用户名: 密码: 验证码:
甜椒根际合成抗生素假单胞菌遗传多样性分析及GP72菌株生防机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验室的已有研究表明植物根际合成吩嗪类以及聚酮类抗生素的假单胞菌对植物病原菌起着天然的生防作用。本课题通过在华东地区六个不同的地点采集甜椒根际土壤样品,以假单胞菌株M18中吩嗪-1-羧酸(Phenazine-1-carboxylic acid, PCA)和藤黄绿菌素(Pyoluteorin, Plt)合成基因簇中保守基因为分子探针,运用原位杂交及检测发酵产物的方法,从土壤样品中筛选出48株能够合成PCA与Plt的假单胞菌群,大致占了通过King’s B (KMB)培养基筛选菌株总数的0.4%。其中合成PCA的菌群(45个)占到了分离菌株总数的94%,分布的地点也相当广泛,而同时合成PCA及Plt的菌群(3个)只占总数的4%,分布范围也相对比较狭窄,在上述采样点中没有发现单独合成Plt的菌株存在。利用限制性片段长度多态性的分析(Restriction Fragment Length Polymorphism, PCR-RFLP)方法,根据该菌群核糖体16S rDNA以及16S rDNA与23S rDNA之间的间隔区域(Inter Transcript Space, ITS)的HaeIII酶切片段类型,可将所获得的假单胞菌群分为19种不同的基因型,其中合成PCA的菌群可分为16个不同的基因型。从不同地点基因型的不同分布我们可以看出基因型A5广泛分布于各个不同的采样点,同时每个采样点都有彼此不相同的特异基因型分布。从顾庄和马桥两地分离得到的合成PCA的菌株分别占了PCA合成菌株总数的31.1%和26.7%。在6个采样点中顾庄和马桥两地的甜椒受真菌感染程度最轻,这也从侧面暗示了合成PCA的菌株作为潜在生防菌群起到了一定的生防作用。而且在真菌病害发生较少的顾庄与马桥两地发现了更多的隶属于基因型A5的菌株,这也在一定程度上验证了基因型A5在PCA合成菌群中的主导地位以及作为今后进一步筛选分离潜在生防菌株的分子遗传标记。随机选取每种基因型中的一个菌株为代表,通过对该区段进行扩增、测序以及NCBI数据库中的已有序列比对,我们发现PCA产生菌群中占主导地位的菌群主要为荧光假单胞菌(Pseudomonas fluorescence),
Phenazine and pyoluteorin producing pseudomonads prove to be effective biocontrol agents based on previous reports of our laboratory. After sampling in six different green pepper rhizosphere located in Shanghai and Jiangsu provice, we design molecular detecting probes according to the conserved gene fragments of phenazine-1-carboxylic acid (PCA) and pyoluteorin (Plt) gene clusters in Pseudomonas spp. M18. Finally we’ve got altogether 48 PCA and Plt producing isolates with colony hybridization followed by fermentation confirmation, which is 0.4% of total colonies selected by King’s B medium (KMB) approximately. 94% of the total isolates (45) belong to widely distributed PCA producing group, while 6% (3) for both PCA and Plt producing group. None of them can produce Plt alone. After analyzing the 16S rDNA plus ITS (Inter Transcript Space) between 16S and 23S rDNA region of these isolates with PCR-RFLP (Restriction Fragment Length Polymorphism) method, we’ve got altogether 19 genotypes in these isolates. 16 of them belong to PCA producing isolates. What’s more, genotype A5 was widely distributed in six sampling locations. Except for genotype A5, different genotypes could be found in each sampling location. The isolates obtained from Guzhuang and Maqiao occupied 31.1% and 26.7% of the total PCA producing isolates respectively. It is found that green peppers grown in these two regions suffer from less plant fungi disease infection than that in other four sampling sites, providing a complementary proof for biocontrol of plant fungi pathogens by these antibiotic-producing isolates. Moreover, more isolates belonging to genotype A5 have been found in these two
引文
[1] Tabashnik, B.E., Croft, B.A., Managing pesticides resistance in crop-arthropod complexes: interactions between biological and operational factors. Environ Ento, 1982, 11:1137-1144
    [2] Altieri, M.A., Biodiversity and pest management in agroecosystems. New York: Haworth P ress, 1994, 185
    [3] Cook, R.J., Making greater use of introduced microorganisms for biological control of plant pathogens, Annu. Rev. Phytopathol, 1993, 31:53-80
    [4] Thomashow, L.S., Weller, D.M., Current concepts in the use of introduced bacteria for biological disease control, New York: Chapman & Hall, 1995, In Plant-Microbe Interactions, ed., 1:187-235
    [5] Weller, D.M., Biological control of soilborne plant pathogens in the rhizosphere with bacteria, Annu. Rev. Phytopathol, 1988, 26:379-407
    [6] Frey, P.M., Biocontrol agents in the age of molecular biology. Trends in Biotechnol, 2001, 19:432-4331
    [7] Gerhardson, B., Biological substitutes for pesticides. Trends in Biotechnol, 2002, 20:338-343
    [8] Mathre, D.E., Cook, R.J., Callan, N.W., From discovery to use, traversing the world of commercializing biocontrol agents for plant disease control. Plant Disease, 1999, 83:972-983
    [9] Burr, T.J., Caesar, A., Beneficial plant bacteria. CRC Crit. Rev. Plant Sci. 1984, 2:1-20
    [10] Lucy, M., Reed, E., Glick, B.R., Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek, 2004, 86:1-25
    [11] Vessey, K.J., Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 2003, 255: 571-586
    [12] Aniza, Y., Kodo, Y., Oyaizu, H., The phylogeny of the genera Chryseomonas , Flavimonas and Pseudomonas supports synonymy of these three genera, Int J Syst Bacteriol, 1997, 47:249-251
    [13] Aniza, Y., Kim, H., Park, J.Y., et al, Phylogenetic affiliation of the pseudomonads based on 16Sr RNA sequence. Int J Syst and Evo Microbiol ,2000, 50:1563-1589
    [14] Palleroni, N.J., Bradbury, J.F., Strenotrophomonas, a new bacterial genus for Xanthomonas maltophilia. Int J Syst Bacteriol, 1993, 43:606-609
    [15] Willems, A., Goor, M., Thielemans, S., et al, Transfer of several phytopathogenic Pseudomonas species to Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovora xavenae subsp. citrulli Acidovorax avenae subsp.cattleyae , and Aci dovorax konjaci. Int J Syst Bacteriol, 1992, 42:107-119
