用户名: 密码: 验证码:
阶梯式预测控制器的参数整定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预测控制技术产生于二十世纪七十年代,在工业控制中获得了大量成功的应用,受到控制界和工业界的广泛关注。在过去近三十年里,预测控制无论是在理论研究还是工业应用中都取得了很大的进展。线性预测控制的理论已经比较成熟,非线性预测控制的理论研究也取得了一定的成果。预测控制的应用领域不断扩大,并且应用数量和被控对象的规模都持续增长。预测控制被誉为最有前途的先进控制算法,其应用前景是乐观的。
     参数整定是控制器设计中的重要环节,控制效果与控制器参数有直接关系。但是预测控制的结构复杂,参数对闭环稳定性和闭环性能的影响不明确,参数整定缺乏透明性,并且待整定的参数比较多,参数之间有相互影响,这些都使得控制器的参数整定非常困难。参数整定的困难,限制了预测控制所能够获得的性能,甚至在模型匹配的情况下都很难调整参数使闭环稳定。为了使控制器能达到最佳控制效果,研究预测控制器参数之间的关系以及参数整定方法是非常必要的。
     阶梯式预测控制,在预测控制中引入合理的控制量约束,简化了计算量,获得了许多成功的应用。本文针对阶梯式动态矩阵控制,深入分析了参数变化对闭环性能的影响,以及参数之间的相互关系,并提出基于多目标优化的预测控制器参数整定方法。本文的主要研究工作及创新之处包括:
     (1) 将工业控制中常用的一阶惯性加纯滞后形式的对象模型,以采样周期为单位进行了归一化处理。深入分析了动态矩阵控制器和阶梯式动态矩阵控制器参数变化对闭环性能的影响。由于阶梯因子的作用,其余参数对于闭环性能的影响也发生了变化。
     (2) 研究了控制权重与柔化因子之间的关系,建立的量化表达式将控制权重取值与闭环时间常数间接联系起来,使控制权重值赋予了更直观更明确的物理意义,并指出控制权重的取值与模型增益的关系。
     (3) 研究了控制权重的作用范围与控制器参数之间的关系,在某些情况下控制权重的取值下限值很大且随其余参数剧烈变化,可以仅用阶梯因子对未来控
Model predictive control (MPC), which appeared in industry in the 1970s, has been applied successfully in many process industries, and gained much interesting by the control theoreticians as well as control practitioners. In the last nearly thirty years, much progress has been made in theory research of MPC. By now, linear MPC theory is quite mature, and many issues have been addressed in nonlinear MPC formulation with academic success. MPC technology can be found in a wide variety of application areas, and both the number of applications and the size of the largest application are increasing. As the most promising advanced control algorithm, MPC's application in future will be optimistic.
    Tuning of parameters is an important step in the controller design process, since the closed-loop performance is related directly with values of the parameters. However, the MPC tuning is very difficult due to the complex structure of MPC, the implicit effect of parameters on closed-loop stability and performance, and the overlapped effect of the large number of parameters. The difficulty in tuning may degrade the control performance. Tuning MPC controllers for stable operation in the presence of constraints may be difficult, even when the process model is perfect. In order to achieve better performance, it is necessary to analyze the relationships among parameters and propose some efficient tuning methods.
    Stair-like MPC, which introduced reasonable constraints on control moves to reduce computational burden, has achieved many successful applications. Focused on stair-like DMC, the effects of parameters on closed-loop performance and relationships between parameters had been studied deeply, and then a multi objective optimization based tuning method for MPC was proposed. The main point and innovation of the thesis is listed as follows:
    1. The first-order plus dead time model, which is the most common model used to describe the main dynamic features of plants, was scaled by sample time. Both the effects of parameters on closed-loop performance of DMC and stair-like DMC were analyzed deeply. The stair-like factor changes the effect of parameters on closed-loop
引文
[1] 肖忻,张锁江,史丹,李静海.过程工业的绿色化与信息化,中国科学基金,(6),333-339,2004
    [2] 钟玉泽,张旭,欧钦英.过程工业与清洁生产的实施,辽宁城乡环境科技,24(6),55-56,2004
    [3] 薛美盛,吴刚,孙德敏,王永.工业过程的先进控制,化工自动化及仪表,29(2),1-9,2002
    [4] 工程前沿—美国国家工程院“工程前沿学术研讨会”1997年及1998年会议文集.中国工程院、国家自然科学基金委员会编译.清华大学出版社
    [5] 席裕庚.预测控制.北京:国防工业出版社,1993
    [6] Richalet, J., A. Rault, J. L. Testud and J. Papon, Model Predictive Heuristic Control: Applications to Industrial Processes, Automatica, 14, 413-428, 1978
    [7] Cutler, C. R. and B. L. Ramaker, Dynamic matrix control - a computer control algorithm, AIChE National Mtg, Houston, Texas, 1979; also Proc. Joint Aut. Control Conf., San Francisco, California, 1980
    [8] Clarke, D. W., C. Mohtadi, and P. S. Tuffs, Generalized predictive control, Automatica, 23, 137-160, 1987
    [9] Ordys, A. W., and D. W. Clarke, A state-space description for GPC controllers, International Journal of Systems Science, 24(9), 1993
    [10] Lee, J. H., M. Morari, and C. E. Garcia, State space interpretation of model predictive control, Automatica, 30(4), 707-717, 1994
    [11] Meadows, E. S., K. R. Muske, and J. B. Rawlings, Implementable model predictive control in the state space, Proceedings of the American Control Conference, vol. 5, 3699-3703, 1995
