球物理学报,37(1):45~55
    藤吉文、姚虹、周海南.1979.北京、天津、唐山和张家口地区的地壳构造,地球物理学报,22(3):218~235
    滕吉文等.1974.柴达木东盆地的深层地震反射波和地壳构造[J],地球物理学报,17(2):122~135
    万永革,周公威,吴忠良等.中国地震震源机制测定结果的比较.地震地磁观测与研究.2001,22(5):1~15
    万永革.“地震静态应力触发”问题的研究[博士论文].北京:中国地震局地球物理研究所,2001
    万永革、沈正康、兰从欣.2006.根据走滑大地震前后应力轴偏转和应力降求取偏应力量值的研究[J],地球物理学报,49(3):838~844
    万永革、吴忠良、周公威、等.2000.几次复杂地震中不同破裂事件之间的“应力触发”问题,地震学报,22(6):568~576
    万永革,王敏,沈正康,陈杰,张祖胜,王庆良,甘卫军.2004.利用GPS和水准测量资料反演2001年昆仑山口西8.1级地震的同震滑动分布[J],地震地质,26(3):393~404
    王仁,何国琦,殷有泉,蔡永恩.1980.华北地区地震迁移规律的数学模拟,地震学报,2,32~42
    王绳祖.地壳、上地幔变形属性的判别.地震地质,1996,18(3):215~224
    王凯英、马瑾、顾国华、刁桂苓.2003.1996年川滇地区发生的一次应力转向事件,地学前缘J],10(S1):233~239
    吴忠良,黄静,林碧苍.2002.中国西部地震视应力的空间分布[J],地震学报,24(3):293~301
    谢富仁,崔效锋,张景发、窦素芹、赵建涛.2003.中国现代构造应力场基本特征与分区[C].见:中国大陆地壳应力环境研究.北京:地质出版社,39~48
    谢富仁,李宏.1995.利用断层滑动资料确定鲜水河断裂带构造应力方向和大小[J].地震学报, 17(2):164~171
    谢富仁,张世民,窦素芹、崔晓峰、舒塞兵.1999.青藏高原北、东边缘第四纪构造应力场演化特征[J],地震学报,23(5):513~522
    许力生,陈运泰.2004.从长周期波形资料反演2001年11月14日昆仑山口地震时空破裂过程[J].中国科学(D辑),34(3):256~264
    许忠淮.2001.东亚地区现今构造应力图的编制[J].地震学报,23(5):492 501
    徐锡伟.藏北玛尼地震科学考察.见:中国地震年鉴.北京:地震出版社,2000,327~329.
    徐锡伟,陈文彬,于贵华等.2001年11月14日昆仑山库赛湖地震(Ms8.1)地表破裂带的基本特征.地震地质,2002,24(1):1~13
    于湘伟、陈运泰、王培德.2003.京津唐地区中上地壳三维P波速度结构,地震学报,25(1):1~14
    臧绍先、李咏、宁杰远、魏荣强.2002.华北岩石圈三维流变结构的一种初步模型.中国科学(D辑),32(7):588~597
    曾融生、张少泉、周海南、等.1985.唐山地震区的地壳结构及大陆地震成因的探讨,地震学报, 7:125~142
    张文佑、汪一鹏、李兴唐.1984.华北断块区的形成与发展,见张文佑主编《华北断块区的形成与发展》,北京:科学出版社,1~8
    张先康、赵金仁、刘国华、等.1999.三河.平谷8.0级大震区震源细结构的深地震反射探测研究,中国地震,18(4):326~336
    张学民、束沛镒、刁桂苓、等.2001.利用数字地震记录研究唐山震区台下的P、S波速度结构,华北地震科学,19(1):10~17
    张之立、李钦祖、谷继成、等.1980.唐山地震的破裂过程及其力学分析,地震学报,1980,2(2):111~129
    张祖胜.1982.地形变背景与异常分析,见:国家地震局《一九七六年唐山地震》编写组编,《一九七六年唐山地震》,北京:地震出版社,131~170
    赵建涛,崔效锋,谢富仁.2002.唐山地震震源区构造应力场强度的初步分析[J],地震学报,24(3):268~276
    郑天愉、姚振兴.1993.用近场记录研究唐山地震的震源过程,地球物理学报,36(2):174~184
    中国地震局监测预报司.2001年昆仑山口西8.1级大地震.北京:地震出版社,2002,1~129
    中国地震局灾害防御司.1995.中国地震目录(公元前23世纪~1911),北京:地震出版社, P514
    中国地震局灾害防御司.1999.中国地震目录(1912~1990),北京:地震出版社,P637
    周惠兰.1985.浅源走滑大震震源过程的某些特征,地球物理学报,28(6):579~587
    周民都,赵和云,马钦忠,等.青藏高原东北缘及其邻区的地壳结构与地震关系初探[J].西北地震学报,1997,19(1):58~69.