    [16] Kersters, K., Ludwig, W., Vancanneyt, M., et al, Recent change in the classification of the pseudomonads :an overview. Syst Appl Microbiol, 1996, 19:465-477
    [17] Bergey, D., John, G..H., Noel, R.K., et al, Bergey’s Manual of Determinative Bacteriology, 9th Ed, Lippincott Williams & Wilkins, Philadelphia, USA, 1994
    [18] Thomas, F.C., Woeng, C.A., Bloemberg, G.V., et al, Phenazines and their role in biocontrol by Pseudomonas bacteria. New. Phytol, 2003, 157:503-523
    [19] Laursen, J.B., Nielsen, J., Phenazine Natural Products: Biosynthesis, Synthetic Analogues, and Biological Activity. Chem. Rev, 2004, 104:1663-1685
    [20] Fenton, A.M., Stephens, P.M., Crowley, J., et al, Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonasstrain. Appl. Environ. Microbiol, 1992, 58:3873-3878
    [21] Souza de, J.T., Arnould, C., Deulvot, C., et al, Effect of 2,4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology, 2003, 93:966-975
    [22] Keel, C., Schnider, U., Maurhofer, M., et al, Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant Microbe Interact, 1992, 5:4-13
    [23] Mavrodi, D.V., Blankenfeldt, W., Thomashow, L.S., Phenazine Compounds in Fluorescent Pseudomonas Spp. Biosynthesis and Regulation. Annu. Rev. Phytopathol, 2006, 44:18.1-18.29
    [24] Gurusiddaiah, S., Weller, D.M., Sarkar, A., et al, Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. Antimicrob Agents Chemother, 1986, 29(3):488-95
    [25] Lee, J.Y., Moon, S.S., Hwang B.K., Isolation and in vitro and in vivo activity against Phytophthora capsici and Colletotrichum orbiculare of phenazine-1-carboxylic acid from Pseudomonas aeruginosa strain GC-B26. Pest Manag Sci, 2003, 59(8):872-882.
    [26] Hu, H.B., Xu, Y.Q., Cheng, F., et al, Isolation and characterization of a new Pseudomonas strain produced both phenazine 1-carboxylic acid and pyoluteorin. J. Microbiol. Biotech, 2005, 15:86-90
    [27] Levy, E., Eyal, Z., Chet, I., et al, Resistance mechanisms of septoria tritici to antifungal products of pseudomonas. Physiol Mol Plant path, 1992, 40:163-171
    [28] Isnansetyo, A., Cui, L., Hiramatsu, K., et al, Antibacterial activity of 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga , against vancomycin-resistant Staphylococcus aureus. Int J Antimicrob Agents, 2003, 22:545-547
    [29] Landa, B.B., Mavrodi, O.V., Raaijmakers, J.M., et al, Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the roots of pea plants. Appl Environ Microbiol, 2002, 68 (7):3226-3237
    [30] Hammer, P.E., Burd, W., Hill, D.S., et al, Conservation of the pyrrolnitrin biosynthetic gene cluster among six pyrrolnitrin-producing strains. FEMS Microbiol Lett, 1999, 180:39-44
    [31] Corbell, N., Loper, J.E., A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. J Bacteriol, 1995, 177(21):6230-6236
    [32] Ligon, J.M., Hill, D.S., Hammer, P.E., et al, Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag Sci, 2000, 56:688-695
    [33] Schnider, U., Keel, C., Blumer, C., et al, Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. J Bacteriol, 1995,177 (18):5387-5392
    [34] Yuan, Z., Matsufuji, M., Nakata, K., et al, High production of pyoluteorin and 2,4-diacethylphloroglucinol by Pseudomonas fluorescens S272 grown on ethanol as a sole carbon source. J Ferment Bioeng, 1998, 86:559-563
    [35] Howell, C.R., Stipanovic, R.D., Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic , pyoluteorin. Phytopathol, 1980, 70:712-715
    [36] Baron, S.S., Rowe, J.J., Antibiotic action of pyocyanin Antimicrob Agents and Chemother, 1981, 20 (6):814-820
    [37] Neiland, J.B., Siderophore: structure and function of microbial iron transport compounds. J. Biol. Chem. 1995, 270:26723-26726
    [38] Milagres, A.M., Machuca, A., Napoleao, D., Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S CAS agar plate assay. 1999, J.Microbiol. Methods, 37, 1-6
    [39] Kloepper, J.W., Leong, J., Teintze, M., et al, Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. 1980, Curr. Microbiol, 4:317-320
    [40] Kloepper, J.W., Leong, J., Teintze, M., et al, Enhancing plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 1980, 286:885-886
    [41] Meyer, J.M., Geoffroy, V.A., Baida, N., et al, Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl Environ Microbiol, 2002, 68:2745-2753
    [42] Weert, de S., Vermeiren, H., Mulders, I.H.M., et al, Chemotaxis towards exudate components is an important trait for tomato root colonisation by Pseudomonas fluorescens. Mol Plant Microb Interact, 2002, 15:1173-1180
    [43] Chin-A-Woeng, T.F.C., Bloemberg, G.V., Mulders, I.H.M., et al, Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microb Interact, 2000, 13:1340-1345
    [44] Blumer, C., Haas, D., Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol, 2000, 173:170-177
    [45] Fridlender, M., Inbar, J., Chet, I., Biological control of soilborne plant pathogens by α,β-1,3-glucanase-producing pseudomonas cepacia. Soil Biol Biochem, 1993, 25:1211-1221
