用户名: 密码: 验证码:
地质灾害事件的~(14)C年代学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高样品测定年龄的精度和可靠性一直是同位素年代学研究的重要课题。目前已有20余种方法被应用和有可能用来测定第四纪地层及地质灾害事件的年龄或年代,但14C测年法是测定晚第四纪特别是全新世地质灾害事件年代的优先使用方法,其理论严格完整,技术成熟,而且适用于14C法测年的样品品种多并容易找到。然而土质样品高精度14C年龄测定和可靠的全新世地层年代学是全新世地质灾害研究中一个非常突出且亟待解决的问题,一直困扰着地质灾害事件的深入研究的挑战性问题。如准确地建立古气候、古环境变化的时间过程,对于预测未来环境变化有着重要意义,特别是以十年、百年乃至千年尺度的气候变化和快速气候突变事件对气候和环境变化的预测以及社会可持续发展尤为重要。因此,本论文将试图开展古土壤不同组分的14C测年对比研究,提高这类样品的14C年龄的可靠性;另一方面把时序已知系列样品的高精度14C测年技术应用在地质灾害事件研究中,期望获得高精度14C日历年龄,减小地质灾害事件年代的不确定性。本论文在这两个重要方面进行了一系列相关的研究工作,获得的主要成果和认识如下。
     一、Quantulua–1220低本底液闪仪的性能测定
     本文是依托所在工作单位中国地震局地质研究所14C实验室拥有的Quantulua-1220低本底高灵敏度液闪仪测年手段,开展地质事件年代学研究工作。为检验实验室测年流程的可靠性,使用中国糖碳、合成本底、已知年龄样品来评估实验室的本底、样品淬灭、液闪仪探测效率及仪器的长期稳定性等重要性能指标是否满足14C测年要求,保证测试的14C数据可靠,经过上述的比对测试结果表明:
     (1)在一般工作环境下,液闪仪的本底低于0.5cpm,最大可测年14C年龄估计值为48 Ka BP;
     (2)根据系列糖碳测量出的计数率和猝灭参数SQP(E),并采用测量相对效率变化方法建立液闪仪的猝灭校正曲线方程为C=0.002630040912*X+10.99101753,然后对本实验室引进液闪仪测量的261个14C样品的猝灭参数统计后,认为液闪仪由于猝灭因素引起的年龄偏差不超过80年;
     (3)已知年龄树轮样品的14C年龄比对结果表明,建立的14C测年工作方法和流程合理可靠。
     二、古土壤不同组分14C测年
     古土壤样品在陆相沉积物中出露比较普遍,经常被用来确定全新世地质事件14C测年的主要材料,以便建立起古地震和断层活动的时间序列,确定其运动速率、频率以及活动断层
Nowadays more than 20 kinds of dating methods have been applied to determine Quaternary strata and geological events. Among them radiocarbon dating has been widely accepted for numerical dating the late Quaternary and particularly Holocene geological events. However, high resolution of decades or hundreds years for geological samples and reliable ages of geologic strata chronology are an urgent problem to be resolved which challenges for further studies of geological disaster events. Therefore it is very vital to improve the precision and accuracy of numerical dating methods. This thesis presents a series of experimental results, focusing on two important aspects of radiocarbon dating.
     1. The performance test of Quantulus-1220 liquid scintillation counter The Chinese Sucrose standard, synthetical benzene and the known ages of dendro-dated tree ring sample were used to assess the performance of Quantulua-1220. The results indicate that:
     (1) The background is below 0.5 cpm and the fluctuation does not exceed 4‰in the measuring surrounding, thus it is inferred that the maximum datable age for this instrument is expected to reach about 48 Ka BP;
     (2) The quench calibration curve was established by determining the relative efficiency variety of Chinese Suguar with the quench parameter SQP (E). The experience formula is: C=0.002630040912*X+10.99101753. The quench SQP (E) parameter of 261 radiocarbon samples varies from 700 to 758 in this study. The average value is 735.5 with standard deviation of 9.2. The maximum age error caused by quenching factor is less than 80 years, as calculated from the quench formula;
     (3) A set of growth rings, up to 45 rings, 60 g weigh, 6.5 cm long, were used to test the reliability of the dating procedure in our lab. This ring sample was dated to be 5458±54 a BP and the calibrated age is 4355 BC (68.2%) 4255 BC, converting in OxCasl 3.10 program. This dating result agrees well with the dendro-dated age of 4249~4294 BC. This proves that the sample pretreatments and its radiocarbon dating results in the laboratory are reliable.
     2. Radiocarbon dating of different components isolated from paleosol Radiocarbon dating is usually used to estimate the date of paleoearthquakes because the paleosol is ubiquitous in trenches. Five paleosol samples and a piece of pottery were collected from a trench wall at the Shangdalai village, near Tumotezuo county, located in the southern margin fault of the Daqing Mountain, Inner Mongolia. They were dated by radiocarbon dating and thermoluminensence dating, respectively. The
引文
蔡莲珍,仇士华,1999,贝叶斯统计应用于碳十四系列样品年代的树轮校正,考古,3:277-283。
    陈茂柏,2001,超灵敏小型回旋加速器质谱计交替加速的实验研究,核技术,24(增刊):60~64。
    陈铁梅,1990,14C 测年与示踪用于研究四万年来的全球变化,第四纪研究,2:181~187
    陈铁梅,Hedges R E M,1994,彭头山等遗址陶片和我国最早水稻遗存的加速器质谱 14C测年,文物,(3):88~93.