    [12] Garcia, C. E., D. M. Prett and M. Morari, Model Predictive Control: Theory and Practice - a survey, Automatica, 25(3), 335-348, 1989
    [13] Garcia, C. E., and M. Morari, Internal model control -Part1: a unifying review and some new results. Industrial Engineering Chemical Process Design and Development, 21, 308-323, 1982
    [14] Morari, M., and E. Zafiriou, Robust process control, Englewood Cliffs, NJ: Prentice-Hall, 1989
    [15] Morari, M., and J. H. Lee, Model predictive control: past, present and future, Computers and Chemical Engineering, 23, 667-682, 1999
    [16] Mayne, D. Q., J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, Constrained model predictive control: Stablility and optimality, Automatica, 36, 789-814, 2000
    [17] Zheng, A., and M. Morari, Stability of model predictive control with soft constraints, Proceedings of the 33rd conference on Decision and Control, 1018-1023, 1994
    [18] Zheng, A., and M. Morari, Stability of model predictive control with mixed constraints, IEEE Transactions on Automatic Control, 40(10), 1818-1823, 1995
    [19] Rawlings, J. B., and K. R. Muske, The stability of constrained receding horizon control, IEEE Transactions on Automatic Control, 38(10), 1512-1516, 1993
    [20] Scokaert, Pierre O. M., and J. B. Rawlings, Feasibility issues in linear model predictive control, AIChE Journal, 45(8), 1649-1659, 1999
    [21] Rossiter, J. A., B. Kouvaritakis, Constrained stable generalized predictive control, IEE Proceedings- Control Theory and Applications, 140(4), 243-254, 1993
    [22] 周立芳,钱积新.改进的混合权系数最小二乘约束预测控制算法,石油化工自动化,(1),19-22,2003
    [23] Alvarez, T., and Cesar de Prada, Handling infeasibilities in predictive control, Computers Chem. Engng, 21(suppl), S577-S582, 1997
    [24] Dai, Liankui, A systematic method to handle unfeasibility in constrained predictive control, Proceedings of International Conferences on Info-tech and Info-net, Beijing, vol. 4, 227-231, 2001
    [25] Wills, A. G., W. P. Heath, An exterior/Interior-point approach to infeasibility in model predictive control, Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, 3701-3705, 2003
    [26] 田学民,马娟.混合约束过程的多变量协调预测控制,计算机与应用化学,20(4),431-434,2003
    [27] Meadowcrofl, T. A., G. Stephanopoulos, and C. Brosilow, The modular multivariate controller: Part Ⅰ: Steady-state properties, AIChE Journal, 38(8), 1254-1278, 1992
    [28] Tyler, M. L., and M. Morari, Propositional logic in control and monitoring problems, Automatica, 35, 565-582, 1999
    [29] Vada, J., Prioritized infeasibility handling in linear model predictive control: optimality and efficiency, PhD thesis, Department of engineering cybernetics, Norwegian university of science and technology, Trondheim, Norway, 2000
    [30] Wojsznis, W., T. Blevins, M. Nixon and P. Wojsznis, Infeasibility handling in MPC with prioritized constraints, ISA Transcations, 2003
    [31] Henson, M. A., Nonlinear model predictive control: current status and future directions, Computers and Chemical Engineering, 23, 187-202, 1998
    [32] Findeisen, R., and F. Allgower, An introduction to nonlinear model predictive control, 21st Benelux Meeting on Systems and Control, 2002, Veldhoven
    [33] Biegler, L. T., Advances in nonlinear programming concepts for process control, Journal of Process Control, 8(5-6), 301-311, 1998
    [34] Al-Duwaish, H., and W. Naeem, Nonlinear model predictive control of Hammerstein and Wiener models using genetic algorithms, Proceedings of the 2001 IEEE International Conference on Control Applications, 465-469, 2001
    [35] 张强,李少远.基于遗传算法的约束广义预测控制,上海交通大学学报,38(9),1562-1566,2004
    [36] Zheng, A., and F. Allgower. Towards a practical nonlinear predictive control algorithm with guaranteed stability for large-scale systems, Proceedings of the American Control Conference, 2534-2538, 1998
    [37] Lawrence, C. T., and A. L. Tits, A computationally efficient feasible sequential quadratic programming algorithm, SIAM J. Optim., 11 (4), 1092-1118, 2001
    [38] Bulut, B., A. W. Ordys, and M. J. Grimble, Application of efficient nonlinear predictive control to a hot strip finishing mill, Proceedings of the 2002 IEEE International Conference on Control Applications, 373-378, 2002