    [46] Deubel, A., Gransee A., Merbach, W., Transformation of organic rhizodepositions by rhizosphere bacteria and its influence on the availability of tertiary calcium phosphat. Plant Nutri Soil Sci, 2000, 163 (4):387-392
    [47] Vosátka, M., Gryndler, M., Treatment with culture fractions from Pseudomonas putida modifies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Appl Soil Ecol, 1999, 11 (2-3):245-251
    [48] Mattison, R.G.., Harayama, Shigeaki., The predatory soil flagellate Heteromita globosa stimulates toluene biodegradation by a Pseudomonas sp. FEMS Microbiol Lett, Federation of European Microbiological Societies, 2001, 194 (1):39-45
    [49] Pai, S.G.., Melissa, B., Riley, N.D., Microbial degradation of mefenoxam in rhizosphere of Zinnia angustifolia. Chemosphere, 2001, 44 (4):577~582
    [50] Simoncyri, U., Nwachuk,W., Bioremediation of sterile agricultural soils polluted with crude petroleum by application of the soil bacterium , Pseudomonas putida, with inorganic nutrient supplementations. Curr Microb, 2001, 42 (4):231~236
    [51] Maurhofer, M., Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology, 1988, 88:678–684
    [52] Lee, M., Den, O.F.M., Van P.J.A., et al, Hon availability attects induction of systemic resistance to fusarium wilt ofradish by Pseudomonas fluroscens. Phytopathology, 1996, 86:149-153
    [53] Van, peer, R., Niemann, G.J., Schippers, B., Introduced resistance and phytoalexin accumulation in biological control of fusarium wilt of camation by Pseudomonas sp. strain WSC417. Phytopathology, 1991, 81:728-734
    [54] Harman, G.E., Howell, C.R., Viterbo, A., et al, Trichoderma species: opportunistic, avirulent plant symbionts. Nature Rev. Microbiol, 2004, 2:43–56
    [55] Zehnder, G.W., Murphy, J.F., Sikora, E. J., et al, Application of rhizobacteria for induced resistance. Eur. J.Plant Pathol, 2001 107:39–50
    [56] Helmann, J.D., Chamberlin, M.J., Structure and function of bacterial sigma factors. Annu. Rev. Biochem, 1988, 57:839–872.
    [57] Ishihama, A., Functional modulation of Escherichia coli RNA polymerase, Annu. Rev. Microbiol, 2000, 54:499–518
    [58] Sarniguet, A., Kraus, J., Henkels, M.D., et al, The sigma factor σS affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5, Proc. Natl. Acad. Sci. USA, 1995, 92:12255–12259
    [59] Whistler, CA., Corbell, N.A., Sarniguet, A., et al, The twocomponent regulators GacS and GacA influence accumulation of the stationaryphase sigma factor σS and the stress response in Pseudomonas fluorescens Pf-5, J. Bacteriol, 1998, 180: 6635–6641
    [60] Haas, D., Keel, C., Regulation o f antibiotic production in root-colonizing and relevance for biological of plant disease, Annu. Rev. Phytopathol, 2003, 41: 117-153
    [61] Merrick, M. J., In a class of its own-The RNA polymerase sigma factor σ54 (σN). Mol. Microbiol, 1993, 10:903-909
    [62] Boucher, J.C., Schurr, M.J., Deretic, V., Dual regulation of mucoidy in Pseudomonas aeruginosa and sigma factor antagonism. Mol. Microbiol, 2000, 36:341-351
    [63] Totten, P. A., Lara, J. C., Lory, S., The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J. Bacteriol, 1990, 172:389-396
    [64] Hendrickson, E.L., Guevera, P., Ausubel, F.M., The alternative sigma factor RpoN is required for hrp activity in Pseudomonas syringae pv. maculicola and acts at the level of hrpL transcription. J. Bacteriol, 2000, 182:3508-3516
    [65] Delany, I., Sheehan, M.M., Fenton, A., et al, Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in Pseudomonas fluorescensF113: genetic analysis of phlF as a transcriptional repressor, Microbiology, 2000, 146, 537–546
    [66] Bangera, M.G., Thomashow, L.S., Identification and characterization of gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87, J. Bacteriol, 1999, 181: 3155–3163
    [67] Schnider-Keel, U., Seematter, A., Maurhofer, M., et al, Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin, J. Bacteriol, 2000, 182:1215–1225
    [68] Nowak-Thompson, B., Chaney, N., Wing, J.S., et al, Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5, J. Bacteriol, 1999, 181:2166–2174
    [69] Thomas, M.G., Burkart, M.D., Walsh, C.T.U., Conversion of L-proline to pyrrolyl-2-carboxyl-S-PCP during undecylprodigiosin and pyoluteorin biosynthesis, Chem. Biol, 2002, 9: 171–184
    [70] Mario, J., Leo, E., Burkhard, T. Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ. Microbiol, 2005, 7 (4):459–471
    [71] Fuqua, C., Parsek MR., Greenberg EP., Regulation of gene expression by cell-to-cell communication: acylhomoserine lactone quorum sensing. Annu. Rev. Genet, 2001, 35:439–68
    [72] Loh, J., Person, E.A., Person III, L.S., et al, Quorum sensing in plant-associated bacteria. Curr Opin Plant Biol, 2002, 5(44):285-290
    [73] Bassler, B.L., How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr. Opin. Microbiol, 1999, 2:582–587