    陈文寄,彭贵主编,1991,年轻地质体系的年代测定,地震出版社,1-16。
    程绍平,1984,宁夏海原南华山北麓断裂带的冲沟断错与 8.6 级强震重复率,地震地质,6(4):25~37。
    仇士华,蔡莲珍,1997,测年技术新进展,第四纪研究,3:222~229。
    仇士华,陈铁梅,蔡莲珍编,1990,中国碳十四年代学研究,北京:科学出版社, 125~344。
    邓起东,冯先岳,杨晓平等,1993,北天山玛纳斯一吐谷鲁活动逆断裂一褶皱带大型探槽
    古地震和断裂滑动速率研究,《活动断裂研究》编委会,活动断裂研究.3,地震出版社。
    邓起东,汪一鹏,廖玉华等,1984,断层崖崩积楔及贺兰山山前断裂全新世活动历史,科学通报,29(9):557~560。
    邓起东,张维岐,汪一鹏等,1987,海原断裂带和 1920 年海原地震断层的基本特征及其形
    成机制,见:现代地壳运动研究(3),北京:地震出版社,9~25。
    丁国瑜,1982,古地震标志问题,中国活动断裂,地震出版社,276~281。
    丁国瑜,1982,古地震研究情况,史前地震与第四纪地质文集,陕西科学技术出版社,3~7。
    郭之虞,1999,加速器质谱 14C 测年及其应用,陈文寄主编,年轻地质体系的年代测定(续),地震出版社,1-24.
    郭之虞,刘克新,马宏骥,鲁向阳等,2000,加速器质谱 14C 测年精度研究与改进,第四纪研究,20(1):99。
    郭之虞,鲁向阳,刘克新,汪建军,等,1996,北京大学加速器质谱计,核物理动态,13(2):23~25。
    郭之虞,赵镪,刘克新,鲁向阳等,1997,北京大学加速器质谱装置及 14C 测量,质谱学报,18(2):1~6。
    郭之虞、马宏骥,2002,如何看待和使用系列样品碳十四年代校正方法,中国文物报。
    郭之虞、张川,2002,AMS 在核物理与天体物理研究中的应用,原子核物理评论,19(4):395~398。
    国家地震局,1991,中国地震烈度区划图(1990)及说明书、地震出版社:北京。
    国家地震局地质研究所,宁夏地震局,1990,海原活动断裂带,北京:地震出版社,147~149。
    黄昌勇主编,2000,土壤学,北京:中国农业大学出版社,P32~49。
    李德明,2001,超灵敏小型回旋加速器质谱计总体物理设计与整流规划,核技术,24(增刊):36~41。
    李霓,刘若新,2000,长白山天池火山,17~31,见刘若新主编,中国的活火山,北京:地震出版社。
    李晓东,李明,刘若新,1996,长白山天池火山喷发的气候效应,地震地磁观测与研究,17(4):12~18。
    刘百篪,周俊喜,1985,海原活断层上的史前大地震,地震地质,7(4):11~21。
    刘光勋,孟繁兴,肖振敏等,1982,山西洪洞县郇堡村古地震遗迹及有关问题讨论,中国活动断裂,地震出版社,291~300。
    刘嘉麒,王文远,1997,第四纪地质定年与地质年表,第四纪研究,第 3 期,193~202.
    刘嘉麒,中国火山,1999,北京:科学出版社,72。
    刘克新,李坤,马宏骥等,2001,加速器质谱与环境科学,核技术,24(9):783~786。
    刘良梧,茅昂江,2001,我国土壤放射性碳年龄,土壤学报,38(4):506~513.
    刘若新,仇士华,蔡莲珍,等,1997,长白山天池火山最近一次大喷发年代研究及其意义,中国科学,27(5):437~441。
    刘若新,魏海泉,李继泰,长白山天池火山,1-13,见刘若新主编,火山作用与人类环境,北京:地震出版社,1995。
    刘若新,魏海泉,李继泰,长白山天池近代喷发,北京:科学出版社,1998。
    卢演俦,1994,活动构造测年方法和年代学研究的现状与问题。国家地震局地质研究所,
    地震出版社,“现今地球动力学研究及其应用”,380~388。
    卢演俦,2002,构造活动事件年龄测定方法及应用的若干问题。
    马宏骥,郭之虞,2000,夏商周断代工程中 14C 系列样品的树轮校正,核技术,23(3):150-154。
    毛凤英,张培震,1995,古地震研究中的逐次限定方法与新疆北部主要断裂带的古地震研究,活动断裂研究(4),北京:地震出版社,153~164。
    闵伟,张培震,邓起东,2000,青藏高原东北缘的区域古地震研究,地震学报,22(2):163~170。
    冉永康,邓起东,1998,海原断裂的古地震及特征地震破裂的分级性时论,第四纪研究,3:271~278。
    冉勇康,邓起东,1999,古地震研究的历史、现状、发展趋势,科学通报,44(1):12~20。
    冉勇康,段瑞涛,邓起东等,1997,海原断裂高湾子地点三维探槽的开挖和古地震研究,地震地质,19(2):97~106。
    沈承德,姜漫涛,黄仁良等,1990,1958-1988 年期间大气圈 14C 浓度变化初探,地质地球化学,51~52。
    沈承德,易惟熙,孙彦敏等,2000,鼎湖山森林土壤 14C 表观年龄及δ13C 分布特征,第四纪研究,20(4):335~344.