    [39] Martinsen, F., L. T. Biegler and B. A. Foss, A new optimization algorithm with application to nonlinear MPC, Journal of Process Control, 14(8), 853-865, 2004
    [40] Zafiriou, E., and A. L. Marchal, Stability of SISO quadratic dynamic matrix control with hard output constraints, AIChE Journal, 37, 1550-1560, 1991
    [41] Yutaka Iino, Koji Tomida, et al., A new input/output constrained model predictive control with frequency domain tuning technique and its application to an ethylene plant, Industrial Electronics, Control, and Instrumentation, 1993. Proceedings of the IECON '93., International Conference on, 15-19 Nov. 1993, vol. 1, 457-462
    [42] Lee, J. H. and Z. H. Yu, Tuning of model predictive controllers for robust performance. Computers and Chemical Engineering, 8(1), 15-37, 1994
    [43] Rossiter, J. A., J. R. Gossner, B. Kouvaritakis, Infinite horizon stable predictive control, IEEE Transactions on Automatic Control, 41 (10), 1522-1527, 1996
    [44] Chen, H., and F. Allgower, A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme with Guaranteed Stability, Automatica, 34(10), 1205-1217, 1998
    [45] 孙明玮,陈增强.无限时域预测控制的直接求解算法,应用数学,13(3),5-9,2000
    [46] 刘志远,陈虹.广义准无限时域非线性预测控制,控制理论与应用,19(3),349-355,2002
    [47] 宋崇辉,柴天佑.一类具有稳定性的广义预测控制算法,自动化学报,30(6),807-815,2004
    [48] Scokaert, Pierre O. M., and J. B. Rawlings, Constrained linear quadratic regulation, IEEE Transactions on Automatic Control, 43(8), 1163-1169, 1998
    [49] Primbs, J. A., and V. Nevistic, Feasibility and stability of constrained finite receding horizon control, Automatica, 36, 965-971, 2000
    [50] 吴刚.预测控制研究及在工业锅炉自动控制中的应用,合肥:中国科学技术大学自动化系,1989
    [51] Natarajan, S., and J. H. Lee, Repetitive model predictive control applied to a simulated moving bed chromatography system, Computers and Chemical Engineering, 24, 1127-1133, 2000
    [52] Lee, J. H., S. Natarajan, and K. S. Lee, A model-based predictive control approach to repetitive control of continuous processes with periodic operations, Journal of Process Control, 11, 195-207, 2001
    [53] Gupta, M., and J. H. Lee, Period-robust repetitive model predictive control, Journal of Process Control, 16, 545-555, 2006
    [54] Mezghani, M., G. Roux, et al. Robust iterative learning control of an exothermic semi-batch chemical reactor, Mathematics and Computers in Simulations, 57, 367-385, 2001
    [55] Gawthrop, P. J. and Liuping Wang, Intermittent predictive control of an inverted pendulum, Control Engineering Practice, In Press, Available online 25 October 2005
    [56] 李书臣,徐心和,李平.预测控制最新算法综述,系统仿真学报,16(6),1314-1319,1349,2004
    [57] Qin, S. J., and T. A. Badgwell, A survey of industrial model predictive control technology, Control Engineering Practice, 11, 733-764, 2003
    [58] Zambrano, D. and E. F. Camacho, Application of MPC with multiple objective for a solar refrigeration plant, Proceedings of the 2002 IEEE International Conference on Control Applications, Glasgow, UK, 1230-1235
    [59] Nunez_Reyes, A., C. B. Scheffer-Dutra, and C. Bordons, Comparison of different predictive controllers with multi-objective optimization. Application to an olive oil mill, Proceedings of the 2002 IEEE International Conference on Control Applications, Glasgow, UK, 1242-1247
    [60] 冯晓云,赵冬梅等.基于满意优化的模糊多目标预测控制算法研究,西南交通大学学报,37(1),99-102,2002
    [61] Xu, Zuhua, and Zhao, Jun, Zone model predictive control algorithm using soft constraint method, Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, 650-653, 2004
    [62] Maner, B. R., F. J. Doyle Ⅲ, B. A. Ogunnaike, R. K. Pearson, A nonlinear model predictive control scheme using second order Volterra models, American Control Conference, Vol. 3, 3253-3257, 1994
    [63] 陈增强,袁著祉,张燕.基于神经网络的非线性预测控制综述,控制工程,9(4),7-11,2002
    [64] Cannon, M., Efficient nonlinear model predictive control algorithms, Annual Reviews in Control 28, 229-237, 2004
    [65] 陈虹,刘志远,解小华.非线性模型预测控制的现状与问题,控制与决策,16(4),385-391,2001
    [66] De Nicolao, G., L. Magni and R. Scattolini, Robust predictive control of systems with uncertain impulse response, Automatica, 32(10), 1475-1479, 1996
    [67] Kothare, M. V., V. Balakrisnan, and M. Morari, Robust constrained model predictive control using linear matrix inequalities, Automatica, 32, 1361-1379, 1996