    [74] Chin-A-Woeng, T.F.C., van den Broek, D., de Voer G., et al, Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol. Plant-Microbe Interact, 2001, 14:969–79
    [75] Pierson, L.S, Wood, D.W., Pierson, E.A., Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu. Rev. Phytopathol, 1998, 36:207-225
    [76] Pierson LS, Wood DW, Pierson EA, Chancey ST. 1998. N-acyl-homoserine lactone-mediated gene regulation in biological control by fluorescent pseudomonads—current knowledge and future work. Eur. J. Plant Pathol, 1998, 104:1–9
    [77] Pessi, G., Haas, D., Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa. J. Bacteriol, 2000,182:6940–49
    [78] Ledgham, F., Ventre, I., Soscia, C., et al, Interactions of the quorum sensing regulator QscR: interaction with itself and the other regulators of Pseudomonas aeruginosa LasR and RhlR. Mol. Microbiol, 2003, 48:199–210
    [79] Heeb, S., Hass, D., Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negtive bacteria. Mol. Plant-Microbe.Interact, 2001, 14:1351-1363
    [80] Pernestig, A.K., Melefors, O., Georgellis, D., Identification of UvrY as the cognate response regulator for the BarA sensor kinase in Escherichia coli, J. Biol. Chem, 2001, 276:225-231
    [81] Blumer, C., Heeb, S., Pessi, G., et al, Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites, Proc. Natl. Acad. Sci. USA, 1999, 96:14073 -14078
    [82] Koch, B., Nielsen, T.H., Sorensen, D., et al, Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet seed exudate via the Gac two-component regulatory system, Appl. Environ. Microbiol, 2002, 68:4509–4516
    [83] Bull CT, Duffy B, Voisard C, et al, Characterization of spontaneous gacS and gacA regulatory mutants of Pseudomonas fluorescens biocontrol strain CHA0. Int. J. Gen. Mol. Microbiol, 2001, 79:327–36
    [84] Valverde, C., Lindell, M., Wagner, E.G.H. et al, A repeated GGA motif is critical for the activity and stability the riboregulator RsmY of Pseudomonas fluorescens. J. Biol. Chem, 2004, 279:25066–25074
    [85] Aarons, S., Abbas, A., Adams, C., et al, A regulatory RNA (PrrB RNA) modulates expression of secondary metabolite genes in Pseudomonas fluorescens F113. J. Bacteriol, 2000, 182:3913–3919
    [86] Heeb, S., Blumer, C., Haas, D., Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J. Bacteriol, 2002, 184:1046–1056
    [87] Valverde, C., Heeb, S., Keel, C. et al, RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0. Mol. Microbiol, 2003, 50:1361–1379
    [88] Liu M.Y., Gui G.J., Wei B.D., et al, The RNA molecule CsrB binds to the global regulatoryprotein CsrA and antagonizes its activity in Escherichia coli, J. Biol. Chem. 1997,272:17502–17510
    [89] Whistler, C.A., Stockwell, V.O., Loper, J.E., Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5, Appl. Environ.Microbiol, 2000, 66:2718–2725
    [90] van Rij ET., Wesselink, M., Thomas, FC., et al, Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol. Plant–Microb. Interact, 2004, 17(5):557-556
    [91] Brion, K.D., Défago, G., Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens Biocontrol Strains, Appl. Environ. Microbiol, 1999, 65:2429–2438
    [92] Siddiqui, I.A., Shaukat, S.S., Plant Species, Host age and host genotype effects on Meloidogyne incognita biocontrol by Pseudomonas fluorescens strain CHA0 and its genetically-modified derivativesJ, Phytopathology, 2003, 151:231–238
    [93] Ownley BH, Duffy BK, Weller DM, Identification and manipulation of soil properties to improve the biological control performance of phenazine-producing Pseudomonas fluorescens, Appl. Environ. Microbiol, 2003, 69(6):3333–3343
    [94] Maurhofer, M., Keel, C., Haas, D., et al, Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHA0 with enhanced antibiotic production, Plant Pathol, 1995, 44: 40–50
    [95] Louise, M.D., Gwyn, S.G., Join H., et al, Mangement influences no soil microbial communities and their function in botanically diverse hay meadows of northern England and Wales. Soil Biol. Biochem, 2000, 32:253~2631
    [96] Amann, R.I., Ludwig, W., Schleifer, K.H., Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 1995, 59 (1):143-169
    [97] Roselló-Mora, R., Amann, R., The species concept for prokaryotes. FEMS Microbiol Rev, 2001, 25(1):39-67
    [98] Brock T.D., The study of microorganisms in situ: progress and problems. Symp. Soc. Gene Microbiol., 1987, 41:1-17
    [99] Ze11es, L., Bai, Q.Y., Rackwitz, R., et al, Determination of phospholipid and lipopolysaccharide derived fatty acid as an estimate of microbial biomass and community structures in soils. Biol Fertil soi1s, 1995, 19:115-123
    [100] Ze11es, L., Rackwitz, R.Y., Bai, Q., et al, Discrimination of microbial diversity index by fatty acid p rofiles of phospholip ids and lipopolysaccharides in differently cultivated soils. Plant Soil, 1995, 170:115-122.
    [101] Zelles, L., Fatty acid patterns of phospholipids and lipopolysaccharides in the characterizations of microbial communities in soils. Biol soils, 1999, 29:111-129.