    宋方敏,朱世龙,汪一鹏等,1983,1920 年海原地震中的最大水平位移及西华山北缘断裂地震重复率估计,地震地质,5(4):29~38。
    王挺梅,李建平,1984,唐山大地震的重复间隔,地震地质,6(3):76~83。
    魏海泉,刘若新,李晓东,1997,长白山天池火山造伊格尼姆岩喷发及气候效应,地学前缘,4(1):263~266。
    闻学泽,张培震,1996,地震的原地复发模式理论及其有关问题,北京:地震出版社,活动断裂研究, 5:1~11.
    吴卫民,李克,马保起,等,1995,大青山山前断裂带大型组合探槽的全新世古地震研究,《活动断裂研究》编委会,活动断裂研究(4),北京: 地震出版社,123~132。
    向宏发,方仲景,徐杰等,1988,三河-平谷 8 级地震区的构造背景与大震重复性研究,地震地质,10(1):15~28。
    杨景春,1982,延怀盆地中更新世湖侵、新构造运动和古地震,中国活动断裂,地震出版社,312~317。
    杨景春,郭正堂,曹家栋,1985,用地貌学方法研究贺兰山山前断层全新世活动状况,地震地质,7(4):23~31。
    杨礼平,周明富,周卫健,等. 1995. 液闪法 14C 年代测量中的淬灭校正,核电子学与探测技术,15(4):241~245.
    杨清福、李继泰、刘若新,等,1996,长白山天池火山公元 750~960 年浮岩流搬运与堆积的物理机制,地震地磁观测与研究,17(6):11~19.
    杨守礼,江玉栋,林汉,等,1987,液体闪烁测量技术的进展与应用,北京:科学出版社,133~202.
    尹功明,黄景杨,罗荫权,2001,零口文化层的热释光年龄考古与文物,1: 91~93。
    尹金辉,郑勇刚,刘粤霞,2005,长白山天池火山炭化木的 14C 年代及其意义,地震地质,27(1):83~88.
    原思训,1990,样品的化学制备,见仇士华主编,陈铁梅、蔡莲珍副主编,中国 14C 年代学研究,北京:科学出版社,59~64。
    袁道阳,刘百篪,吕太乙等,1993,老虎山断裂古地震研究,活动断裂研究,3,地震出版社,160~169。
    张培震,毛凤英,1996,活动断裂定量研究与中长期强地震危险性概率评价,北京:地震出版社,活动断裂研究,5:12~31.
    张培震,闵伟,邓起东,2003,海原活动断裂带的古地震与强震复发规律,中国科学,D辑,33(8):705~713。
    张维歧,焦德成,1984,海原古地震的一个剖面,地震地质,6(3):14。
    张雪莲、仇士华,2004,周原遗址云塘、齐镇建筑基址 14C 年代研究,考古,4:78-84。
    张映箕,2001,超灵敏小型回旋加速器质谱计微通道板型低能单粒子探测器的研制和 14C的测定,核技术,24(增刊):211~219。
    周明富,周卫健,HEAD J,1992,最近三万年北庄村剖面地层学与 14C 测年,见:刘东生
    主编,黄土?第四纪地质?全球变化,北京:科学出版社,1:12~19。
    周卫健,刘林,刘永好,卢雪峰,程 鹏,陈茂柏,江西瑞昌铜岭古矿冶遗址的 14C AMS 研究,地球化学,2004,5(33):491~494。
    周卫健,卢雪峰,武振坤,等,2001,若尔盖高原全新世气候变化的泥炭记录与加速器放射性碳测年,科学通报,46(12):1040~1044。
    周卫健,张洁,2001,超灵敏小型回旋加速器质谱计 14C 测年的样品制备和制样系统,核技术,24(1): 236~243.。
    周卫健,周杰,萧家仪等,花粉浓缩物的加速器 14C 年代测定初探,中国科学,D 辑,1998,28(5):453~458。
    周卫健,周明富,海德 J,1989,距今三万年来北庄村沉积序列的 14C 年代学,科学通报,34(14):1096~1099.
    朱海之,1979,中宁发现古地震剖面,地震地质,1(4):26。
    Alvarez L W, 1981, The early days of accelerator mass spectrometry. In Kutschera W, ed., Proceedings of the Symposium on Accelerator Mass Spectrometry, ANL/PHY 81-1, Springfield, National Technical Information Service: 1~15.
    Anbar M, 1978, The limitations of mass spectrometric radiocarbon dating using CN- ions. In Proceedings of the First Conference on Radiocarbon Dating with Accelerators, edited by Gore H E, Rochester, New York: University of Rochester, 152-155.
    Arnold J R, Libby W F, 1949, Age determinations by radiocarbon content: checks with samples of known age, Science, 110:678~680.
    Arnold J R, Libby W F, 1950, Radiocarbon dates (September 1, 1950), Chicago: University of Chicago, Institute for Nuclear Studies.
    Arnold J R, Libby W F, 1951, Radiocarbon dates, Science, 113:111~120.
    Atwater, B., Stuiver, M., and Yamaguchi, D. K., 1991, Radiocarbon test of earthquake magnitude at the Cascadia subduction Zone. Nature, 353:156~158.
    Baillie M G L, Checking back on an assemblage of published radiocarbon dates,
    Radiocarbon, 1990, 32:361~366.