    朱皆佐,康哲民,周光等.1963年4月19日青海省都兰地震.见:国家地震局地球物理研究所编.中国地震考察(第二卷).北京:地震出版社,1990.32~34
    Aki K, Richards P G. 1980. Quantitative seismology theory nad methods Vol Ⅰ & Ⅱ. San Francisco: W H Freeman and company, 932pp
    Altamimi Z, Sillard P, Boucher P. 2002. ITRF2000: A new release of the international Terrestrial Reference Frame for earth science applications[J], J Geophys Res, 107(B10): 2214, doi: 10.1029/2001JB000561.
    Ammon, C J, Ji C, Thio H. 2005. Rupture process of the 2004 Sumatra-Andaman earthquake, Science, 308:1133-1139
    Aoudia A, Borghi A, Riva R, et al. 2003. Postseismic deformation following the 1997 Umbria-Marche (Italy) moderate normal faulting earthquakes [J]. Geophys Res Lett, 30: 43-1~4
    Bak P, Christensen K, Danon L, et al. 2002. Unified scaling law for earthquakes[J]. Phys Rev Lett, 88: 178501-1~4
    Bak P and Tang C. 1989. Earthquakes as a self-origanized critical phenomenon[J]. J. Geophys. Res., 94: 15635~15637
    Banerjee P, Pollitz F F, Burgmann R. 2005. The size and duration of the Sumatra-Andaman earthquake from far-field static offsets[J], Science, 308: 1769-1772
    Ben-Zion Y, Rice J R. 1997. Dynamic simulations of slip on a smooth fault in an elastic solid[J], J Geophys Res, 102: 17771~17784
    Ben-Zion Y, Rice J R, Dmowska R. 1993. Interaction of the San Andreas fault creeping segment with adjacent great rupture zones and earthquake recurrence at Parkfield [J]. J. Geophys. Res., 98:2135~2144.
    
    Bilham R. 2005. A flying start, then a slow slip[J], Science, 308: 1126-1127
    Bird P. 2003. An updated digital model of plate boundaries[J], Geochem Geophys. Geosys, 4(3): 1027~1080
    Biswas N N, Knopoff L. 1970. Exact earth-flatterning calculation for Love waves[J]. Bull Seism Soc Amer, 60: 1123~1137
    Brace W F, Kohlstedt D L. 1980. Limits of lithospheric stress imposed by laboratory experiments[J]. J Geophys Res, 85: 6252~6348
    Butler R, Stewart G S, Kanamori H. 1979. The July 27,1976 Tangshan, China earthquake—A complex sequence of intraplate events[J]. Bull Seism Soc Amer, 69: 207~220
    Chen W, Nabelek J. 1988. Seismogenic strike-slip faulting and the development of the North China Basin[J], Tectonics, 7: 975~989
    Choy G L, Boatwright J L. 1995. Global patterns of radiated seismic energy and apparent stress[J]. J Geophys Res, 100: 18205~18228
    Cocco M, Rice J R. 1988. Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions[J]. J Geophys Res, 107(B2): ESE2-1~17
    Das S, Scholz C. 1988. Off-fault aftershock clusters caused by shear stress increase? [J] Bull Seism Soc Amer, 71: 1669~1675
    Delouis B, Giardini D, Lundgren P et al. 2002. Joint inversion of InSAR, GPS, Teleseismic, and strong motion data for the spatial and temporal distribution of the earthquake slip: application to the 1999 Izmit mainshock[J]. Bull Seism Soc Amer, 92(1): 278~299
    Deng J, Gurnis M, Kanamori H, et al. 1998. Viscoelastic flow in the lower crust after the 1992 Landers, California, earthquake[J]. Science, 282: 1689-1692
    Deng J, Sykes L R. 1997. Evolution of the stress field in southern California and triggering of moderate-size earthquakes: A 200-year perspective [J]. J. Geophys. Res., 102: 9859~9886.