    [102] John, W.D., Alice, J.J., Methods for assessing soil quality. SSSA special publication number 49, Soil Science Society of America, Inc. Madison, Wisconsin, USA. 1996, 203-272
    [103] Wilkinson, S.C., Anderson, J.M., Spatial patterns of soil microbial communities in a Norway. Microb. Ecol, 2001, 42:248-255
    [104] Hack, S.K., Garchow, H., Odelson, D.A., Accuracy, repro-ducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl. Environ. Microbiol, 1994, 60:2483-2493
    [105] Gland, JL, Mills, A.L., Classification and characterization of heterotrophic microbial community-level sole-carbon-source utilization. Appl. Environ. Microbial, 1991, 57:2351-2359
    [106] Sma1la, K., Analysis of BIOLOG GN substrate utilization patterns by microbial community. Appl Environ Microbiol, 1998, 64:1220-1225
    [107] Guffedge, J., Ahmad, A., Steudler, P.A., Family and genus-level 16S rRNA-targeted oligonucleotide probes for ecological studies of methanotrophic bacteria. Appl. Environ. Microbiol ,2001(10):4726-4733
    [108] Hesselsqe, M., Brandt, K.K., Sqrensen, J., Quantification of ammonia oxidizing bacteria in soil using micro-ecology technique combined with fluorescence in situ hybridization (MCPU-FISH). FEMS Microbiol Ecol, 2001, (2-3):87-95
    [109] Hollis, A.B., Kloos, W.E., Elkan, C.H., DNA-DNA hybridization studies of Rhizobium japonioum and related Rhizobiacease. J Gen Microbiol, 1981(123):215-222
    [110] Wintzingerode, V.F., Landt, O., Ehrlich, A., Peptide nucleic acid mediated PCK clamping as a useful supplement in the determination of microbial diversity. Appl. Environ Microbiol, 2000, (66):549-557
    [111] Britten, R.J., Kohne, D.E., Repeated sequences in DNA. Science, 1968, 161:529-540
    [112] Torsvik, V., Goksoyr, J., Daae, F.L., High diversity in DNA of soil bacteria. Appl. Environ. Microbiol, 1990, 56(3):782-787
    [113] Brown, W.M., Polymorphism in mitochondrial DNA in humans as revealed by restriction endonuclease analysis. Proc Natl Acad Sci USA, 1980, 77:3605-3609
    [114] Muyzer, G., Ramsing, N.B., Molecular methods to study the organization of microbial communities. Wat. Sci.Technol, 1996, 32(8):1-9
    [115] Said, E.L., Fantroussl, L., Verschuere, W., Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl. Environ.Microbiol, 1999, 65(3):982-988
    [116] Dunbar, J., Takala, S., Barns, S.M., Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ.Microbiol, 1999, 5(4):1662-1669
    [117] Cole, J.R., Chai, B., Marsh, T.L., et al, The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res, 2003, 31(1):442-443
    [118] Wen, T.L., Terence, L.M., Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol, 1997, 63(11):4516-4522
    [119] Frank, S., Chistoph, C.T., A new approach to utilize PCR-single-strand-conformation polymorphism for 16s rRNA gene-based microbial community analysis. Appl. Environ. Microbiol, 1998, 64(12):4870-4876
    [120] Head, I.M., Saunders, J.R., Pickup, R.W., Microbial evolution, diversity, and ecology: A decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol, 1998, 35:11-21
    [121] Marilley, L., Vogt, G., Blanc, M., Bacterial diversity in the bulk soil and rhizosphere fractions of Lolium perenne and Trifolium repens as revealed by PCR restriction analysis. Plant Soil, 1998, 198: 219-224
    [122] Frank, S., Chistoph, C.T., Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizosphere of a target plant (Medicago sativa) and a non-target plant (Chenopodium album) linking of 16S rRNA gene-based single-strand-conformation polymorphism community profiles to the Diversity of cultivated bacteria. Appl. Environ. Microbiol, 2000, 66(8):3556-3565
    [123] Williams, J.G., Kubelik, A.R., Livak, K.J., DNA polymer phisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990, 18: 6531-6535
    [124] Yang, Y., Yao, J., Hu, S., Effects of agricultural chemicals on DNA sequences diversity of soil microbial community: A study with RAPD marker. Microbiol. Ecol, 2000, 39:72-79
    [125] Ulton, C.S.J., Higgins, C.F., Sharp, P.M., ERIC sequences: a novel family of repeatitive elements in the genomes of Escherichia coli, Salmonella typhi murium and other enterobacteria. Mol. Microbiol, 1991, 5(4):825-834
    [126] Vos, P., Hogers, R., Bleeker, M., et al, AFLP: A New Technique for DNA Finger pringting. Nucleic Acids Res, 1995, 23:4407-4414
    [127] Fisher, M.M., Triplett, E.W., Automated approache for ribosomal intergenicspacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol, 1999, 65:4630-4636
    [128] Borneman, J., Triplett, E., Molecular microbial diversity in soils from eastern amazonia: evidence for unusual microorganisms and microbial shifts associated with deforestation. Appl Environ Microbiol, 1997, 63:2647-2653
    [129] Ranjard, L., Brothier, E., Nazaret, S., Sequencing bands of ribosomal intergenic spacer analysis fingerprints for characterization and microscale distribution of soil bacterium populations responding to mercury spiking. Appl Environ Microbiol, 2000, 66:5334-5339
    [130] Hostettmann, K., Wolfender, J.L., Rodriguez, S., Rapid detection and subsequent isolation of bioactive constituents of crude plant extracts Planta Med, 1997,63(1):2-10
    [131] Cragg, G.M., Newman, D.J., Snader, K.M., Natural products in drug discovery and development. J Nat Prod, 1997, 60(1):52-60
    [132] Shu, Y.Z., Recent natural products based drug development: A pharmaceutical industry perspective. J Nat Prod, 1998, 61(8):1053-1071
    [133] Hamburger, M., Hostettmann, K., Bioactivity in plants: the link between phytochemistry and medicine. Phytochem, 1991, 30(12):3864-3874
    [134] Lee, M.S., Kerns, E.H., LC/MS application in drug development. Mass Spectrom Rev, 1999, 18(1):187-279
    [135] Wilson, I.D., Multiple hyphenation of liquid chromatography with nuclear magnetic resonance spectroscopy, mass spectrometer and beyond. J Chromatogr A, 2000, 892(1-2):315-327
    [136] Kingston, D.G.I., High performance liquid chromatography of natural products. J Nat Prod, 1979, 42(3):237-260
    [137] Peng, S.X., Hyphenated HPLC-NMR and its applications in drug discovery. Biomed Chromatogr, 2000, 14(6):430-441
    [138] Jorgenson, J.W., Luckacs, K.D., Zone electrophoresis in open-tubular glass capillaries. Anal. Chem, 1981, 53:1298-1302.