    Baillie M G L, Pitcher I R, 1988, Make a date with a tree, New Scientist, 117: 48~51.
    Bard E, Arnold M, Hamelin B, et al., 1998, Radiocarbon Calibration by Means of Mass Spectrometric 230Th/234U and 14C Ages of Corals: An updated database including samples from Barbados, Mururoa, and Tahiti, In: Stuiver M, and van der Plicht J, eds. INTCAL98: Calibration Issue, Radiocarbon, 40(3):1085~1092.
    Barker H, Radiocarbon dating: Its scope and limitations, Antiquity, 1958, 32(128): 253~263.
    Beck J W, Richards D A, Edwards R L, et al, 2001, Extremely large variations of atmospheric 14C concentration during the last Glacial period, Science, 292:2453~2458.
    Bell W T, 1991, Thermolominescence dates for the Lake Mungo Aboriginal fireplaces and the implications for radiocarbon dating, Archaeometry, 33:43~50.
    Bennett C L, Beukens R P, Clover M R, et al., 1977, Radiocarbon dating using accelerators: Negative ions provide the key, Science, 198:508~509.
    Bennett C L, Beukens R P, Clover M R, et al., 1978, Radiocarbon dating with electrostatic accelerators: Dating of milligram samples, Science, 201:345~347.
    Bertsche K J, Karadi G A, Muller R A et al., 1990, Detection of radiocarbon in the cyclotrino. In Yiou, F. and Raisbeck G M, eds., Proceedings of the 5th International
    Conference on Accelerator Mass Spectrometry, Nuclear Instruments and Methods in Physics Research, B52: 398~402.
    Blaauw M, Christen J A, 2005, Radiocarbon peat chronologies and environmental change, Applied Statistics, 54:805-816.
    Blaauw M, Gerard B M H , Dmitri M, et al. 2003, A numerical approach to 14C wiggle-match dating of organic deposits: best fits and confidence intervals, Quaternary Science Reviews, 22:1485~1500.
    Bronk C R, Hedges R E M, 1987, A gas ion source for 14C dating, Nuclear Instruments and Methods in Physics Research, B29: 45~49.
    Bronk R C, 2001, Development of the Radiocarbon Program OxCal, Radiocarbon, 43(2A):355~363.
    Bronk Ramsey C. 1995, Radiocarbon Calibration and Analysis of Stratigraphy: The OxCal Program[J], Radiocarbon, 37(2):425~430.
    Brown T A, Farwell G W, Grootes P M et al., 1992,Radiocarbon AMS dating of pollen extracted from peat samples. Radiocarbon, 34(3): 550~556.
    Bruns M I, Levin K O, Munnich H W et al., 1980, Regional sources of volcanic carbon dioxide and the influence on 14C content of presents day plant material, Radiocarbon, 22 (2): 532~536.
    Bruns M I, Levin K O, Munnich H W, et al. 1980, Regional sources of volcanic carbon dioxide and the influence on 14c content of presents day plant material, Radiocarbon, 22 (2): 532~536.
    Buck C E, Christen J A, Kenworthy J B, et al, 1994, Estimating the duration of archaeological activity using 14C determinations, Oxford Journal of Archaeology, 13:229~240.
    Buck C E, Litton C D, Kenworthy J B, et al, 1991, Combining archaeological and radiocarbon information: a Bayesian approach to calibration, Antiquity, 65:808~821.
    Buck C E, Litton C D, Smith A F M, 1992, Calibration of radiocarbon results pertaining to related archaeological events, Journal of Arcbaeological Science, 19:497~512.
    Burchfiel B C, Zhang P, Wang Y, et al. 1990, Geology of the Haiyuan fault zone, Ningxia Autonomous Region, China and its relation to the evolution of the northeastern margin of the Tibetan Plateau, Tectonics, 10:1091~1110.
    Burr G S, Beck J W, Taylor F W, Récy J, et al., 1998, A high resolution radiocarbon calibration between 11,700 and 12,400 calender years BP derived from 230Th ages of corals from espiritu Santo Island, Vanuatu. Radiocarbon 40(3): 1093~105.
    Bushnell G, 1961, Radiocarbon dates and new world chronology, Antiquity 35:286~291. Calderoni G, Turi B, 1998, Major constraints on the use of radiocarbon dating for tephrochronology, Quaternary international, 47:153~159.
    Campbell C A, Paul E A, Rennie D A, 1967, Factors affecting the accuracy of the carbon dating method in soil humus studies, Soil Science, 104(2):81~85.
    Campbell C A,Paul E A,Rennie D A,et al, 1967, Applicability of the carbon dating method of analysis to soil humus studies, Soil Science,104:217~224.
    Chichagova O A, Cherkinsky A E, 1993, Problems in radiocarbon dating of soils, Radiocarbon, 35(3):351~362.
    Christen J A, 1994, Summarizing a set of radiocarbon determination: a robust approach, applied statistics, 43:489~504.
    Christen J A, Clymo R S, Litton C D,1995,A Bayesian approach to the use of 14C dates in the estimation of the age of peat. Radiocarbon, 37(2):431~442。
    Christen J A, Litton C D, 1995, A Bayesian approach to wiggle matching, Journal of Archaeological Science, 22:719~725.
    Clark J D, 1979, Radiocarbon dating and African archaeology. In Radiocarbon dating, edited by Berger R and Suess H E. Berkeley University of California Press. 7~31.