    [68] VanAntwerp, J. G., and R. D. Braatz, A tutorial on linear and bilinear matrix inequalities, Journal of Process Control, 10, 363-385, 2000
    [69] Kouvaritakis, B., J. A. Rossiter, and J. Schuurmans, Efficient Robust Predictive Control, IEEE Transactions on Automatic Control, 45(8), 1545-1550, 2000
    [70] Cuzzola, F. A., J. C. Geromel, and M. Morari, An improved approach for constrained robust MPC, Automatica, 38, 1183-1189, 2002
    [71] Wan, Zhaoyang, and M. V. Kothare, An efficient off-line formulation of robust MPC using LMIs, Automatica, 39, 837-846, 2003
    [72] Kouvaritakis, B., M. Cannon, and J. A. Rossiter, Who needs QP for linear MPC anyway? Automatica, 38, 879-884, 2002
    [73] Seon Bong Noh, Yong Ho Kim, Young Il Lee and Wook Hyun Kwon, Robust generalised predictive control with terminal output weightings, Journal of Process Control, 6(2-3), 137-144, 1996
    [74] Yong Ho Kim and Wook Hyun Kwon, An application of min-max generalized predictive control to sintering processes, Control Engineering Practice, 6(8), 999-1007, 1998
    [75] Gros, S., B. Srinivasan and D. Bonvin, Robust predictive control based on neighboring extremals, Journal of Process Control, 16(3), 243-253, 2006
    [76]许超,陈治纲,邵惠鹤。预测控制技术及应用发展综述,化工自动化及仪表, 29(3), 1-10,2002
    [77] Richalet, J., Industrial Applications of Model Based Predictive Control, Automatica, 29, 1251-1274, 1993
    [78] Masahiro Ohshima, Hiromu Ohno, Iori Hashimoto, Mikiro Sasajima, et al., Model predictive control with adaptive disturbance prediction and its application to fatty acid distillation column control, Journal of Process Control, 5(1), 41-48,1995
    [79] Najim, K. and V. Ruiz, Long-range predictive control of an absorption packed column, Applied Mathematical Modelling, 19(1), 39-45, January 1995
    [80] Maiti, S. N. and D. N. Saraf, Adaptive dynamic matrix control of a distillation column with closed-loop online identification, Journal of Process Control, 5(5), 315-327, October 1995
    [81] Hovd, M., R. Michaelsen, and T. Montin, Model predictive control of a crude oil distillation column, Computers & Chemical Engineering, 21(Suppl), S893-S897, May 1997
    [82] Norquay, S. J., A. Palazoglu and J. A. Romagnoli, Application of Wiener model predictive control (WMPC) to an industrial C2-splitter, Journal of Process Control, 9(6), 461-473, December 1999
    [83] Abou-Jeyab, R. A., Y. P. Gupta, J. R. Gervais, P. A. Branchi and S. S. Woo, Constrained multivariable control of a distillation column using a simplified model predictive control algorithm, Journal of Process Control, 11(5), 509-517, 2001
    [84] Porfirio, C. R., E. Almeida Neto and D. Odloak, Multi-model predictive control of an industrial C3/C4 splitter, Control Engineering Practice, 11(7), 765-779, July 2003
    [85] Gao, Jianping, R. Patwardhan, K. Akamatsu, et al., Performance evaluation of two industrial MPC controllers, Control Engineering Practice, 11(12), 1371-1387, December 2003
    [86] Volk, U., D.-W. Kniese, R. Hahn, R. Haber and U. Schmitz, Optimized multivariable predictive control of an industrial distillation column considering hard and soft constraints, Control Engineering Practice, 13(7), 913-927, July 2005
    [87] Paulo A. F. N. A. Afonso, Nuno M. C. Oliveira and JoseAlmiro A. M. Castro, Model predictive control of a pilot plant reactor with a simulated exothermic reaction, Computers & Chemical Engineering, 20(Suppl2), S769-S774,1996
    [88] Vega, M. P., E. L. Lima and J. C. Pinto, Modeling and control of tubular solution polymerization reactors, Computers & Chemical Engineering, 21(Suppl1), S1049-S1054, May 1997
    [89] Qin, S. J., V. M. Martinez and B. A. Foss, An interpolating model predictive control strategy with application to a waste treatment plant, Computers & Chemical Engineering, 21(Suppll), S881-S886, May 1997
    
    [90] Hiroya Seki, Morimasa Ogawa, Satoshi Ooyama, et al. Industrial application of a nonlinear model predictive control to polymerization reactors, Control Engineering Practice, 9(8), 819-828, August 2001
    [91] Yu, D. L. and J. B. Gomm, Implementation of neural network predictive control to a multivariable chemical reactor, Control Engineering Practice, 11(11), 1315-1323, November 2003