    [139] Jorgenson, J.W., Luckacs, K.D., (1981b). High-resolution separations based on electrophoresis and electroosmosis. J. Chromatogr, 1981, 218:209-216
    [140] Jorgenson, J.W., Lukacs, K.D., Capillary zone electrophoresis. Science, 1983, 222: 266
    [141] Terabe S., Otsuka, K., Ichikawa, K., et al, Electro kinetic separations with micellear solutions and open tubular capillaries. Anal. Chem, 1984, 56:113-115
    [142] Cohen, A.S., Karger, B.L., High performance sodium dodecyz polyacrylamide gel vapilay electrophoresis of peptides and proteins. J.Chromatogr,1987, 397:409-417
    [143] Hjerten, S., Free zone electrophoresis. Chromatogr Rev, 1967, 9:122-219
    [144] Rebscher, H., Pyell, U., In-column versus on-column fluorescence detection in. capillary electrochromatography, J Chromatogr A, 1996, 737:171-180
    [145] Heegaard, N.H.H., Applications of affinity interactions in capillary electrophoresis. Electrophoresis, 2003, 24(22-23):3879-3891
    [146] Riekkola, M.L., Recent advances in nonaqueous capillary electrophoresis. Electrophoresis, 2002, 23:3865-3883
    [147] Harrison, D.J., Manz, A., Fan, Z., et al, Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal. Chem, 1992, 64:1926
    [148] Blanco, M., Valverde, I., Choice of chiral selector in enantioseparations by capillary electrophoresis. Trends Anal Chem, 2003, 22(7-8),428-439
    [149] Smith, N.W., Evans, M.B., Capillary zone electrophoresis in pharmaceutical and biomedical analysis. J Pharm Biomed Anal, 1994, 12:579-611
    [150] Cancalon, P.F., Capillary electrophoresis: a. new tool in food analysis. J AOAC Int, 1995, 78:12-15
    [151] Beans, S.R.; Bietz, J.A.; Lookhart, G.L., High performance of capillary electrophoresis of cereal proteins. J Chromatogr A, 1998, 814:25-41
    [152] Aran, P., Ohms, J.I., Analysis of oligonucleotides by capillary gel electrophoresis.J. Chromatogr, 1990, 507:113-123
    [153] Chen, G., Han, X., Zhang, L., et al, Determination of purine and pyrimidine bases in DNA by micellar electrokinetic capillary chromatography with electrochemical detection. J Chromatogr A, 2002, 954(1-2):267-276
    [154] Cohen, A.S., Najarian D.R., Karger B.L., Separation and analysis of DNA sequence reaction products by capillary gel electrophoresis. J.Chromatogr, 1990, 516:49-60.
    [155] Sue, B., Heather, S., Jian, Z.Z., et al, Capillary gel electrophoresis for DNA sequencing of a template from athe malaria genome. J. Cap Elec, 1994, 001:2-3
    [156] Chen, H.R., Sheu, S.J., Determination of glucurrhizin and glycurrhetinic acid in traditional Chinese medicinal preparations by capillary electrophoresis. J Chromatogy, 1993, 653:184(18)
    [157] Kenneyb, F., Determination of organic acids in food samples by capillary electrophoresis. Chromatogr, 1991, 546:423-425
    [158] Cancalon, P.F., Bryann, C.R., Use of capillary electrophoresis for monitoring citrus juice composition. Chromatogr, 1993, 652:551-553
    [159] Jitendra, N., Mehrishi, J.B., Electrophoresis of cells and the biological relevance of surface charge. Electrophoresis, 2002, 23:1984-1994
    [160] Kremser, L., Blaas, D., Kenndler, E., Capillary electrophoresis of biological particles: Viruses, bacteria, and eukaryotic cells. Electrophoresis, 2004, 25:2282-2291
    [161] Garbeva, P., Van Veen, J.A., Van Elsas, J.D., Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3, Pseudomonas species in soil from different agricultural regimes. FEMS Microbiol Ecol, 2004, 47:51-64
    [162] Keel, C., Weller, D.M., Natsch, A., et al, Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among .fluorescent pseudomonas strains from diverse geographic locations. Appl Environ Microbiol, 1996, 62:552-563
    [163] Latour, X., Corberand, T., Laguerre, G., et al, The composition of .fluorescent Pseudomonas populations associated with roots is influenced by plant and soil type. Appl Environ Microbiol, 1996, 62:2449-2456
    [164] Lemanceau, P., Corberand, T., Gardan, L., et al, Effect of two plant species, .ax (Linumusitatissimum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soil-borne populations of .fluorescent pseudomonads. Appl Environ Microbiol, 1995, 61:1004-1012
    [165] Mcspadden, G.B.B., Schroeder, K.L., Kalloger, S.E., et al, Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat. Appl Environ Microbiol, 2000, 66:1939-1946
    [166] Raaijmakers, J.M., Weller, D.M., Thomashow, L.S., Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol, 1997, 63:881-887
    [167] Bender, C.L., Rangaswamy, V., Loper, J.E., Polyketide production by plant-associated pseudomonads. Annu Rev Phytopathol, 1999, 37:175–196
    [168] Takeda, R., Pseudomonas pigments. I. pyoluteorin, a new chlorine-containing pigment produced by Pseudomonas aeruginosa. Hako Kogaku Zasshi 1958, 36:281-290
    [169] Turner, J.M., Messenger, A.J., Occurrence, biochemistry and physiology of phenazine pigment production. Adv Microb Physiol, 1986, 27:211-275
    [170] Huang, X.Q., Zhu, D.H., Ge, Y.H., et al, Identification and characterization of pltZ, a gene involved in the repression of pyoluteorin biosynthesis in Pseudomonas sp. M18. FEMS Microbiol Lett, 2004, 232:197-202
    [171] Gurtler, V., Stanisich, V.A., New approaches to typing and identi.cation of bacteria using the 16S–23S rDNA spacer. Microbiology, 1996, 142:3-16