    Clark R M, 1975, A calibration curve for radiocarbon dates, Antiquity, 49(196):251~266.
    Clark R M, Morgan R A, 1983, An alternative statistical approach to the calibration of floating tree-ring chronologies: two sequences from the Somerset Levels, Archaeometry, 25:3~16.
    Clark R M, Renfrew C. A statistical approach to the calibration of floating tree-ring chronologies using Radiocarbon dates, Archaeometry, 1972, 14:5~19.
    Clark R M, Sowray A. Further statistical methods for the calibration of floating tree-ring chronologies, Archaeometry, 1973, 15:255~266.
    Clymo R S, Oldfield F, Appleby P G, et al, 1990,The record of atmospheric deposition on a rainwater-dependent peatland[J], Philosophical Transactions of the Royal Society of London, B327:331~338.
    Crone, A. J.,1987,Introduction to directions in Paleosismology,USGS Open File Report,87-683,1~6。
    Damon P E, et al, 1972, Dendro-chronological calibration of the carbon-14 time scale, in: Rafter T.A. & Grant Taylor T., (Eds) Proceedings of the 8th International Conf. Radiocarbon Dating I. (Wellington) radiocarbon dendrocalibration dendrochronolgy and radiocarbon.
    De Vries, Hl., 1958. Variation in concentration of radiocarbon with time and location on earth. Proc. Koninkl. Nederl. Akad. Wetenschappen B61, 1-9.
    Dunlap C E, 1996, Physical, chemical, and temporal relations among products of the 11 th century eruption of Baitoushan, China/North Korea. Ph D thesis. Univ Calif Santa Cruz. 1-215.
    Edward R L, Beck J W, Burr G S, et al., 1993, A large drop in the 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals, Science, 260:962~968.
    Ferguson C W, Huber B, Suess H E. Determination of the age of Swiss lake dwellings, Zeitschrift fur Naturforschung, 1966, 21a:1173~1177.
    Friedrich M., Kromer B., Kaiser K.F., 2001, High-resolution climate signals in the Bolling-Allerod Interstadial (Greenland Interstadial 1) as reflected in European tree-ring chronologies compared to marine varves and ice-core records, Quaternary Science Reviews, 20(11):1223-1232.
    Geyh M A, Krumbein W E, Kudrass H R, 1974, Unreliable 14C dating of long-stored deep sea-sediments due to bacterial activity, Marine Geology, 17:43~50.
    Grootes P M, 1983, Radioactive isotopes in the Holocene, In Late Quaternary Environments of the United States, Wright H E, eds., Minneapolis: University of Minnesota Press, 86~103.
    Guo Zhiyu, Liu Kexin, Lu Xiangyang. 2000. The use of AMS radiocarbon dating for Xia-Shang-Zhou chronology. Nuclear Instruments and Methods in Physics Research B. 172:724-731.
    Gupta K S, Polach H, 1985, Radiocarbon dating practices at ANU, Handbook, radiocarbon laboratory, research school of Pacific studies, ANU, canberra.
    Harkness D, Harrison A, 1989, The Influence of Afforestation on Upland Solis: The Use of “Bomb 14C" Enrichment as a Quantitative Tracer for Changes in Organic Status, Radiocarbon, 31(3): 637~643.
    Head M J, Zhou Weijinan, Zhou Mingfu, 1989, Evaluation of 14C ages of organic fractions of paleosols from Loess-Paleosol sequences near Xian, China Radiocarbon, 31(3):680~696).
    Head M. J, Zhou Weijian Zhou Mingfu, 1989, Evaluation of 14C Ages of Organic Fractions of Paleosols From Loess Paleosol Sequences Near Xian, China, Radiocarbon, 31(3): 680~696.
    Head M. J., Zhou W. J., 2000, Evaluation of NaOH leaching techniques to extract humic acids from paleosols, Nuclear Instruments and Methods in Physics Research B, 172:434~439
    Hedges R E M, Gowlett J A J, 1986, Radiocarbon dating by accelerator mass spectrometry. Scientific American, 254:100~107.
    Hiebert R D, Watts R J, 1953, Fast coincidence circuit for 3H and 14C measurements, Nucleonics, 11(12):38~41.
    Hiroshi Machida, Fusao Arai, 1983, Extensive ash falls in and around the sea of Japan from large late quaternary eruptions, Journal of Volcanology and Geothermal Research , 18:151-164。
    Hughey B J, Klinkowstein R E, Shefer R E, et al., 1997, Nuclear instrument Method physics research, B123:153~158.
    Iger W, Hyman M, Southon J et al., 1995, Dating pictographs with radiocarbon, Radiocarbon, 37(2): 299~310.
    Johnson F F, Rainey D Collier, Flint R F, 1951, Radiocarbon dating, a summary. In Radiocarbon dating, Memoirs of the Society for American Archaeology, 8:59~63.
    Johnson F, 1965, The impact of radiocarbon dating upon archaeology. In Proceedings of the Sixth International Conference Radiocarbon and Tritium Dating, compiled by Chatters R M and Olson E A. Springfield, Virginia: Clearinghouse for Federal Scientific and Technical Information, 762~780.
    Jull A J T, Donahue D J, Broshi M et al., 1995, Radiocarbon dating of scrolls and linen fragments from the Judean Desert, Radiocarbon, 37(1):11~19.
    Kaufman A, Magaritz M, 1980, The climate history of the eastern Mediterranean as recorded in mollusk shells, Radiocarbon, 22(3): 778~781.