    [92] Mourue, G, D. Dochain, V. Wertz and P. Descamps, Identification and control of an industrial polymerisation reactor, Control Engineering Practice, 12(7), 909-915, July 2004
    [93] Lee, K. S., and J. H. Lee, Model predictive control for nonlinear batch processes with asymptotically perfect tracking, Computers & Chemical Engineering, 21(Sup), 873-879, 1997
    [94] Rho, Hyung-Jun, Yun-Jun Huh and Hyun-Ku Rhee, Application of adaptive model-predictive control to a batch MMA polymerization reactor, Chemical Engineering Science, 53(21), 3729-3739, November 1998
    [95] Bouhenchir, H., M. Cabassud and M. V. Le Lann, Predictive functional control for the temperature control of a chemical batch reactor, Computers & Chemical Engineering, In Press, Corrected Proof, Available online 17 April 2006
    [96] Ozkan, G., H. Hapoglu and M. Alpbaz, Non-linear generalised predictive control of a jacketed well mixed tank as applied to a batch process—A polymerisation reaction, Applied Thermal Engineering, 26(7), 720-726, May 2006
    [97] Arahal, M. R., M. Berenguel and E. F. Camacho, Neural identification applied to predictive control of a solar plant, Control Engineering Practice, 6(3), 333-344, March 1998
    [98] Pickhardt, R., Nonlinear modelling and adaptive predictive control of a solar power plant, Control Engineering Practice, 8(8), 937-947, August 2000
    [99] Grimble, M. J. and A. W. Ordys, Predictive control for industrial applications, Annual Reviews in Control, 25, 13-24, 2001
    [100] 薛美盛,孙德敏,吴刚.火电厂锅炉主蒸汽压力的阶梯式广义预测控制.中国科学技术大学学报,32(6),685-689,2002
    [101] 李俊,吴刚,孙德敏等.大型电站锅炉主蒸汽温度的模块化阶梯式动态矩阵控制.中国科学技术大学学报,33(4),460-465,2003
    [102] Sanchez-Lopez, A., G. Arroyo-Figueroa and A. Villavicencio-Ramirez, Advanced control algorithms for steam temperature regulation of thermal power plants, International Journal of Electrical Power & Energy Systems, 26(10), 779-785, December 2004
    [103] Tan, Jinglu and J. M. Hofer, Self-tuning predictive control of processing temperature for food extrusion. Journal of Process Control, 5(3), 183-189, 1995
    [104] Zamarreno, J. M., and P. Vega, Identification and predictive control of a melter unit used in the sugar industry, Artificial Intelligence in Engineering, 11(4), 365-373, October 1997
    [105] Wang, Y. and J. Tan, Dual-target predictive control and application in food extrusion, Control Engineering Practice, 8(9), 1055-1062, September 2000
    [106] Didriksen, H., Model based predictive control of a rotary dryer, Chemical Engineering Journal, 86(1-2), 53-60, February 2002
    [107] Gonzalez, A. H., D. Odloak and J. L. Marchetti, Predictive control applied to heat-exchanger networks, Chemical Engineering and Processing, In Press, Available online 23 March 2006
    [108] Shi, Dan, N. H. El-Farra, et al., Predictive control of particle size distribution in particulate processes, Chemical Engineering Science, 61(1), 268-281, January 2006
    [109] Pinon, S., E. F. Camacho, B. Kuchen and M. Pena, Constrained predictive control of a greenhouse, Computers and Electronics in Agriculture, 49(3), 317-329, December 2005
    [110] Coelho, J. P., P. B. de Moura Oliveira and J. B. Cunha, Greenhouse air temperature predictive control using the particle swarm optimisation algorithm, Computers and Electronics in Agriculture, 49(3), 330-344, December 2005
    [111] El Ghoumari, M. Y., H.-J. Tantau and J. Serrano, Non-linear constrained MPC: Real-time implementation of greenhouse air temperature control, Computers and Electronics in Agriculture, 49(3), 345-356, December 2005
    [112]Hegyi, A., B. De Schutter, H. Hellendoorn, and T. van den Boom, Optimal coordination of ramp metering and variable speed control—An MPC Approach- Proceedings of the 2002 American Control Conference, 3600-3605, Anchorage, Alaska, 2002
    [113]Bellemans, T., B. De Schutter and B. De Moor, Model predictive control for ramp metering of motorway traffic: A case study, Control Engineering Practice, 14(7), 757-767, July 2006
    [114] Yu, O., E. Saric, and A. Li, Fairly adjusted multimode dynamic guard bandwidth admission control over CDMA systems, Selected Areas in Communications, IEEE Journal on, 24(3), 579-592, 2006
    [115]Chisci, L., T. Pecorella and R. Fantaccim, Dynamic bandwidth allocation in GEO satellite networks: A predictive control approach, Control Engineering Practice, 14(9), 1057-1067, 2006