    Dieterich J H. 1979. Modeling of rock friction: 1. Experimental results and constitutive equations[J]. J Geophys Res, 84: 2161~2168
    Dieterich J H. 1981. Constitutive properties of faults with simulated gouge. In: Machanical behaviour of crystal Rocks, Geophys. Monogr. Ser. 24, edited by N L Carter, M Friedman, J M Logan and D W Stearns, 103~120, AGU, Washington DC.
    Donnellan A, Lyzenga G A. 1998. GPS observations of fault afterslip and upper crustal deformation following the Northridge earthquake[J], J Geophys Res, 103: 21285-21298
    Dragoni M, Tallarico A. 1992. Interaction between seismic and aseismic slip along a transcurrent plate boundary: A model for aseismic sequences[J]. Phys Earth Planet Inter, 72: 49-57
    Fialko Y, Rivera L, Kanamori H. 2005. Eatimate of differential stress in the upper crust from variations in topography and strike along the San Andreas fault[J]. Geophys J Int, 160: 527-532
    Freed A M, Lin J. 2001. Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer [J]. Nature, 411: 180-183
    Gephart J W, Forsyth D W. An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence[J]. J Geophys Res, 1984, 89: 9305-9320
    Gephart J W. FMSI: A FORTRAN program for inverting fault/slickenside and earthquake focal mechanism data to obtain the regional stress tensor[J]. Computer & Geosciences, 1990, 16: 953-989
    Govers R, Wortel J R, Cloetingh S A P L, Stein C A. 1992. Stress magnitude estimates from earthquakes in oceanic plate interiors[J]. JGeophys Res, 97(B8): 11749-11759
    Guatteri M, Spudich P. 1998. Coseismic temporal changes of slip direction: The effect of absolute stress on dynamic rupture[J]. Bull Seism SocAmer, 1998, 88: 777-789
    Gulen L, Pinar A, Kalafat D, et al. Surface fault breaks, aftershock distribution, and rupture process of the 17 August 1999 Izmit, Turkey, earthquake[J]. Bull Seism Soc Amer, 2002,92: 230-244
    Hacker B R, Yin A, Christie J M, Davis G A. 1992. Stress magnitude, strain rate, and rheology of extended middle continental crust inferred from Quartz grain sizes in the Whipple mountains, California[J]. Tectonics, 11(1): 36-46
    Hardebeck J L, Hauksson E. Crustal stress field in southern California and its implications for fault mechanics [J]. JGeophys Res, 2001,106: 21859-21882
    Harris R A. 1998. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard [J]. J. Geophys. Res., 103: 24347-24358
    Harris R A, Simpson R W. 1996. In the shadow of 1857-- The effect of the great Ft. Tejon earthquake on subsequent earthquakes in southern California[J]. Geophys. Res. Lett., 23: 229-232
    Hauksson E. Crustal structure and seismicity distribution adjacent to the Pacific and North America plate boundary in Southern California [J]. JGeophys Res, 2000, 105: 13875-13903
    Hearn E H, Hager B H, Reilinger R E. 2002. Viscoelastic deformation from North Anatolian Fault Zone earthquakes and the eastern Mediterranean GPS velocity field[J], Geophys Res Lett, 29(11), 1549, doi:10.1029/2002GL014889
    Herring T A. 2002. GLOBK: Global Kalman filter VLBI and GPS analysis program, version 10.0, Mass. Inst. of Technol., Cambridge.