    Kigoshi K., Suzuki N, Shiraki M., 1980, Soil dating by fractional extraction of humic acid, Radiocarbon, 22(3):853~857.
    Kilian M R, van Geel B, van der Plicht J, 2000, 14C AMS wiggle matching of raised bog deposits and models of peat accumulation, Quaternary Science Reviews, 19:1011~1033.
    Kilian M R, van Geel B, van der Plicht J. 2000, 14C AMS wiggle matching of raised bog deposits and models of peat accumulation, Quaternary Science Reviews, 19:1011~1033.
    Kitagawa H, Plicht van der J, 2000, Atmospheric Radiocarbon Variation beyond 11,900 cal BP from Lake Suigetsu, Radiocarbon, 42(3):369~380.
    Klein J, Lerman J C, Damon P E, Ralph E K, 1982. Calibration of Radiocarbon-Dates - Tables Based on the Consensus Data of the Workshop on Calibrating the Radiocarbon Time Scale, Radiocarbon, 24(2), 103~150.
    Korff S A, Danforth W E, 1939, Neutron measurements with boron-trifluoride counters, Physical Review, 55:980.
    Kromer B, Rhein M, Bruns M, et al., 1986, Radiocarbon calibration data for the 6th to the 8th millennia BC. In Stuiver M and Kra R, eds., Calibration Issue, Radiocarbon 28(2B): 954~990.
    Kromer B, Spurk M, 1998, Revision and tentative extension of the tree-ring based 14C calibration, 9200–11,855 cal BP, Radiocarbon, 40(3):1117~1125.
    Kunihiko Kigoshi, Nobuko Suzuki, Mari Shiraki, 1980, Soil Dating by Fractional Extraction of Humic Acid, Radiocarbon, 22(3):853~857.
    LAJ C, Mazaud A, Duplessy J C, 1996, Geomagnetic intensity and 14C abundance in the atmosphere and ocean during the past 50 kyr, Geophysical Research Letters, 23:2045~2048.
    Libby W F, 1946, Atmospheric Helium three and radiocarbon from cosmic radiation, Physical Review, 69:671~672.
    Libby W F, 1947, Measurement of radioactive tracers particularly C14, S35, T and other longer lived low-energy activities, Chemistry, 19:2-6.
    Libby W F, 1952, Radiocarbon dating. Chicago: University of Chicago Press.
    Libby W F, 1955, Radiocarbon Dating, Chicago: University of Chicago Press, 2nd Ed.
    Libby W F, 1961, Radiocarbon dating [Nobel Lecture, December 12, 1960], Les Prix Nobel En 1960, Stockholm: Nobel Foundation. 95~112.
    Libby W F, 1965, Natural radiocarbon and tritium in retrospect and prospect, In Proceedings of the Sixth International Conference on Radiocarbon and Tritium Dating, compiled by Chatters R M and Olson E A. Springfield, Virginia: Clearinghouse for Federal Scientific and Technical Information, 745~751.
    Libby W F, 1967, History of radiocarbon dating, In Radioactive dating and methods of low level counting, Vienna: International Atomic Energy Agency, 3~25.
    Libby W F, 1970, Radiocarbon dating, Philosophical Transactions of the Royal Society of London, 269A:1~10.
    Libby W F, 1970, Ruminations on radiocarbon dating, In Radiocarbon variations and absolute chronology, edited by Olsson I U, Stockholm: Almqvist & Wiksell, 629~640.
    Libby W F, 1973, Radiocarbon dating, memories and hopes. In Proceedings of the Eighth International Radiocarbon Conference, compiled by Rafter T A and Taylor T Grant, Wellington: Royal Society of New Zealand, xxvii~xliii.
    Libby W F, 1979, Interview with W. F. Libby, April 12, 1979, on file at the Center for the History of Physics, American Institute of Physics.
    Libby W F, 1980, Archaeology and radiocarbon dating, Radiocarbon 22:1017~1020.
    Libby W F, 1982, Nuclear dating: An historical perspective. In Nuclear and Chemical dating techniques interpreting the environmental record, edited by Currie L A, Washington, D.C.: American Chemical Society, 1~4.
    Libby W F,1963, Accuracy of radiocarbon dates, Science, 140:278-280.
    Long A, Muller A B, 1981, Arizona radiocarbon dates X, Radiocarbon, 23:191~217.
    Mangerud J, Gulleksen S, 1975, Apparent radiocarbon ages of recent marine shells from Norway, Spitsbergen, and Arctic Canada, Quaternary Research, 5, 263~273.
    Manning S W, Weninger B, 1992, A light in the dark: archaeological wiggle matching and the absolute chronology of the close of the Aegean Late Bronze Age, Antiquity, 66:636~663.
    Martin W C, Johnson C W, 1995, Variation in radiocarbon ages of soil organic matter fractions from late Quaternary buried soils, Quaternary Research, 43:232~237.
    Mast T S, Muller R A, 1980, Radioisotope detection and dating with accelerators. Nuclear Science Applications, 1:7~32.
    Mazaud A, Laj C, Bard E et al., 1991, Geomagnetic field control of 14C production over the last 80 ky: Implications for the radiocarbon time-scale, Geophysical Research Letters, 18(10):1885~1888.
    McCormac F G, Baillie M G L,1993, Radiocarbon to calendar date conversion: calendrical bandwidths as a function of radiocarbon precision, Radiocarbon, 35(2):311~316.
