用户名: 密码: 验证码:
地铁洞桩法施工对邻近桥桩的影响与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市地铁的修建必然受到城市既有环境的制约,不少地铁线往往沿着城市道路修建,交织穿行于立交桥的基础桩群之间。地铁施工必然扰动周围地层,有可能致使一定范围内邻近的桥桩发生过大沉降或差异沉降,从而影响桥梁的正常使用和安全。
     本文研究密切结合施工难度和风险极大的北京地铁10号线国贸站工程而展开,针对工程建设中存在的主要难题,分别从空间效应、时间效应、邻近桥基差异沉降的概率分析三个方面探讨了地铁洞桩法施工对邻近桥桩的影响,并提出了地铁邻近桥桩施工的控制措施。
     1、采用数值模拟辅以现场实测的方法,研究了地铁洞桩法施工中导洞开挖支护,边桩、冠梁、拱脚施作和导洞回填,主洞开挖支护以及主洞二衬四个典型施工阶段对地层沉降的影响规律,并从基桩沉降、侧移、轴力、弯矩以及桩-土相互作用五个方面系统研究了地铁洞桩法施工引起邻近基桩的各种响应;
     2、通过对国贸站邻近土体的三轴流变试验研究,获得了具有流变特性土层的粘弹塑性模型参数,在FLAC3D平台上编制了三维时间效应分析数据文件,得到了在地铁洞桩法施工影响下地层及桥基沉降等随蠕变时间的变化规律,为国贸站的施工影响预测和短桩加固措施选择提供了依据;
     3、为求取洞桩法施工影响下邻近桥基差异沉降的可能范围,引入概率分析理论,基于ANSYS有限元平台,研制了相应的APDL程序,对国贸站洞桩法施工引起邻近桥基的差异沉降进行了概率分析,并对桥梁可靠性进行了探讨,为类似问题的研究提供了一套完整的思路;
     4、提出了地铁邻近桥桩施工安全评估的方法步骤,并从地铁施工措施、变形控制措施以及桥梁结构措施三个方面归纳了各种加固措施。结合理论计算和现场实测数据,分析了国贸站工程各加固措施的作用效果。
Construction of urban metro is inevitably restricted by existing environments, and many metros are built along city roads, running through pile foundations of the overpasses. Metro tunneling is certain to disturb ambient ground, and it may cause settlements or differential settlements of adjacent piles in certain range, which, if excessive, would affect the normal operation and safety of the overpass.
     Research of this paper is carried out closely combined with Guomao subway station, which has many construction difficulties and risks in Beijing Metro Line 10. Focus on main theoretical problems encountered during construction, the influence of metro tunneling by Drift-Pile-Beam-Arch(Drift-PBA) method on adjacent piles is studied from three-dimensional effect, time effect and probability analysis of differential settlements of adjacent piles respectively, and some control measures for metro tunneling adjacent piles are put forward.
     Influence regularities of four construction stages including tunneling and supporting of headings, construction of border piles, crown beams and arch springing and backfill of headings, tunneling and supporting of main tunnel and permanent liner of main tunnel on ground settlements are studied by numerical simulation method and field measurement, and the responses of adjacent foundation piles induced by tunneling by Drift-PBA method are systematically researched from settlement, lateral deflection, axial force, bending moment and pile-soil interaction of piles.
     On the basis of triaxial rheological test research of adjacent soil of Guomao subway station, viscoplastic model parameters of strata which have theological property are obtained. Data file of three-dimensional time effect analysis is programmed based on FLAC3D code, and variation regularities of ground and pile foundation settlements induced by metro tunneling with time are studied, which provide evidences for prediction of construction influence and selection of short piles reinforcement measures of Guomao subway station.
     In order to get the possible range of differential settlements of adjacent pile foundations induced by metro tunneling by Drift-PBA method, probability analysis theory is introduced, based on ANSYS finite element method, APDL code is programmed, and probability analysis is conducted to study the differential settlements of adjacent pile foundations induced by metro tunneling by Drift-PBA method,
引文
[1] 施仲衡. 科学制定城市轨道交通建设规划. 都市快轨交通, 2004, 17(2): 12-15.
    [2] 施仲衡, 冯爱军. 城市轨道交通技术发展战略探讨. 都市快轨交通, 2004, 17(4): 4-8.