    [116]Haeri, M., A. Hamed, and M. Rad, Adaptive model predictive TCP delay-based congestion control, Computer Communications, In Press, Corrected Proof, Available online 5 January 2006
    [117]Yan, Jun and Robert R. Bitmead, Incorporating state estimation into model predictive control and its application to network traffic control, Automatica, 41(4), 595-604, April 2005
    [118]Araki, M. and E. Furutani, Computer control of physiological states of patients under and after surgical operation, Annual Reviews in Control, 29(2), 229-236, 2005
    [119]Gangloff, J., R. Ginhoux, M. deMathelin, L. Soler, and J. Marescaux, Model Predictive Control for Compensation of Cyclic Organ Motions in Teleoperated Laparoscopic Surgery, Control Systems Technology, IEEE Transactions on, 14(2), 235-246, 2006
    [120]Frohlich, F. and S. Jezernik, Feedback control of Hodgkin-Huxley nerve cell dynamics, Control Engineering Practice, 13(9), 1195-1206, September 2005
    [121]Trajanoski, Z., W. Regittnig and P. Wach, Neural predictive controller for closed-loop control of glucose using the subcutaneous route: A simulation study, Control Engineering Practice, 5(12), 1727-1730, December 1997
    
    [122]Schlotthauer, G, L. G. Gamero, M. E. Torres and G. A. Nicolini, Modeling, identification and nonlinear model predictive control of type I diabetic patient, Medical Engineering & Physics, 28(3), 240-250, April 2006
    [123]Zurakowski, R. and A. R. Teel, A model predictive control based scheduling method for HIV therapy, Journal of Theoretical Biology, 238(2), 368-382, 21 January 2006
    [124]Koker, R., Design and performance of an intelligent predictive controller for a six-degree-of-freedom robot using the Elman network, Information Sciences, 176(12), 1781-1799,2006
    [125]Temurtas, F., H. Temurtas and N. Yumusak, Application of neural generalized predictive control to robotic manipulators with a cubic trajectory and random disturbances, Robotics and Autonomous Systems, 54(1), 74-83, 31 January 2006
    [126]Chemori, A. and M. Alamir, Multi-step limit cycle generation for Rabbit's walking based on a nonlinear low dimensional predictive control scheme, Mechatronics, 16(5), 259-277, June 2006
    [127]Chevallereau, C, G. Abba, Y. Aoustin, et al., Rabbit: a testbed for advanced control theory. IEEE Control Systems Magazine, 23(5), 57-79. 2003
    [128] Keviczky, T., and G. J. Balas, Flight test of a receding horizon controller for autonomous UAV guidance, Proceedings of the 2005 American Control Conference, vol. 5, 3518-3523, 8-10 June 2005
    [129] Keviczky, T., and G. J. Balas, Receding horizon control of an F-16 aircraft: A comparative study, Control Engineering Practice, 14, 1023-1033, 2006
    [130] Keviczky, T., R. Ingvalson, H. Rotstein, A. Packard, O. R. Natale, and G. J. Balas, "An integrated multi-layer approach to software enabled control: Mission planning to vehicle control," Dept. of Aerospace Eng. and Mechanics. University of Minnesota, Minneapolis. Dept. of Mechanical Eng. University of California, Berkeley, Tech. Rep., Nov. 2004
    [131] Bang, Hyochoong and Choong-Seok Oh, Predictive control for the attitude maneuver of a flexible spacecraft, Aerospace Science and Technology, 8(5), 443-452, July 2004
    [132] Hegrenaes, Φyvind, Jan Tommy Gravdahl and Petter Tφndel, Spacecraft attitude control using explicit model predictive control, Automatica, 41(12), 2107-2114, December 2005
    [133] Kale, M. M. and A. J. Chipperfield, Stabilized MPC formulations for robust reconfigurable flight control, Control Engineering Practice, 13(6), 771-788, June 2005
    [134] Kouvaritakis, B., M. Cannon and V. Tsachouridis, Recent developments in stochastic MPC and sustainable development, Annual Reviews in Control, 28(1), 23-35, 2004
    [135] Kouvaritakis, B., M. Cannon, and P. Couchman, MPC as a tool for sustainable development integrated policy assessment, Automatic Control, IEEE Transactions on, 51(1), 145-149, 2006
    [136] Overschee, P. V., C. Moons, W. V. Brempt, P. Vanvuchelen, and B. De Moor, RAPID: the end of heuristic PID tuning, Journal A, Special Issue CACSD (Computer Aided Control Systems Design), 38(3), 6-10, Sep. 1997