    McCormac F G, Baillie M G L. Radiocarbon to calendar date conversion: calendrical bandwidths as a function of radiocarbon precision[J], Radiocarbon, 1993, 35(2):311-316.
    McCormac F G, Hogg A G, Higham T F G, et a., 1998, Temporal variation in the interhemispheric 14C offset, Geophysical Research Letters, 25: 1321~1324.
    Muller R A, 1977, Radioisotope dating with a cyclotron, Science, 196:489~494. Nakamura T, Tsunemasa S, Nobuyuki N, 1990, Variations in 14C ages of various organic fractions in a turbidite sediment core from Suruga Trough, Geochemical Journal, 24:47~56.
    Nakamura Toshio, tsunemasa, Shiki and Nobuyuki, Nakal, 1990, Variations in 14C ages of various organic fractions in a turbidite sediment core from Suruga Trough, Geochemical Journal, 24:47~56.
    National Academy of Sciences,1986,Active Tectonics,National Academy Press,Washington D.C.。
    Nelson D E, Korteling R G, Scott W R, 1977, Carbon-14: Direct detection at natural concentrations, Science, 198:507~508.
    Nicole Gilet-Blein, Gérard Marien, Jacques Evin, 1980, Unreliability of 14C Dates from Organic Matter of Soils, Radiocarbon, 22(3):919~929.
    Noakes J E, Kim S M, Stipp J J, 1965, Chemical and counting advances in liquid scintillation age dating. In Radiocarbon and Tritium Dating: Proceedings of the 6th International Conference on Radiocarbon and Tritum Dating, Washington State University, Pullman, 650~652.
    Noller J S, Sowers J M, Colman S M., et al., 2000, Introduction to Quaternary geochronology, In Quaternary Geochronology, Methods and Applications, Noller J S et al., eds., American Geophysical Union, Washington DC, 1~10.
    O’ Brien B J, Stout J D, 1978, Movement and turnover of soil organic matter as indicated by carbon isotope measurements, Soil Biology & Biochemistry, 10:309~317.
    Oeschger H, Houtermans J, Loosli H et al., 1970, The constancy of cosmic radiation from isotope studies in meteorites and on the earth. In Radiocarbon variations and absolute chronology, edited by Olsson I U. Stockholm: Almqvist & Wiksell. 471~496.
    Orlova L A, Panychev, V A. 1993, The reliability of radiocarbon dating buried soils, Radiocarbon, 35(3): 369~377.
    Pearson G W, Becker B, Qua F, 1993, High-precision 14C measurements of German and Irish oak to show the natural 14C variations from 7890 to 5000 BC. In Stuiver M, Long A and Kra R S, eds., Calibration, 1993, Radiocarbon 35(1): 93~104.
    Pearson G W, Pilcher J R, Baillie M G L, et al. 1986, High-precision 14C measurements of Irish oaks to show the natural 14C variations from AD 1840-5210 ac, Radiocarbon, 28:911~934.
    Pearson G W, Stuiver M, 1986, High-precision calibration of the radiocarbon time scale, 500-2500 BC, Radiocarbon, 28(2B):839~862.
    Pearson G W. 1986, Precise calendrical dating of known growth period samples using a ‘curve fitting’ technique[J]. In (M. Stuiver & R. S. Kra, Eds) International 14C Conference, 12th Proceedings, Radiocarbon, 28:292~299.
    Perkinelmer Limited Co. , 2002, User manual(1224-945-01), 44~60. Perrin R M S, Wioois E M, Hodge C A M, 1964, Dating of humus podzols by residual radiocarbon activity, Nature, 202:59~166.
    Peter Steier, Werner Rom, 2000, The Bayesian Statistics For 14C Dates of Chronologically Ordered Samples: A Critical Analysis, Radiocarbon, 42(2):183~198.
    Ralph E K, Michael H N , Han M C, 1973, Radiocarbon dates and reality, MASCA Newsletter 9:1~20.
    Reimer P J, Baillie M G L, Bard E, et al., 2004, IntCal04 Terrestrial radiocarbon age calibration, 26 - 0 ka BP. Radiocarbon 46:1029~1058.
    Renfrew C, 1970, The tree-ring calibration of radiocarbon: an archaeological evaluation, Proceedings of the Prehistoric Society, 36:280~311.
    Renfrew C, 1973, Before civilization, the radiocarbon revolution and prehistoric Europe. New York: Alfred A. Knopf.
    Reynolds G T, Harrison F B, Salvini, G, 1950, Liquid scintillation counter, Physical review, 78:488.
    Rubin C. M., Lindvall S. C., Rockwel T. S.,1998, Evidence for large earthquakes in metropolitan Los Angeles,Science, 281,398~402
    Saupe F, Strappa O, Coppens R, et al., 1980, A possible source of error in 14C dates: volcanic emanations (examples from the Monte Amiata District, Provinces of Grosseto and Sienna, Italy). Radiocarbon, 22:525~531.
    Scherpenseet H W, Becker-Heidmann P, 1992, Twenty-five years of radiocarbon dating soil paradigm of erring and learning, Radiocarbon, 34(3):541~549
    Schwartz, D.P., 1988, prehistoric lartge earthquakes produced by slip on San Andreas fault a Pallett Creek California, J. Geophys. Res., 4:3907~3939.