    Hill D P, Reasenberg P A, Michael A, et al. 1993. Seismicity remotely triggered by the magnitude 7.3 Landers, California, earthquake [J]. Science, 260: 1617-1623
    Hsu Y, Bechor N, Segall P., et al. 2002. Rapid afterslip following the 1999 Chi-Chi, Taiwan Earthquake[J], Geophys Res Lett, 29(16): 1754, doi:10.1029/2002GL014967
    Huang B, Yeh Y T. 1997. The fault ruptures of the 1976 Tanghsan earthquake sequence inferred from coseismic crustal deformation[J]. Bull Seism Soc Amer, 87: 1046-1057
    Hudnut K W, Bock Y, Cline M et al. Co-seismic displacements of the 1992 Landers earthquake sequence[J]. Bull Seism SocAmer, 1994, 84: 625-645
    http://210.72.96.1/focus-hot/qingcmtcomp.htm
    http://www.seismology.harvard.edu
    Ishii M, Shearer P M, Houston H. 2005. Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array[J], Nature, doi: 10.1038/nature03675
    Jackson D D. 1979. The use of a priori data to resolve the non-uniqueness in linear inversion[J]. Geophys J R Astr Soc, 57: 137-157
    Jackson D D, Matsu'ura M. 1985. A Bayesian approach to nonlinear inversion [J]. J Geophys Res, 90:581-591
    
    Ji C. http://www.gps.caltech.edu/~iichen/Earthquakes/2005/sumatra/sumatra.html
    Kagan Y Y, Jackson D D. 1998. Spatial aftershock distribution: Effect of normal stress[J]. J. Geophys. Res., 103: 24453-24467
    Kanamori H. 1983. Magnitude scale and quantification of earthquakes[J], Tectonophysics, 93: 185-199
    Keilis-Borok V I. 1959. On estimation of the displacement in an earthquake source and of source dimensions[J].Ann Geofits, 12: 205-214
    Keilis-Borok V I, Knopoff L, Rotvain I M. 1980. Bursts of aftershocks, long-term precursors of strong earthquakes[J]. Nature, 283: 259-263
    Kilb D, Gomberg J, Bodin P. 2000. Triggering of earthquake aftershocks by dynamic stresses [J]. Nature, 408: 570-574
    King G C P, Stein R S, Lin J. Static stress changes and the triggering of earthquakes[J]. Bull Seism Soc Amer, 1994, 84: 935-953
    Kikuchi M, Kanamori H. 1986. Inversion of complex body waves II[J]. Phys Earth Planet Interiors, 43: 205-222
    King G C P, Stein R S, Lin J. 1994. Static stress changes and the triggering of earthquakes[J]. Bull Seism Soc Amer, 84: 935-953
    King R W, Bock Y. 1993. Documentation for the MIT GPS analysis software: GAMIT [M], Massachusetts Institute of technology, Cambridge
    King R W, Bock Y. 2000. Documentation for the GAMIT GPS analysis software, release 10.0, Mass. Inst. of Technol., Cambridge.