    [3] 钱七虎. 迎接我国城市地下空间开发高潮. 岩土工程学报, 1998, 20(4): 112-113
    [4] 钱七虎. 岩土工程的第四次浪潮. 地下空间, 1999, 19(4): 267-272
    [5] 北京市轨道交通建设管理有限公司, 北京交通大学. 北京市科技计划项目课题建议书-北京地铁工程施工对桥基、建筑和管线的影响及控制研究. 北京: 北京市科委, 2004
    [6] Mair R J, Taylor R N. Theme lecture: Bored tunneling in the urban environment. Publications committee of XIV ICSMFE. Proceeding of 14th International Conference on Soil Mechanics and Foundation Engineering. Hamburg: Balkema, 1997, v4. 2353-2385
    [7] 王占生. 盾构近距穿越桩基的研究[博士学位论文]. 北京: 北方交通大学, 2003
    [8] Martos F. Concerning an approximate equation of subsidence trough and its time factors. Proc. of the International Strata Control Congress. Leipzig, 1958: 191-205
    [9] Peck R B. Deep excavation and tunneling in soft ground, State of the Art Report. Proc. 7th Int. Conf. on Soil Mechanics and Foundation Engineering. Mexico, 1969. 225-290
    [10] Clough G W, Schmidt B. Design and performance of excavations and tunnels in soft clay. Soft Clay Engineering. Chapter 8, Excavations and Tunneling, Brand E W, Brenner R P, Elsevier. 1981: 569-634
    [11] O’Reilly M P, New B M. Settlements above tunnels in the UK–their magnitude and prediction. Tunneling’82. London: IMM, 1982. 173-181
    [12] Mair R J, Taylor R N, Brace Girdle A. Subsurface settlement profiles above tunnels in clays. Geotechnique, 1993, 43(2): 315-320
    [13] Attewell P B, Selby A R. Tunneling in compressible soils: large ground movements and structure implications. Tunneling and Underground Space Technology, 1989, 4(4): 481-489
    [14] Attewell P B, Yeates J, Selby A R. Soil Movements Induced by Tunneling and their Effects on Pipelines and Structures. Blackie, Glasgow, 1986
    [15] Selby A R. Surface movements caused by tunneling in two-layer soil. Engineering Geology of Underground Movements. Bell F G. et al. Geological Society Engineering Geology Special Publication, No.4. 1988, 647-649
    [16] New B M, O’Reilly M P. Tunneling induced ground movements: predicting their magnitude and effects. 4th International Conference on Ground Movements and Structures. Cardiff, invited review paper, Pentech Press. 1991, 671-697
    [17] 刘建航, 侯学渊. 软土市政地下工程施工手册. 上海: 上海市市政工程管理局, 1990
    [18] Attewell P B, Woodman J P. Predicting the dynamics of ground settlement and its derivatives caused by tunneling in soil. Ground Engineering, 1982, 15(8), 13-22, 36
    [19] Nomoto T, Mori H, Matsumoto M. Overview on ground movements during shield tunneling-a survey on Japanese shield tunneling. Underground Construction in Soft Ground. Fujita K, Kusakabe O, Balkema. 1995, 367-374
    [20] Moh Z C, Ju D H, Hwang R N. Ground movements around tunnels in soft ground. Proc. Int.Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. London: Balkema. 1996, 725-730
    [21] Fang Y S, Lin S J. Time and settlement in EPB shield tunneling. Tunnels and Tunneling, 1993, 25(11): 27-28
    [22] Dyer M R, Hutchinson M T, Evans N. Sudden Valley Sewer: a case history. Proc. Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. Mair R J, Taylor R N. London: Balkema.1996, 671-676
    [23] Attewell P B, Glossop N H, Farmer I W. Ground deformations caused by tunneling in a silty alluvial clay. Ground Engineering, 1978, 15(8): 32-41