    [172] Jeng, R.S., Svircev, A.M., Myers, A.L., et al, The use of 16S and 16S–23S rDNA to easily detect and differentiate common Gram-negative orchard epiphytes. J Microbiol Methods, 2001, 44:69-77
    [173] Ausubel, F.M., Brent, R., Kingston, R.E., et al, (ed.) Short protocols in molecular biology. John Wiley&Sons Inc, New York, N.Y,1995
    [174] King, E.O., Ward, M.K., Raney, D.E., Two simple media for demonstration of pyocyanin and fluorescein. J Lab Clin Med,1954, 44:301-307
    [175] Kluyver, A.J., Pseudomonas aureofaciens nov.spec. and its pigments. J Bacteriol, 1956, 72:406-411
    [176] Locatelli, L., Tarnawski, S., Specific PCR amplification for the genus Pseudomonas targeting the 3’ half of 16s rDNA and the whole 16S-23S rDNA spacer. Syst Appl Microbiol, 2002, 25:220-227
    [177] Brodhagen, M., Henkels, M.D., Loper, J.E. Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas .fluorescens Pf-5. Appl Environ Microbiol, 2004, 70:1758-1766
    [178] Ge, Y.H., Huang, X.Q., Wang, S.L., et al, (2004) Pyoluteorin is positively regulated and phenazine-1-carboxylic acid negatively regulated by gacA in Pseudomonas sp. M-18. FEMS Microbiol Lett, 2004, 237:39-45
    [179] James, D.W., Gutterson, N.I., Multiple antibiotics produced by Pseudomonas .fluorescens HV37a and their di.erential regulation by glucose. Appl Environ Microbiol, 1986, 52:1183-1198
    [180] Haas, D., Défago, G., Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Rev Microbiol, 2005, 3:309-319
    [181] Garbeva, P., Van Veen, J.A., Van Elsas, J.D. Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol,2004, 42:243-270
    [182] Dobrint, U., Hacker, J., Whole genome plasticity in pathogenic bacteria. Curr Opin Microbiol, 2001, 4:550–557
    [183] Marschner, P., Crowley, D., Yang, C.H., Development of speci.c rhizosphere bacterial communities in relation to plant species, nutrition and soil type. PlantSoil, 2004, 261:199-208
    [184] O’Sullivan, D.J., O’Gara, F., Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogen. Microbiol Rev, 1992, 56 (4):662-6761
    [185] Xavier, L., Sandrine, D., Pascal, M., et al, Identification of traits implicated in the rhizosphere competence of fluorescent pseudomonads: description of a strategy based on population and model strain studies. Agronomie, 2003, 23:397-405
    [186] Bano, N., Musarrat, J., Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microbiol, 2003, 6:324-328
    [187] Kumar, R.S., Ayyadurai, N., Pandiaraja, P., et al, Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J Appl Microbiol, 2005, 98:145-154
    [188] Timothy, P., Brian, N.T., Pascale, G., et al, A novel antifungal furanone from Pseudomonas aureofaciens, a biological agent of fungal plant pathogens. J Chem Ecol, 2000, 26(6):1515-1524
    [189] Pierson, Ⅲ L.S., Pierson, E.A., Phenazine antibiotic production in Pseudomonas aureofaciens:Role in rhizosphere ecology and pathogen suppression. FEMS Microbiol Lett, 1996, 136:101-108
    [190] Schmidt-Eisenlohr, H., Rittig, H.M., Baron, C., Biomonitoring of pJP4- carrying Pseudomonas chlororaphis with Trb protein specific antisera. Environ Microbiol, 2001, 3:720-730
    [191] Lennart, J., Margareta, H., Berndt, G., Performance of the Pseudomonas chlororaphis biocontrol agent MA 342 against cereal seed-borne diseases in field experiments. Euro J Plant Pathol, 1998, 104:701-711
    [192] Pierson, E.A., Weller, D.M., Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology,1994, 84:940-947
    [193] Kravchenko, L.V., Makarova, N.M., Azarova, T.S., et al, Isolation and phenotypic characterization of plant growth-promoting rhizobacteria with high antiphytopathogenic activity and root-colonizing ability. Mikrobiologiya, 2002, 71(4):521-525
    [194] Liu, H.M., Dong, D.X., Peng, H.S., et al, Genetic diversity of phenazine- and pyoluteorin-producing pseudomonads isolated from green pepper rhizosphere. Arch Microbiol, 2006, 185 (2):91-98
    [195] Sakthivel, N., Gnanamanickam, S.S., Evaluation of Pseudomonas fluorescens for suppression of sheath-rot disease and for enhancement of grain yields in rice (Oryza sativa L). Appl Environ Microbiol, 1987, 53:2056–2059
    [196] Marmur, J., Doty, P., Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol, 1962, 5:109-118.
    [197] Saitou, N., Nei, M., The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4:406-425
    [198] Bric, J.M., Bostock, R.M., Silverstone, S.E., Rapid in situ assay for indoleacetic acid production by bacteria immobilized on nitrocellulose membrane. Appl Environ Microbiol, 1991, 57:535-538
    [199] Gordon, S.A., Weber, R.P., Colorimetric estimation of indoleacetic acid. Physiol Plant, 1951, 26:192–195
    [200] Lorck, H., Production of hydrocyanic acid by bacteria. Physiol Plant, 1948, 1:142-146
    [201] Bauer, A.W., Kirby, W.M.M., Sherris, J.C., et al, Antibiotic susceptibility testing by a standardized single disk method. Amer J Clin Pathol, 1996, 45:493-496
    [202] Laursen, B.J., Nielsen, J., Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem. Rev, 2004, 104:1663-1685
    [203] Taunk, P.C., Mital, R.L., Thin-layer chromatographic studies of some new 5,10-dihydrophenazines.J Chromatogr, 1971, 60(3):433-435.