    
    KnopofFL. 1958. Energy release in earthquakes[J]. Geophys J Roy. Astro. Soc, 1: 44-51
    Lang G, Vitotte J P, Neugebauer H J. 1984. Relaxation of the Earth after a dip slip earthquake: dependence on rheology and geometry[J]. Phys Earth Planet Inter, 36: 260-275
    Lapusta N, Rice J R, Ben-Zion Y, et al. 2000. Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate and state dependent friction[J], J Geophys Res, 105: 23765-23789
    Lay T, Kanamori H, Ammon C J, et al. 2005. The great Sumatra-Andaman earthquake of 26 December 2004[J], Science, 308: 1127-1133
    Li Y G, Leary P C, Aki K, Malin P E. 1990. Seismic trapped models in the Oroville and San Andreas fault zone[J]. Science, 249: 763-766
    Li Y G , Vidale J, Aki K, et al. 1994. Fine structure of the Landers fault zone: Segmentation and the rupture process[J]. Science, 265: 367-380
    Li Y G, Ellsworth W L, Thurber C H et al. 1997. Observations of fault zone trapped waves excited by explosion at San Andreas fault, central California[J]. Bull Seismol Soc Amer, 87: 210-221
    Li Y G, Aki K, Vidale J E, et al. 1998. A delineation of the Nojima fault ruptured in the M7.2 Kobe, Japan earthquake of the 1995 using fault zone trapped waves[J]. J Geophys Res, 103: 7247-7263
    Lin A, Kikuchi M, Fu B, 2003. Rupture segmentation and process of the 2001 Mw 7.8 central Kunlun, China, earthquake [J]. Bull Seism Soc Amer, 93: 2477-2492
    Liu J, Sieh K, Hauksson E. 2003. A structural interpretation of the aftershock "Cloud" of the 1992 Mw 7.3 Landers earthquake [J]. Bull Seism Soc Amer, 93: 1333-1344
    Luco J E, Apsel R J. 1983. On the Green's function for a layered half-space, part I[J]. Bull. Seism. Soc. Amer, 73: 909-929
    Luco J E, Apsel R J. On the Green's function for a layered half-space, part I [J]. Bull Seism Soc Amer, 73: 909-929, 1983.
    Ma K, Chan C. 2005. Response of seismicity of Coulomb stress triggers and shallows of the 1999 Mw=7.6 Chi-Chi, Taiwan, earthquake[J], J Geophys Res, 110, B05S19, doi: 10.1029/ 2004JB003389
    McCaffrey R, Zwick P C, Bock Y, et al. 2000. Strain parttioning during oblique plate convergence in north Sumatra: Geodetic and seismologic constraints and numerical modeling[J]. J Geophys Res., 105(B12): 28363-28376
    McGarr A. 1958. On relating apparent stress to the stress causing earthquake fault slip[J]. J Geophys Res, 104:3003-3011
    Molchan G M, Dmitrieva O E. 1992. Aftershock identification: methods and new approaches [J]. Geophys J Int, 109: 501-516
    Molnar P. 1992. A review of the seismicity, recent faulting, and active deformation of the Tibetan Plateau[J]. J. Himalayan Geol, 31: 43-78
    Molnar P, Chen W P. 1983. Focal depths and fault plane solution of earthquakes under the Tibetan plateau[J]. J. Geophys. Res., 88: 1180-1196
    Molnar P, Deng Q. 1984. Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia[J]. J. Geophys. Res., 89: 6203-6228.
    Molnar P, Lyon-Caen H. 1989. Fault plane solutions of earthquakes and active tectonics of the Tibeteau and its margins[J]. Geophys. J. Int., 99: 123-153
    Nabelek J L. 1984. Determination of earthquake source parameters from inversion of body waves. [Ph. D thesis], Mit. Cambridge, MA.
    Nalbant S S, Hubert A, King G C P. 1998. Stress coupling between earthquakes in northwest Turkey and the north Aegean Sea[J]. J. Geophys. Res., 103: 24469-24486.