    [24] Grant R J, Taylor R N. Centrifuge modeling of ground movements due to tunneling in layered ground. Proc. Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. Mair R J, Taylor R N. London: Balkema. 1996, 507-512
    [25] Chambon J F, Corte J F. Shallow tunnels in cohesionless soil: stability of tunnel face. Journal of Geotechnical engineering, ASCE, 1994, 120(7): 1150-1163
    [26] Imamura S, Nomoto T. Mito K, et al. Design and development of underground construction equipment in a centrifuge. Proc. Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Mair R J, Taylor R N. London: Balkema. 1996, 531-536
    [27] Nomoto T, Mito K, Imamura S, et al. Centrifuge modeling of construction processes of shield tunnel. Proc. Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Mair R J, Taylor R N. London: Balkema. 1996, 567-572
    [28] Kim S.H, Burd H J, Milligan G W E. Interaction between closely spaced tunnels in clay. Proc. Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Mair R J, Taylor R N. London: Balkema. 1996, 543-548
    [29] 陶履彬, 侯学渊. 圆形隧道的应力场和位移场. 隧道及地下工程, 1986, 7(1): 9-19
    [30] Sagaseta C. Analysis of undrained soil deformation due to ground loss. Geotechnique, 1987, 37: 301-320
    [31] 久武胜保. 软岩隧道的非线性弹塑性状态. 隧道译丛, 1992 (1): 11-18
    [32] Verruijt A, Booker J R. Surface settlements due to deformation of a tunnel in an elastic half plane, Geotechnique, 1996, 46(4), 753-756
    [33] Loganathan N, Poulos H G. Analytical prediction for tunneling-induced ground movements in clays. J. Geotech. and Envir. Engrg., ASCE, 1998, 124(9): 846-856
    [34] Loganathan N, Poulos H G. Tunnelling induced ground deformations and their effects on adjacent piles. Tenth Australian Tunnelling Conference 1999, Melbourne: Vic. March 1999. 21-24
    [35] 吴波. 复杂条件下城市地铁隧道施工地表沉降研究[博士学位论文]. 成都: 西南交通大学, 2003
    [36] 吴波. 国贸站施工对国贸立交桥的影响研究[博士后出站报告]. 天津: 铁道第三勘测设计院,2006
    [37] Panet M, Guenot A. Analysis of convergence behind the face of a tunnel. Proc. Tunneling’82. London: Institute of Mining and Metallurgy, 1982, 197-204
    [38] Finno R J, Clough G W. Evaluation of soil response to EPB shield tunneling. ASCE, Journal of Geotechnical Engineering, 1985, 111(2): 157-173
    [39] Rowe R K, Lo K Y, Kack G J. A method of estimating surface settlement above tunnels constructed in soft ground. Canadian Geotechnique Journal, 1983, 20(8): 11-22
    [40] Rowe R K, Kack G J. A theoretical examination of the settlements induced by tunneling, four case histories, Canadian Geotechnical Journal, 1983, 20: 299-314
    [41] Rowe R K, Lee K M. Subsidence owing to tunneling: PartⅡ- evaluation of a prediction technique. Canadian Geotechnical Journal, 1992, 29(5): 941-954
    [42] Lee K M, Rowe R K. Subsidence owing to tunneling. PartⅠ- Estimating the gap parameter. Canadian Geotechnical Journal, 1992, 29(5): 929-940
    [43] Lee K M, Rowe R K. An analysis of three-dimensional ground movements- the Thunder Bay tunnel. Canadian Geotechnical Journal, 1991, 28: 25-41
    [44] Rowe R K, Lee K M. An evaluation of simplified techniques for estimating three-dimensional undrained ground movements due to tunneling in soft soils. Canadian Geotechnical Journal, 1992, 29(1): 39-52