    [137] Ogunnaike, B. A. and K. Mukati, An alternative structure for next generation regulatory controllers: Part Ⅰ: Basic theory for design, development and implementation, Journal of Process Control, 16(5), 499-509, June 2006
    [138] 徐立鸿,预测控制的研究现状及问题,控制理论与应用,11(1),121-125,1994
    [139] 邵惠鹤,任正云.预测PID控制算法的基本原理及研究现状,世界仪表与自动化,48(6),17-18,20,21,2004
    [140] 马文学,钟汉枢.动态矩阵控制研究进展及其应用现状,重庆工业高等专科学校学报,20(1),49-52,55,2005
    [141] 陈增强,刘瑞华等.预测控制应用于工业过程的若干问题,自动化与仪器仪表,1994年1期,1-6
    [142] Rani, K. Y. and H. Unbehauen, Study of predictive controller tuning methods. Automatica, 33(12), 2243-2248, 1997
    [143] Georgiou, A., C. Georgakis and W. L. Luyben, Nonlinear dynamic matrix control for high-purity distillation columns, AIChE Journal, 34, 1287-1298, 1988
    [144] Maurath, P. R., D. E. Seborg and D. A. Mellichamp, Predictive controller design by principal components analysis, Proceedings of American Control Conference, vol. 2, 1059-1065, 1985
    [145] Hinde Jr, R. F., D. J. Cooper, A pattern-based approach to excitation diagnostics for adaptive process control, Chemical Engineering Science, 49, 1403-1415, 1994
    [146] Clarke, D. W. and C. Mohtadi, Properties of generalized predictive control, Automaica, 25, 859-875, 1989
    [147] Banerjee, P. and S. L. Shah, Tuning guide-lines for robust generalized predictive control, Proceedings of 31st IEEE Conference on Decision and Control, vol. 4, 3233-3234, 1992
    [148] McIntosh, A. R., S. L. Shah and D. G. Fisher, Selection of tuning parameters for adaptive generalized predictive control, Proceedings of American Control Conference, 1846-1851, 1989
    [149] McIntosh, A. R., S. L. Shah and D. G. Fisher, Performance tuning of adaptive generalized predictive control, Canadian Journal of Chemical Engineering, 69, 97-110, 1991
    [150] Shridhar, R., and D. J. Cooper, A tuning strategy for unconstrained SISO model predictive control, Ind. Eng. Chem. Res., vol. 36, 729-746, 1997
    [151] Shridhar, R., and D. J. Cooper, A tuning strategy for unconstrained multivariable model predictive control, Ind. Eng. Chem. Res., 37, 4003-4016, 1998
    [152] Shridhar, R., and D. J. Cooper, A novel tuning strategy for multivariable model predictive control, ISA Transactions, 36(4), 273-280, 1998
    [153] 李少远,杜国宁.基于模糊满意度的广义预测控制器参数的在线调整,控制与决策,17(6),853-855,862,2002
    [154] 陈增强,袁著祉,PI型广义预测平均控制器及其仿真,控制与决策,11(6),702-706,1996
    [155] 徐立鸿,施建华.基于对象定量和定性信息的组合预测控制,自动化学报,23(2),257-260,1997
    [156] 罗刚,金讳东,李冶.动态矩阵控制参数的满意优化,信息与控制,28(1),75-79,1999
    [157] 薛美盛,杨再跃,吴刚,孙德敏.基于遗传算法的动态矩阵控制器参数设计,工业仪表与自动化装置,2004年3期,6-9
    [158] 陈立,李岗,李治.一种新型的动态矩阵控制算法,西南交通大学学报,33(5):581-585,1998
    [159] Liu, Wei and George Wang, Auto-tuning procedure for model-based predictive controller. IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, 3421-3426, 2000
    [160] Al-Ghazzawi, A., E. Ali, A. Nouh, and E. Zafiriou, On-line tuning strategy for model predictive controllers. Journal of Process Control, vol. 11, 265-284, 2001
    [161] Ali, E., Heuristic on-line tuning for nonlinear model predictive controllers using fuzzy logic. Journal of Process Control, vol. 13, 383-396, 2003
    [1] 席裕庚.预测控制.北京:国防工业出版社,1993
    [2] 李嗣福.计算机控制基础.合肥:中国科学技术大学出版社,2001
    [3] 吴刚.预测控制研究及在工业锅炉自动控制中的应用.合肥:中国科学技术大学自动化系,1989
    [4] 薛美盛,孙德敏,吴刚.火电厂锅炉主蒸汽压力的阶梯式广义预测控制,中国科学技术大学学报,32(6),685-689,2002
    [5] 刘有飞,吴刚,王永,薛美盛,孙德敏.阶梯式模块多变量动态矩阵控制器在常压塔加热炉中的应用,信息与控制,31(6),508-512,2002
    [6] 李俊,吴刚,孙德敏等.大型电站锅炉主蒸汽温度的模块化阶梯式动态矩阵控制,中国科学技术大学学报,33(4),460-465,2003
    [7] 李俊等.基于阶梯式广义预测控制的锅炉主蒸汽温度控制系统,中国电力,36(7),39-43,2003
    [8] 赖胜,孙德敏,吴刚,祁睿.最优自适应广义预测控制在常压加热炉中的应用,化工自动化及仪表,02,2003
    [1] 席裕庚.预测控制.北京:国防工业出版社,1993
    [2] Qin, S. J., and T. A. Badgwell, A survey of industrial model predictive control technology, Control Engineering Practice, 11(7), 733-764, 2003
    [3] Shfidhar, R., and D. J. Cooper, A tuning strategy for unconstrained SISO model predictive control, Industrial and Engineering Chemistry Research,, 36, 729-746 1997
    [4] Astrom, K. J., and B. Wittenmark, Computer-Controlled Systems — Theory and Design, third edition. Tsinghua University Press, Prentice Hall, 2002
    [5] 李嗣福.MAC和DMC的改进算法,自动化学报,19,4,1993
    [6] 任正云,邵惠鹤,张立群.模型预测控制反馈校正系数的在线整定,37(6),922-926,2003
    [7] Liu, Wei and George Wang, Auto-tuning procedure for model-based predictive controller. IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, 3421-3426, 2000