    Nebelek J, Chen W P, Ye H. 1987. The Tangshan earthquake sequence and its implications for the evolution of the North China basin[J]. J Geophys Res, 92: 12615-12628
    Ni S, Kanamori H, Helmberger D. 2004. Energy radiation from the Sumatra earthquake[J]. Nature,434: 582
    
    Nur A, Booker J R. 1972. Aftershocks caused by pore fluid flow? [J] Science, 175: 885-887
    Nur A, Mavko G. Postseismic viscoelastic rebound[J]. Science, 1974, 183: 204-206
    
    Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bull. Seism. Soc. Amer., 82: 1018-1040
    Owen S, et al. 2002. Early postseismic deformation from the 16 October 1999 Mw 7.1 Hector Mine,
    
    California, Earthquake as measured by survey-mode GPS[J]. Bull Seism Soc Amer, 92: 1423-1432
    Papadimitriou E E, Sykes L R. 2001. Evolution of the stress field in the northern Aegean Sea (Greece) [J]. Geophys. J. Int., 146: 747-759
    Peltzer G, Crampe F, King P. 1999. Evidence of nonlinear elasticity of the crust from the M_w7.6 Manyi (Tibet) earthquake[J]. Science, 286: 272-276
    
    Person W J. 1991. Seismological notes. March-April 1990[J]. Bull. Seism. Soc. Amer, 81: 297-302
    Piombo A, Martinelli G, Dragoni M. 2005. Post-seismic fluid flow and Coulomb stress changes in a poroelastic medium[J], Geophys J Int, 162: 507-515
    Plenefisch T, Bonjer K P. 1997. The stress field in the Rhine Graben area inferred from earthquake focal mechanisms and estimation of frictional parameters[J]. Tectonophysics, 275: 71—97
    Pollitz F F, Burgmann R, Segall P. 1998. Joint estimation of afterslip rate and postseismic relaxation following the 1989 Loma Prieta earthquake[J]. J Geophys Res, 103: 26975-26992
    Pollitz F F, Peltzer G, Burgmann R. 2000. Mobility of continental mantal: Evidence from postseismic geodetic observations following the 1992 Landers earthquake[J]. J Geophys Res, 105: 8035-8054
    Pollitz F F. 1992. Postseismic relaxation theory on the spherical earth[J]. Bull. Seism. Soc. Amer., 82: 422-453.
    Pollitz F F, Sacks I S. 1997. The 1995 Kobe, Japan, earthquake: A long-delayed aftershock of the offshore 1944 Tonankai and 1946 Nankaido earthquakes [J]. Bull. Seism. Soc. Amer., 87: 1-10.
    Park J, Song T-R, Tromp J, et al. 2005. Earth's free oscillations excited by the 26 December 2004 Sumatra-Andaman earthquake[J], Science, 308: 1139-1144
    Park J, Anderson K, Aster R, et al. 2005. Global Seismographic Network records the Great Sumatra-Andaman Earthquake[J], Eos, 86(6): 57-64.
    Prawirodirdjo L, Bock Y, McCaffrey R, et al. 1997. Geodetic observations of interseismic strain segmentation at the Sumatra subduction zone [J], Geophys Res Lett, 24(21): 2601-2604
    Reilinger R E, Ergintav S, Buergmann R, et al. 2000. Coseismic and postseismic fault slip for the 17 August 1999, M=7.5, Izimit, Turkey earthquake [J]. Science, 289: 1519-1524
    Rice J R. 1992. Fault stress states, pore pressure distributions and the weakness of the San Andreas fault. In Fault Mechanics and Transport Properties of Rock, Edited by B Evans and T-F Wong, Academic, San Diego, Calif., 475-503
    Robinson R, Zhou S. 2005. Stress interactions within the Tangshan, China, earthquake sequence of 1976. Bull Seis Soc Amer, 95(6): 2501-2505
    Ruina A L. 1983. Slip instability and state variable friction laws[J]. J Geophys Res, 88: 10359-10370
    Rydelek P A, Sacks I S. 1990. sthenospheric viscosity and stress diffusion: a mechanism to explain correlated earthquakes and surface deformation in NE Japan[J]. Geophys. J. Int., 100: 39-58
    Savage J C, Svarc J L. 1997. Postseismic deformation associated with the 1992 Mw=7.3 Landers earthquake, southern California[J]. J Geophys Res, 102: 7565-7577
    Scholz C. 1990. The mechanics of earthquakes and faulting[M], Cambridge: Cambridge University Press.