    [45] Lee K M, Rowe R K. Effects of undrained strength anisotropy on surface subsidence induced by the construction of shallow tunnels. Canadian Geotechnical Journal, 1989, 26: 279-291
    [46] Akagi H, Komiya K. Finite element simulation of shield tunneling processes in soft ground. Proc. Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. Mair R J, Taylor R N. London: Balkema. 1996, 447-452
    [47] Dias D, Kaster R, Maghazi M. Three dimensional simulation of slurry shield tunneling. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. Japan, 1999, 351-356
    [48] Oell G, Stark R F, Hofstetter G. 软土地层中圆形隧道的分析, 隧道译丛, 1988(2): 52-58
    [49] Gunn M J. The prediction of surface settlement profiles due to tunneling, Predictive Soil Mechanics. Proc of the Wroth Memorial Symposium. Houlsby G T, Schofield A N. Oxford, 1993, 304-316
    [50] Simpson N, Atkinson J H, Jovicic V. The influence of anisotropy on calculations of ground settlements above tunnels. Proc. Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. Mair R J, Taylor R N. London: Balkema. 1996,591-594
    [51] Addenbrooke T I, Potts D M, Puzrin A M. The influence of pre-failure soil stiffness on the numerical analysis on tunnel construction. Geotechnique, 1997, 47(3): 693-712
    [52] 陈先国, 高波. 地铁近距离平行隧道有限元数值模拟. 岩石力学与工程学报, 2002, 21(9): 1330-1334
    [53] 王暖堂. 城市地铁复杂洞群浅埋暗挖法的有限元模拟. 岩土力学, 2001, 22(4): 504-508
    [54] 刘洪洲. 交叠隧道盾构施工引起地面沉降的三维有限元分析. 岩土工程师, 2002, 14(1):1-7
    [55] 高峰,李德武. 家竹箐隧道弹粘塑性有限元分析. 甘肃科学学报, 1998, 10(2): 36-39
    [56] 仇文革,张志强. 深圳地铁重叠隧道近接施工影响的数值模拟分析. 铁道标准设计, 2000,20(6): 41-42
    [57] 周文波. 盾构法隧道施工对周围环境影响和防治的专家系统. 地下工程与隧道, 1993, (4): 120-138
    [58] 李建华. 盾构法隧道施工引起地层移动的随机理论预测[学位论文]. 上海: 同济大学, 1995
    [59] 阳军生, 刘宝琛. 挤压式盾构隧道施工引起的地表移动及变形. 岩土力学, 1998, 19(3): 10-13
    [60] 孙钧, 袁金荣. 盾构施工扰动与地层移动及其智能神经网络预测. 岩土工程学报, 2001(3): 261-267
    [61] De Beer E E. The effects of horizontal loads on piles due to surcharge or seismic effects. Proc. 9th ICSMFE, Tokyo, 1977: 547-558
    [62] 陈福全. 地面堆载作用下邻近桩基性态数值分析[博士后工作报告]. 上海: 同济大学, 2003
    [63] 史佩栋. 实用桩基工程手册. 北京: 中国建筑工业出版社, 1999
    [64] Marche R, Lacroix Y. Stabilite des culees de ponts etablies sur des pieux traversant une couche molle. Can. Geotech. J. 1972, 9(1): 1-24
    [65] Oteo C S. Horizontally loaded piles-deformation influence. Proc. 9th ICSMFE Specialty Session 10. Tokyo, 1977, 101-106
    [66] Stewart D P, Jewell R J, Randolph M F. Physical modeling of piled bridge abutments on soft ground. Research Report, No. G1054. Dept. of Civil and Resource Engn., The Univ. of Western Australia, 1992
    [67] Begemann H-KS, DeLeeuw E H. Horizontal earth pressures on piles as a result of nearby soil fills. Proc. 5th ECSMFE. Madrid: 1972, 1. 3-9
    [68] De Beer E, Wallays M. Forces induced in piles by unsymmetrical surcharges on the soil around the piles. Proc. 5th ECSMFE. Madrid: 1972, v1. 325-332
    [69] Tschebotarioff G P. Foundations, retaining, and earth structures. New York: MeGraw-Hill