    Sieh, K., Stiuiver M., Brillinger D., 1989, A more precise chronologyof earthquakes produced by the San Andreas fault in southern California, J. Geophys. Res., 94(B1):603~623。
    Sieh, K.,1987,Lateral offsets and revised dates of large earthquakes at Pallett Creek, California, J. Geophys. Res.,89(B9):7641~7670。
    Sieh, K.E.and R.H.Johns, 1984, Holocene activity of the San Andreas fault at Wallace Creek, Gelo. Soc Am. Bull., 95:883~896.
    Speranza A, van der Plicht J, van Geel B, 2000, Improving the time control of the Subboreal/Subatlantic transition in a Czech peat sequence by 14C wiggle-matching, Quaternary Science Reviews, 19:1589~1604.
    Stuiver M, Braziunas T F, 1993, Modeling atmospheric 14C influences and 14C ages of marine samples back to 10,000 BC, Radiocarbon, 35:137~189.
    Stuiver M, Kra R S. eds. Calibration issue, Proceedings of the 12th International 14C conference[J], Radiocarbon, 1986, 28(2B):805-1030.
    Stuiver M, Kra R, (Eds.), 1986, Calibration Issue, Radiocarbon, Vol. 2B.
    Stuiver M, Pearson G W, 1986, High-precision calibration of the radiocarbon time scale, AD 1950-500 BC, Radiocarbon, 28(2B):805~838.
    Stuiver M, Plicht van der (eds), 1998, Calibration Issue, Radiocarbon 40(3).
    Stuiver M, Polach H A, 1977, Discussion: reporting of 14C data, Radiocarbon, 19(3):355~363.
    Stuiver M, Reimer P J, Bard E, et al., 1998, INTCAL98 Radiocarbon Age Calibration, 24000-0 cal BP, Radiocarbon, 40(3):1041~1083.
    Stuiver M, Reimer P J, Braziunas T F, 1998, High-precision radiocarbon age calibration for terrestrial and marine samples, Radiocarbon, 40(3):1127~1151.
    Stuiver M., A. Long A., Kra R.S(eds), 1993. Calibration issue, Radiocarbon 35(1).
    Stuiver M., Kra R.S. eds, 1986 Calibration issue, Proceedings of the 12th International 14C conference Radiocarbon 28(2B) 805~1030.
    Stuiver, M., Kra R.(Ed.), 1986, Calibration issue: Proceedings of the 12th International Radiocarbon Conference, Trondheim, Norway, Radiocarbon, 28(2):805~1030。
    Suess H E, 1955, Radiocarbon concentration in modern wood, Science, 122:415~417.
    Suess H E, 1970, Bristlecone pine calibration of the radiocarbon time-scale 5200 B.C. to the present, In Radiocarbon Variations and Absolute Chronology (ed. Olsson I.U.). Proceedings of the Twelfth Nobel Symposium, Uppsala, Sweden: 303~311.
    Susanne Horn, Hans-Ulrich Schmincke, 2000, Volatile emission during the eruption of Baitoushan Volcano (China/North Korea) ca. 969 AD, Bulletin of Volcanology, 61(8):537~555。
    Tamm C O, ?stlund H G, 1960, Radiocarbon dating of soil humus, Nature, 185, 706~707.
    Taylor R E, 1987, Radiocarbon Dating:An archaeological perspective, Academic Press, Orlando, USA.
    Taylor R E, 1992, Radiocarbon dating of bone; to collagen and beyond,In Taylor R E, Long A, Kra R S, Radiocarbon after four decades, 375~402.
    Trumbore S E, 1993, Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements, Global biogeochemical cycles, 7(2):275~ 290.
    Trumbore S E, Chadwick O A , Amundson R, 1996, Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change, Science , 272:393~396.
    van Geel B, Mook W G, 1989, High-resolution 14C dating of organic deposits using natural atmospheric 14C variations, Radiocarbon, 31:151~156.
    Voelker A H L, Grootes P M, Nadeau M J, et al, 2000, Radiocarbon levels in the Iceland sea from 25–53 kyr and their link to the earth's magnetic field intensity, Radiocarbon, 42(3):437~452.
    Vogel J C, van der Plicht J, 1993, Calibration curve for short-lived samples, 1900–3900 BC. Radiocarbon, 35:87~92.
    Vogel J S, Nelson D E, Southon J R, 1987, 14C Background Levels in an Accelerator Mass Spectrometry System, radiocarbon, 29(3):323~333.
    Walker M., 2005, Quaternary dating methods, John Wiley and Sons, Ltd, England, 1~15.
    Weninger B, 1986, High-precision calibration of archaeological radiocarbon dates. Acta Interdisciplinaria Archaeol IV. Nitra, 11~53.
    White S. E., Valastro S. J., 1984, Pleistocene glaciations of volcano Ajusco, central Mexiaco, and comparison with the standard Mexican glacial sequence, Quaternary research, 21:21~35.
    Wilson H W, 1979, Possibility of measurement of 14C by mass spectrometer techniques. In Radiocarbon dating, edited by Berger R and Suess H E Berkeley: University of California Press, 238~245.
    Xu sheng, Hoshizumi H, Ochiai Yoji, et al., 2004, 14C dating of soil samples from the Unzen volcano scientific drilling boreholes, Nuclear Instruments and Methods in Physics Research B, 223:560~567.
    Yeats, R. S.,1996,Introduction to special section: Paleoseismolgy,J. Geophys. Res.,101(B3):5847~5853。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700