    
    Seeber L, Armbruster J G 2000. Earthquakes as beacons of stress change[J]. Nature, 407: 69-72
    Seeber L, Ambruster J G, Kim W Y, et al. 1998. The 1994 Cacoosing Valley earthquakes near Reading, Pennsylvania: A shollow rupture triggered by quarry unloading[J]. J Geophys Res, 103:24505-24521
    Segall P, Burgmann R, Matthews M. 2000. Time-dependent triggered afterslip following the 1989 Loma Prieta earthquake[J], J Geophys Res,105(B3): 5615-5634
    Shedlock K, Baranowski J, Xiao W, Hu X L. 1987. The Tangshan aftershock sequence [J]. J Geophys Res, 92: 2791-2803
    Shen F, Royden L H, Burchfiel B C. 2001. Large-scale crustal deformation of the Tibetan Plateau[J]. J. Geophys. Res., 106: 6793-6816
    Shen Zheng-kang, Jackson D D, Feng Y, et al. 1994. Postseismic deformation following the Landers earthquake, California, 28 June 1992 [J]. Bull Seism Soc Amer, 84(3): 780-791
    Shen Z-K, Wang M, Li Y, et al. 2001. Crustal deformation along the Altyn Tagh fault system, western China, from GPS[J], J Geophys Res, 106: 30,607- 30,622.
    Shi, Y., Geng L., and Zhang G., 1994. Non-linear dynamic modeling of earthquake prediction, in Newman W I., Gabrielov A., and Turcotte D L. eds.: Nonlinear dynamics and predictability of geophysical phenomena, Geophysical Monograph 83, IUGG v.18, 81-89.
    Simoes M, Avouac J P, Cattin R, et al. 2004. The Sumatra subduction zone: A case for a locked fault zone extending into the mantle[J], J Geophys Res, 109: B10402, doi:10.1029/2003JB002958
    Stein S, Okal E A. 2005. Speed and size of the Sumatra earthquake[J]. Nature, 434: 581-582
    
    Sieh K, Natawidjaja D. 2000. Neotectonics of the Sumatran fault, Indonesia[J]. J Geophys Res, 105(B12): 28295-28326
    Sieh K. 2005. Aceh-Anderman earthquake: What happened and what next? [J] Nature, 434: 573-574
    Spudich P. 1992. On the inference of absolute stress levels from seismic radiation[J]. Tectonophysics, 211: 99-106
    Spudich P, Guatteri M, Otsuki K, Minagawa J. 1998. Use of fault striations and dislocation models to infer tectonic shear stress during the 1995 Hyogo-ken Nanbu (Kobe) earthquake[J], Bull Seism Amer Soc, 88(2): 413-427
    Starr A T. 1928. Slip in a crystal and rupture in a solid due to shear[J]. Proc Camb Phiol Soc, 24: 480-500
    
    Stein R S. 1999. The role of stress transfer in earthquake occurrence [J]. Nature, 402: 605-609
    Stein R S, Barka A A, Dieterich J H. 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering [J]. Geophys. J. Int., 128: 594-604.
    Subarya C, Chlieh M, Prawirodirdjo L, et al. 2006. Plate-boundary deformation of the great Aceh-Andeaman earthquake [J], Nature, 440(2): 46-51.
    Tapponnier P, Xu Z, Roger F. et al. 2001. Oblique stepwise rise and growth of the Tibet plateau [J]. Science, 294: 1671-1677.