    [70] Fedders H. Lateral earth pressure against piles in soft cohesive soil-Recommendations for functional and structural design. Proc. 9th ICSMFE, Specialty Session 10, Tokyo, 1977
    [71] Franke E. German recommendations on passive piles. Proc. 9th ICSMFE, Specialty Session 10, v1, Tokyo, 1977: 193-194
    [72] Poulos H G. Analysis of piles in soil under going lateral movement. JSMFD, ASCE, 1973, 99: 391-406
    [73] Bourges F, Frank R, Mieussens C. Calcu des efforts et des deplacements engenders par des poussees laterals de sol sur les pieux. Note Technique, Dept. des Sols et Fondations, LCPC, France, 1980
    [74] Teh C I, Wong K S. Analysis of downdrag on pile groups. Geotechnique, 1995, 45(2): 191-207
    [75] Randolph M F. The response of flexible piles to lateral loading. Geotechnique, 1981, 31(2): 247-259
    [76] Carter J P. A numerical method for pile deformations due to nearby surface loads. Proc. 4th ICONM, Edmonton, v2, 1982, 811-817
    [77] Springman S M, Ellis E A, Ng C W W. Centrifuge and analytical studies of full height bridge abutment on pile foundation subjected to lateral loading. CUED/D-SOILS/TR278, The Univ. of Cambridge, 1984
    [78] Bransby M F, Springman S M. 3-D finite element modeling of pile groups adjacent to surcharge loads. Computer and Geotechnique, 1996, 19(4): 301-324
    [79] Pan J L, Goh A T C, Wong K S. Three-dimensional analysis of single pile response to lateral soil movements. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(8): 747-758
    [80] Chen L T, Poulos H G. Piles subjected to lateral soil movements. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(9): 802-811
    [81] Poulos H G. Approximate computer analysis of pile groups subjected to loads and ground movements. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(23): 1021-1041
    [82] Xu K J, Poulos H G. 3-D elastic analysis of vertical piles subjected to "passive" loadings. Computers and Geotechnics, 2001, 28(5): 349-375
    [83] Mroueh H, Shahrour I. A full 3-D finite element analysis of tunneling–adjacent structures interaction. Computers and Geotechnics, 2003, 30: 245-253
    [84] Vermeer P A, Bonnier P G. Pile settlements due to tunneling. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, v2, Deformation of Soil and Displacements of Structures X ECSMFE. Rotterdam: Balkema, 1991. 869-872
    [85] Lee R G,Tumer A J,Whitworth L J. Deformations caused by tunneling beneath a piled structure. Proceeding 13 International Conference on Soil Mechanics and Foundation Engineering. Rotterdam, Netherlands: A.A. Balkema, 1995, v2. 873-878
    [86] Poulos H G, Chen L T. Pile response due to unsupported excavation-induced lateral soil movement. Canadian Geotechnical Journal, 1996, 33(4): 670-677
    [87] Poulos H G, Chen L T. Pile response due to excavation-induced lateral soil movement. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(2): 94-99
    [88] Chen L T, Poulos H G. Effects of tunnelling on piled foundations. Yuan. Computer Methods and Advances in Geomechanics. Rotterdam: Balkema, 1997. 2183-2188
    [89] Chen L T, Poulos H G, Loganathan N. Pile responses caused by tunneling. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(3): 207-215. Discussion by Goh A T C, Wong K S. Closure by Chen L T, Poulos H G, Loganathan N. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(6): 580-581