    [204] O'Connor, R., O'Sullivan, J.F., O'Kennedy, R., Determination of serum and tissue levels of phenazines including clofazimine. J Chromatogr B Biomed Appl, 1996, 681(2):307-315
    [205] Watson, D., MacDermot, J., Wilson, R., et al, Purification and structural analysis of pyocyanin and 1-hydroxyphenazine. Eur J Biochem, 1986,159(2):309-313
    [206] Fernandez, R.O., Pizarro, R.A., High performance liquid. chromatographic analysis of Pseudomonas aeruginosa phenazines J. Chromatogr. A, 1997, 771:99-104
    [207] Delaney, M.S., Mavrodi, D. V., Bonsall, R. F., et al, PhzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84. J. Bacteriol, 2001, 183:318-327
    [208] Guihen, E., Jeremy, D., Glennon, M., et al, Rapid analysis of antimicrobial metabolites monoacetylphloroglucinol and 2,4-diacetylphloroglucinol using capillary zone electrophoresis Electrophoresis, 2004, 25:1536-1542
    [209] Wang, Q.L., Zhang, X.H., Fan, L.Y., et al, Quantitative analysis of pyoluteorin in anti-fungal fermentation liquor of Pseudomonas species by capillary zone electrophoresis with UV–vis detector J. Chromatogr B, 2005, 826:252-256
    [210] Liu, H.M., He, Y.J., Jiang, H.X., et al, Characterization of a phenazine-producing strain Pseudomonas chlororaphis GP72 with broad-spectrum antifungal activity from green pepper rhizosphere. Curr Microbiol, 2006, (accepted)
    [211] Elasri, M., Delorme, S., Lemanceau, P., et al, Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol, 2001, 67:1198-1209
    [212] Winson, M.K., Camara, M., Latifi, A., et al, Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 1995, 92:9427-9431
    [213] Pierson , Ⅲ L.S., Keppenne, V.D., Wood, D.W., Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens is regulated by PhzR in response to cell density. J Bacteriol, 1994, 176:3966-3974
    [214] Wood, D.W. Pierson, Ⅲ L.S., The phzI gene of Pseudomonas aureofaciens 30-84 is responsible for the production of a disffusible signal required for phenazine antibiotic production. Gene, 1996, 168:49-53
    [215] Chin-A-Woeng, T.F.C., van den Broek, D., de Voer, G., et al, Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant-Microbe Interact, 2001, 14:969-979
    [216] Suh, S.J., Silo-Suh, L., Woods, D.E., et al, Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol, 1999, 181:3890–3897
    [217] Merrick, M.J., In a class of its own—The RNA polymerase sigma factor σ54 (σN). Mol. Microbiol, 1993, 10:903-909
    [218] K?hler, T., Harayama, S., Ramos, J. L., et al, Involvement of Pseudomonas putida RpoN sigma factor in regulation of various metabolic functions. J. Bacteriol, 1989 171:4326-4333
    [219] Alarcón-Chaidez, F.J., Keith, L., Zhao, Y., et al, RpoN (σ54) is required for plasmid-encoded coronatine biosynthesis in Pseudomonas syringae. Plasmid, 2003 49:106-117
    [220] Hendrickson, E.L., Plotnikova, J., Mahajan-Miklos, S., et al, Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants,nematodes, insects, and mice. J. Bacteriol, 2001, 183:7126-7134
    [221] Ishimoto, K. S., and Lory, S. Formation of pilin in Pseudomonas aeruginosa requires the alternative sigma factor (RpoN) of RNA polymerase. Proc. Natl. Acad. Sci. U.S.A, 1989, 86:1954-1957
    [222] Buck, M., Gallegos, M.T., Studholme, D.J., et al, The bacterial enhancer-dependent σ54 (σN) transcription factor. J. Bacteriol, 2000, 182:4129-4136
    [223] Chatterjee, A., Cui, Y., Yang, H., et al, GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators and alternate sigma factors. Mol. Plant Microbe Interact, 2003, 16:1106-1117
    [224] Heurlier, K., Dénervaud, V., Pessi, G., et al, Negative control of quorum sensing by RpoN (σ54) in Pseudomonas aeruginosa PAO1. J. Bacteriol, 2003, 185:2227-2235
    [225] Lukashin, A.V., Borodovsky, M., 1998. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res, 1998, 26, 1107-1115
    [226] Reese, M.G., Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput. Chem, 2001, 26, 51-56
    [227] Schweizer, H.D., Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques, 1993, 15:831–834
    [228] Hoang, T.T., Karkhoff-Schweizer, R.R., Kutchma, A.J., et al, A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene, 1998, 212:103-119
    [229] Rashid, M.H., Kornberg, A., Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A, 2000, 97:4885-4890
    [230] Sambrook J., Fritsch, E.F., Maniatis, T., Molecular cloning: A Laboratory Manual, 2nd Edn, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1989
    [231] Alarcón-Chaidez, F.J., Bender, C.L., Analysis of the rpoN locus in the plant pathogenic bacterium Pseudomonas syringae pv. glycinea. DNA Seq, 2001, 12:77-84
    [232] H?rtig, E., Zumft, W.G.., The requirement of RpoN (sigma factor σ54) indenitrification by Pseudomonas stutzeri is indirect and restricted to the reduction of nitrite and nitric oxide. Appl. Environ. Microbiol, 1998, 64:3092-3095
    [233] Jin, S., Ishimoto, K., Lory, S., Nucleotide sequence of the rpoN gene and characterization of two downstream open reading frames Pseudomonas aeruginosa. J. Bacteriol, 1994, 176:1316-1322
    [234] Kohler, T., Alvarez, J.F., Harayama, S., Regulation of the rpoN, ORF102 and ORF154 genes in Pseudomonas putida. FEMS Microbiol. Lett, 1994, 115:177-184
    [235] Péchy-Tarr, M., Bottiglieri, M., Mathys, S., et al, RpoN (σ54) Controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0. Mol. Plant Microbe Interact, 2005, 18(3):260-272
    [236] Jurado, P., Fernandez, L.A., de Lorenzo, V., Sigma 54 levels and physiological control of the Pseudomonas putida Pu promoter. J. Bacteriol, 2003, 185:3379-3383

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700