    Toda S, Stein R S, Reasenberg P A, et al. 1998. Stress transferred by the 1995 Mw=6.9 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities [J]. J Geophys Res, 103: 24543-24565
    
    Troise C, De Natale G, Pingue F, et al. 1998. Evidence for static stress interaction among earthquakes in south-central Apennines (Italy) [J], Geophys J Int, 134: 809-817
    
    Tsai V C, Nettles M, Ekstrom G, et al. 2005. Multiple CMT source analysis of the 2004 Sumatra earthquake[J], Geophys Res Lett, 32, L17304, 10.1029/2005GL023813
    
    Tse S T, Rice J R. 1986. Crustal earthquake instability in relation to the depth variation of frictional properties[J]. J Geophys Res, 91: 9452-9472
    US Geological Survey, Southern California Earthquake Center, California Division of Mines and Geology. 2000. Preliminary report on the 16 October 1999 M7.1 Hector Mine, California, earthquake [J]. Seismol. Res. Lett., 71: 11-23
    Van der Woerd J, Ryerson F J, Tapponnier P. et al. 1998. Holocene left lateral slip rate determined by cosmogenic surface dating on Xidatan segment of the Kunlun Fault (Qinghai, China) [J]. Geology, 26(8): 695-698.
    Vigny C, Simons W J F, Abu S, et al. 2005. Insight into the 2004 Sumatra-Andaman earthquake from GPS measurements in southeast Asia[J], Nature, 436, doi: 10.1038/nature03937
    
    Voisin C, Campillo M, Ionescu I R. et al. 2000. Dynamic versus static stress triggering and friction parameters: Inferences from the November 23, 1980, Irpinia earthquake [J]. J. Geophys. Res., 105:21647-21659
    Wald D J, Heaton T H. 1994. Spatial and temporal distribution of slip for the 1992 Landers, California earthquake [J]. Bull. Seism. Soc. Amer, 84: 668-691
    Ward S N. 1998a. On the consistency of earthquake moment rates, geological fault data, and space geodetic strain: The United States[J]. Geophys J Int, 134: 172-186
    Ward S N. 1998b. On the consistency of earthquake moment release and space geodetic strain rates: Europe[J]. Geophys J Int, 135: 1011-1018.
    Wei W, Unsworth M, Jones A, et al. 2001. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies [J]. Science, 292: 716-718
    Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture area and surface displacement [J]. Bull. Seism. Soc. Amer., 84: 974-1002
    Wyss M, Gillard D, Liang B. 1992. An estimate of the absolute stress tensor in Kaoiki, Hawaii [J]. J Geophys Res, 97: 4763-4768
    Xie X B, Yao Z X. 1991. The faulting process of Tangshan earthquake inverted simultaneously from teleseismic waveforms and geodetic deformation[J]. Phys Earth Planet Inter, 66: 265-277
    Xu Z H, Wang S Y. 1998. A possible change in stress field orientation due to the 1976 Tangshan earthquake[J], Pure Appl. Geophys, 51: 139-154
    Xu X, Chen W, Ma W, et al. 2002. Surface rupture of the Kunlunshan earthquake (Ms 8.1), Northern Tibetan plateau, China[J]. Seism. Res. Lett., 73: 884-892
    Yagi Y. http://iisee.kenken.go.jp/staff/yagi/eq/sumatra2004/sumatra2004.html
    Yamanaka Y. http://www.eri.u-tokvo.ac.ip/sanchu/SeismNotes/
    Yang M, Toksoz M. 1981. Tim-dependent deformation and stress relaxation after strike slip earthquake[J]. J Gepophys Res, 86: 2889-2901
    Zeng Y. 2001. Viscoelastic stress-triggering of the 1999 Hector Mine earthquake by the 1992 Landers earthquake [J]. Geophys. Res. Lett., 28(15): 3007-3010
    Zhou H, Allen C R, Kanamori H. 1983. Rupture complexity of the 1970 Tonghai and 1973 Luhuo earthquakes, China [J], Bull. Seism. Soc. Amer., 73: 1585-1597
    Ziv A, Rubin A M. 2000. Static stress transfer and earthquake triggering: No lower threshold in sight? [J] J Geophys Res, 105: 13631-13642
    Zoback M L. 1992. First- and second-order patterns of stress in the lithosphere: the World Stress Map Project [J]. J Geophys Res, 97: 11703—1172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700