    [90] Mroueh H, Shahrour I. Three-dimensional finite element analysis of the interaction between tunneling and pile foundations. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(3): 217-230
    [91] Goh A T C, Wong K S, Teh C I, et al. Pile response adjacent to braced excavation. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(4): 383-386
    [92] Habimana J, Matthew E F, Cook R F. Numerical modeling of Tunnel-induced ground settlements and their effects on pile supported structures: The case of Portland's West Side CSO Tunnel. Proceedings - Rapid Excavation and Tunneling Conference. 2003. 838-848
    [93] Attasit Sawatparnich. Deterministic and reliability-based assessment of existing building- foundation systems adjacent to tunneling in soils [Dissertation]. USA: Cornell University, 2003
    [94] Cheng C Y, Dasari G R, Leung C F, et al. 3D numerical study of tunnel-soil-pile interaction. Tunnelling and Underground Space Technology, 2004, 19: 381-382
    [95] Pang C H, Yong K Y, Chow Y K. Three-dimensional numerical simulation of tunnel advancement on adjacent pile foundation. Erdem, Solak. Underground Space Use: Analysis of the past and lessons for the future. London: Taylor and Francis Group, 2005. 1141-1147
    [96] Lee G T K, Ng C W W. Effects of advancing open face tunneling on an existing loaded pile. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(2): 193-201
    [97] 李永盛, 黄海鹰. 盾构推进对相邻桩体力学影响的实用计算方法. 同济大学学报, 1997, 25(3): 274-280
    [98] 阮林旺, 李永盛. 软土盾构法施工引起相邻桩体变形和受力研究. 隧道及地下工程, 1997, 18(3): 18-23
    [99] 杨天鸿, 刘红元, 刘庭金等. 广州地铁大跨度洞室开挖对基础影响分析. 西部探矿工程, 2000, 67(6): 65-67
    [100]张志强, 何川. 深圳地铁隧道邻接桩基施工力学行为研究. 岩土工程学报, 2003, 25(2): 204-207
    [101]张志强, 何川. 地铁盾构隧道近接桩基的施工力学行为研究. 铁道学报, 2003, 25(1): 92-95
    [102]芮勇勤, 岳中琦, 唐春安等. 隧道开挖方式对建筑物桩基影响的数值模拟分析. 岩石力学与工程学报, 2003, 22(5): 735-741
    [103]孙宗军. 盾构施工与桩基础相互作用的三维力学分析与研究[博士学位论文]. 南京: 东南大学, 2004
    [104]李强, 王明年, 李德才等. 地铁车站暗挖隧道施工对既有桩基的影响. 岩石力学与工程学报, 2006, 25(1): 184-190
    [105]吴波, 刘维宁, 索晓明等. 城市地铁施工对近邻中长桩桥基的影响研究. 岩土工程界, 2005, 12(8): 48-50
    [106]吴波, 刘维宁, 索晓明等. 城市地铁转弯段施工对近邻桥基的影响研究. 探矿工程, 2006, 33(2): 57-62
    [107]吴波, 刘维宁, 索晓明等. 地铁施工近邻桥基加固效果三维数值分析. 铁道工程学报, 2005, 89(5): 48-52
    [108]Morton J D, King K H. Effects of tunnelling on the bearing capacity and settlement of piled foundations. Jones M J. Tunnelling’79. England: Stephen Austin/Hertford, 1979. 57-68
    [109]Yashima A, Shibata T, Sekiquchi H, et al. Soil movements associated with tunneling and their effects on an adjacent pile foundation. Bulletin of the Disaster Prevention Research Institute, Kyoto University, 1985, 35(4): 115-135
    [110]van der Schrier J S, Bezuijen A, van den Bery P, et al. Tunnelling in urban areas, interaction with loaded foundation piles. Burger H. Options for Tunnelling 1993. Amsterdam: Netherlands, 1993. 761-770
    [111]Bezuijen A, Van der Schrier J. The influence of a bored tunnel on piled foundations. Leung, Lee, Tan. Proceedings 1994 international conference centrifuge. Rotterdam: Balkema, 1994. 681-686