    [8] Al-Ghazzawi, A., E. Ali, A. Nouh, E. Zafiriou, On-line tuning strategy for model predictive controllers. Journal of Process Control, vol. 11, 265-284, 2001
    [9] Ali, E., Heuristic on-line tuning for nonlinear model predictive controllers using fuzzy logic. Journal of Process Control, vol. 13, 383-396, 2003
    [10] 罗国娟,吴刚.预测控制中柔化因子与控制增量权重的研究.科大学报,录用
    [11] 罗国娟,吴刚.阶梯式预测控制中控制权重的下限值研究.信息与控制,录用
    [1] 席裕庚.预测控制.北京:国防工业出版社,1993
    [2] Lee, J. H. and Z. H. Yu, Tuning of model predictive controllers for robust performance. Computers and Chemical Engineering, 8(1), 15-37, 1994
    [3] Shridhar, R., and D. J. Cooper, A tuning strategy for unconstrained SISO model predictive control, Ind. Eng. Chem. Res., vol.36, 729-746, 1997
    [4] Shridhar, R., and D. J. Cooper, A tuning strategy for unconstrained multivariable model predictive control, Ind. Eng. Chem. Res., 37, 4003-4016, 1998
    [5] Liu, Wei and George Wang, Auto-tuning procedure for model-based predictive controller. IEEE International Conference on Systems, Man, and Cybernetics, vol.5, 3421-3426, 2000
    [6] Al-Ghazzawi, A., E. Ali, A. Nouh, and E. Zafiriou, On-line tuning strategy for model predictive controllers. Journal of Process Control, vol. 11, 265-284, 2001
    [7] Ali, E., Heuristic on-line tuning for nonlinear model predictive controllers using fuzzy logic. Journal of Process Control, vol. 13,383-396, 2003
    [8] 巩丽,张根保,黄强,刘润爱.滚齿切削参数多目标优化系统设计,制造技术与机床,2006年第2期,76-79
    [9] 舒服华.基于变形遗传算法的切削参数优化,机械工程师,2005年11期,98-99
    [10] 邓永胜,王学平,秦然,张振伟.串联式振动水平圆干燥机工艺参数优化分析,化工装备技术,26(3),1-4,2005
    [11] 武卫,王占林.气动Stewart平台结构参数的多目标优化,机械科学与技术,24(4),451-453,2005
    [12] 王太勇,汪文津,范胜波,董艇舰,李宏伟,秦旭达.基于自适应遗传算法的数控铣削过程参数优化仿真,制造业自动化,26(8),28-30,58,2004
    [13] 张娟,刘子建,黄大祥,陈珍宝.低速单臂受电弓结构参数的优化设计,机械研究与应用,17(3),57-58,60,2004
    [14] 邓凯,程惠尔.基于多目标优化设计的铸钢冷却壁结构优化研究,钢铁钒钛,26(2),44-48,2005
    [15] 周宏明,郑蓓蓉.旋耕机传动参数的多目标算法,机电工程,21(7),49-51,2004
    [16] 张葛祥,金炜东,胡来招.多变量系统中多参数多目标满意优化研究,信息与控制,32(6),481-485,2003年
    [17] 郭旭红,芮延年,李军涛,朱圣领.基于遗传算法模糊智能控制系统的研究,苏州大学学报工科版,24(5),38-41,2004
    [18] Serra, G. L. O. and C. P. Bottura, Multiobjective evolution based fuzzy PI controller design for nonlinear systems, Engineering Applications of Artificial Intelligence, 19(2), 157-167, March 2006
    [19] Tang, K. S., K. F. Man, Guanrong Chen, and Sam Kwong. A GA-optimized fuzzy PD+I controller for nonlinear systems, , 2001 IECON'01, The 27th Annual Conference of the IEEE Industrial Electronics Society, Vol. 1718-723, 29 Nov.-2.Dec, 2001,
    [20] Liu, G.P, R. Dixon, and S. Daley. Multi-objective optimal-tuning proportional-integral controller design for the ALSTOM gasifier problem. Proceedings of the Institution of Mechanical Engineers. Part Ⅰ: Journal of Systems and Control Engineering, 214(6), 395-404, 2000
    [21] Wang, Feng-Sheng, Chi-Liang Yeh, and Yieng-Chiang Wu. PID controller tuning by an interactive multi-objective optimization method, Transactions of the Institute of Measurement and Control, 18(4), 183-192, 1996
    [22] Mahfouf, M., D. A. Linkens and M. F. Abbod, Multi-objective genetic optimization of GPC and SOFLC tuning parameters using a fuzzy-based ranking method. IEE Proc. Control Theory Appl., 147(3), 344-354, May 2000
    [23] Mohanty, S., Multiobjective optimization of synthesis gas production using non-dominated sorting genetic algorithm, Computers & Chemical Engineering, In Press, Corrected Proof, Available online 18 April 2006
    [24] 任长宁,马光胜,王昊,冯刚.基于多目标演化算法的SOC设计空间搜索策略,计算机工程,31(6),46-49,2005
    [25] 陈盛双,梁青等.遗传算法在汽车动力传动系参数多目标优化中的应用,湖北汽车,2001年1期,36-40
    [26] Liu, G. P. and S. Daley, Optimal-tuning PID control tier industrial systems, Control Engineering Practice, 9(11), 1185-1194, November 2001
    [27] 汪树玉、杨德铨、刘国华、张科锋 编著.优化原理、方法与工程应用,浙江大学出版社,1991
    [28] 胡毓达 著.实用多目标最优化,上海科学技术出版社,1990
    [29] 徐玖平、李军编著.多目标决策的理论和方法,北京:清华大学出版社,不确定理论与优化丛书,2005.3
    [30] Coello Coello, C. A., D. A. Van Veldhuizen, and G. B. Lamont, Evolutionary algorithms for solving multi-objective problems. Kluwer academic/ plenum publishers.
    [31] 玄光男,程润伟著.遗传算法与工程优化,清华大学出版社,2004
    [1] Shridhar, R., and D. J. Cooper, A tuning strategy for unconstrained SISO model predictive control, Ind. Eng. Chem. Res., vol.36, 729-746, 1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700