    [112]Grant R J, Taylor R N. Modelling of ground movements due to tunneling in layered ground. Ground Engineering, 1996(1/2): 29
    [113]Hergarden H J A M, van der Poel J T, van der Schrier J S. Ground movements due to tunneling: Influence on pile foundations. Mair & Taylor. Geotechnical Aspects of Underground Construction in soft Ground. Rotterdam: Balkema, 1996. 519-524
    [114]Loganathan N, Poulos H G, Stewart D P. Centrifuge model testing of tunneling-induced ground and pile deformations. Geotechnique, 2000, 50(3): 283-294
    [115]Leung C F, Chow Y K, Shen R F. Behavior of pile subject to excavation-induced soil movement. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(11): 947-954
    [116]Jacobsz S W, Standing J R, Mair R J, et al. The effects of tunnelling near driven piles in sand. Geotechnical Engineering in Soft Ground. Regional Conference on Geotechnical Aspects ofUnderground Construction in Soft Ground. Shanghai, China: 2001. 29-35
    [117]Jacobsz S W. Tunnelling effects on piled foundations. Tunnels and Tunnelling International, 2003, 35(6): 28-31
    [118]Leung C F, Lim J K, Shen R F, et al. Behavior of pile groups subject to excavation-induced soil movement. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(1): 58-65
    [119]Lee C J, Kao C M, Chiang K H. Pile response due to nearby tunneling. BGA International Conference on Foundations, Innovations, Observations, Design and Practice, London: Thomas Telford, 2003. 483-492
    [120]McNamara A M, Taylor R N, Stallebrass S E, et al. Influence of tunnelling on the behaviour of existing piled foundations. BGA International Conference on Foundations, Innovations, Observations, Design and Practice, London: Thomas Telford, 2003. 635-644
    [121]Selemetas D. Cooling prize paper: Pile settlement due to tunnelling in London clay: A case study. Ground Engineering, 2004, 37(6): 29-32
    [122]Teunissen E A H, Hutteman M. Pile and surface settlements at full scale tests North/South metro line Amsterdam. Negro Jr, Ferreira. Tunnels and Metropolises. Rotterdam: Balkema, 1998. 981-986
    [123]Van Hasselt D R S, Hentschel V, Hutteman M, et al. Amsterdam’s North/South Metroline. Tunnelling and Underground Space Technology, 1999, 14(2): 191-210
    [124]Coutts D R, Wang J. Monitoring of reinforced concrete piles under horizontal and vertical loads due to tunnelling. Zhao, Shirlaw, Krishman. Tunnels and Underground Structures. Rotterdam: Balkema, 2000. 541-546
    [125]Moroto N, Ohno M, Fujimoto A. Observational control of shield tunneling adjacent to bridge piers. Fujita K, Kusakabe O. Underground Construction in Soft Ground. Rotterdam: Balkema, 1995. 241-244
    [126]Yamaguchi Y, Yasuhide K. Tunnel construction under the expressway piers by shield method. Negro Jr, Ferreira. Tunnels and Metropolises. Rotterdam: Balkema, 1998. 923-928
    [127]刘晓苹, 顾强, 李坚. 上海漕溪路立交桥桩基受地铁盾构推进的影响研究. 上海市政工程, 1996, 39(3): 9-17
    [128]刘晓苹, 李坚. 桥梁桩基受地铁盾构掘进影响的研究与探讨. 上海公路, 1998(3): 20-24
    [129]中铁十六局集团公司. 国贸站工程国贸立交桥现状调查. 北京: 2005
    [130]中铁十六局集团公司. 国贸站施工方案资料. 北京: 2004-2006
    [131]铁道第三勘测设计院. 北京地铁十号线国贸站及桥桩保护施工图设计. 天津: 2004
    [132]北京市轨道交通建设管理有限公司. 国贸站工程国贸立交桥现状评估和沉降控制标准. 北京: 2005
    [133]北京城建勘测设计研究有限责任公司. 北京地铁十号线工程国贸站地质详勘报告. 北京: 2004
    [134]高成雷. 浅埋暗挖洞桩法应用理论研究[硕士学位论文]. 成都: 西南交通大学, 2002
    [135]孙钧, 侯学渊. 地下结构(上、下册). 科学出版社. 1991
    [136]王勖成, 邵敏. 有限单元法基本原理和数值方法. 北京: 清华大学出版社, 2002
    [137]刘波, 韩彦辉. FLAC 原理、实例与应用指南. 北京: 人民交通出版社, 2005
    [138]Itasca Consulting Group, Inc. FLAC3D, Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 3.0, user’s manual. USA: Itasca Consulting Group, Inc., 2005
    [139]金衍, 陈勉, 柳贡慧. 盐膏岩地层的井眼缩径变形分析. 石油大学学报(自然科学版), 1999, 23(2): 37-39
    [140]寇晓东, 周维垣, 杨若琼. 三维快速拉格朗日法及其在拱坝稳定分析中的应用. 水利水电技术, 2000, 31(7): 4-7
    [141]张冰峰. 深基坑土钉支护机理的现场测试及三维数值模拟研究[硕士学位论文]. 北京: 中国科学院地质与地球物理研究所, 2002
    [142]李术才, 朱维申, 陈卫忠等. 弹塑性大位移有限元方法在软岩隧道变形预估系统研究中的应用. 岩石力学与工程学报, 2002, 21(4): 466-470
    [143]夏明耀, 曾进伦. 地下工程设计施工手册. 北京: 中国建筑工业出版社, 2002
    [144]殷宗泽, 朱泓, 许国华. 土与结构材料接触面的变形及其数学模拟. 岩土工程学报, 1994, 16(3): 14-22
    [145]朱泓, 殷宗泽. 土与结构材料接触面性能研究综述. 河海科技进展, 1994, 14(4): 1-8
    [146]安关峰, 高大钊. 接触面弹粘塑性本构关系研究. 土木工程学报, 2001, 34(1): 88-91, 105
    [147]胡黎明, 濮家骝. 土与结构物接触面损伤本构模型. 岩土力学, 2002, 23(1): 6-11
    [148]中铁十六局集团公司. 国贸站地表及桥基监控量测资料. 北京: 2004-2006
    [149]O’Neill M W. Field study of pile group action: Final report. Report No. FHWA RD-81-002, Federal Highway Administration, U.S. Department of Transportation, Washington, D.C., 1981
    [150]肖昭然. 桩基础沉降分析及其工程应用. 郑州: 黄河水利出版社, 2002(Zhaoran Xiao. Pile Foundations Settlement Analysis and its Application for Practice. Zhengzhou: Yellow River Water Conservancy Press, 2002)
    [151]孙钧. 岩土材料流变及其工程应用. 北京: 中国建筑工业出版社,1999
    [152]吴波, 刘维宁, 高波等. 城市浅埋隧道施工性态的时空效应分析. 岩土工程学报, 2004, 26(3): 340-343
    [153]傅艳华, 王旭东, 宰金岷. 基坑变形时间效应的有限元分析. 南京工业大学学报, 2005, 27(5): 32-36
    [154]袁静, 龚晓南, 益德清. 岩土流变模型的比较研究. 岩石力学与工程学报, 2001, 20(6): 772-779
    [155]铁道第三勘测设计院,北京交通大学. 国贸站邻近土体流变试验研究,2006
    [156]中华人民共和国国家标准(国家质量技术质量监督局、中华人民共和国建设部联合发布). 土工试验方法标准(GB/T50123-1999). 北京: 中国计划出版社,1999
    [157]中华人民共和国行业标准(中华人民共和国水利部发布). 土工试验规程(SL237-1999). 北京: 中国水利水电出版社,1999
    [158]黄文熙. 土的工程性质. 北京: 水利电力出版社,1983
    [159]陈晓平, 白世伟. 软土蠕变-固结特性及计算模型研究. 岩石力学与工程学报, 2003, 22(5): 728-734
    [160]赵国藩. 工程结构可靠性理论与应用. 大连: 大连理工大学出版社, 1996
    [161]王有志, 王广洋, 任锋等. 桥梁的可靠性评估与加固. 北京: 中国水利水电出版社, 2002
    [162]赵旭峰. 隧道衬砌结构可靠度分析[硕士学位论文]. 兰州: 兰州交通大学, 2004
    [163]张胜民. 基于有限元软件 ANSYS 7.0 的结构分析. 北京: 清华大学出版社, 2003
    [164]吴世伟. 结构可靠度分析. 北京: 人民交通出版社, 1990
    [165]中华人民共和国行业标准编写组. 建筑桩基技术规范(JGJ94-94). 北京: 中国建筑工业出版社, 1994
    [166]史佩栋. 实用桩基工程手册. 北京: 中国建筑工业出版社, 1999
    [167]中华人民共和国行业标准编写组. 建筑地基基础设计规范(GB50007-2002). 北京: 中国建筑工业出版社, 2002
    [168]规范编委会. 建筑地基基础设计规范理解与应用. 北京: 中国建筑工业出版社, 2004
    [169]侯兆霞. 基础工程. 北京: 中国建材工业出版社, 2004
    [170]车宏亚, 颜德姮. 混凝土结构. 北京: 中国建筑工业出版社, 1997
    [171]郝文化. ANSYS 土木工程应用实例. 北京: 中国水利水电出版社, 2005
    [172]李权. ANSYS 在土木工程中的应用. 北京: 人民邮电出版社, 2005
    [173]易日. 使用 ANSYS 6.1 进行结构力学分析. 北京: 北京大学出版社, 2002
    [174]李皓月, 周田朋, 刘相新. ANSYS 工程计算应用教程. 北京: 中国铁道出版社, 2003
    [175]祝玉学. 边坡可靠性分析. 北京: 冶金工业出版社, 1993
    [176]关宝树. 隧道工程施工要点集. 北京: 人民交通出版社, 2003
    [177]日本建设省土木研究所. 邻接基础设计施工要点(草案). 铁道部专业设计院工程建设标准规范管理处, 1987
    [178]铁道专业设计院. 北京地铁十号线八达岭高速站及桥桩保护施工图设计. 北京: 2005
    [179]孙东瑞. 城市地铁施工中对立交桥短桩沉降的控制. 建筑施工, 2006, 28(3): 230-232, 235

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700