用户名: 密码: 验证码:
京北农牧交错区植物功能型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物功能型的研究是全球变化研究当中最重要的创新之一,作为新的研究手段,已经被广泛用来研究全球变化的影响。而关于不同植物功能型对全球变化的生理生态反应、植物功能型对全球变化的适应机制及植物功能型演变在全球变化中的作用等方面的研究报道却很少,相关方面的研究尚处于起步阶段,而这些恰恰是植物功能型研究的基本点和最终目的,尤其对于全球变化预测模型的研究具有深远的意义。因此深入开展区域环境或全球变化下植物功能型的变化和适应机制研究能为最大程度地获得全球变化对未来影响提供重要信息。
     本研究中我们对京北农牧交错区的植物功能型(光合功能型和形态功能型)进行了研究。利用稳定性同位素判定法对锡林郭勒草原四种不同草地类型植物功能型进行了分析研究,在调查的125种维管植物中有4种C4植物,其中禾本科和藜科各有2种,C4植物约占该地区调查植物总数的3%,C3植物为94%、CAM植物为3%。研究中发现利用稳定性同位素技术判定CAM类型存在一定的局限性,需要采用辅助实验进行补充。研究结果还表明自东向西,在草甸草原-典型草原-荒漠草原这一系列草原类型中随着降雨量的逐渐降低,植物种类组成逐渐降低,但C4/C3的比例却有升高的趋势,说明植物光合类型的组成与水分梯度相关。在相同的环境梯度下,多年生高禾草和多年生杂类草呈现显著减少的趋势;而一年生杂类草,多年生矮禾草、灌木和鳞茎类植物呈现显著增加的趋势。这些结果为我们预测该地区植物功能型对全球变化影响的响应提供了依据。在北京北部农牧交错区对不同生境类型的植物功能型进行了研究,该区域有C4植物68种。具有C4植物的科相对集中,主要分布在禾本科(29属43种)、莎草科(4属16种)和藜科(3属5种)。菊科、豆科和蔷薇科这3大科中没有发现C4植物。C4植物约占该地区调查植物总数的9%,C3植物为89%、CAM植物为2%。多年生高禾草和多年生杂类草的比例无论从生长条件良好的草地到沙地,还是从草地到弃耕干扰地都呈现显著下降的趋势,而一年生杂类草和一年生禾草的变化却呈相反的变化趋势。C4植物中一年生植物占的比例最大,而且各个生境中C4植物在一年生植物的比例均超过30%,这说明该地区各个生境植被都已有
The study of plant functional types, which has been hailed as one of the most important innovations in studying global change, has been widely adopted to investigate the effects of global change. However, in such areas as the physiological and ecological responses of plant functional types to global changes, the adaptive mechanisms of different plant functional types to global changes as well as the function of the evolution of plant functional types in the global changes, few reports have been seen. The related research is still in the initial stage, however, they are the starting point and ultimate purpose of the study of plant functional types, and in particular, they have a far-reaching significance in forecasting global change patterns. Therefore, by conducting research on the transformations and adaptive mechanisms of plant functional types in the regional or global environmental change, we may obtain a wealth of important information of the impacts of future global changes.
     In this study, we carried out a study of plant functional types on North-Beijing agro-pastoral ecotone. By stable isotope measurements, we analyzed four plant functional types in Xilingol steppe and got the following results. Carbon isotope ratios indicative of C4 photosynthesis were found in 4 species of the 125 vascular plants investigated, 2 were found in Graminea and the other two in Chenopodiaceae. As for the proportion of photosynthesis pathway, C4 species makes up 3% of the total species investigated in the region, C3 Species 94% and CAM 3%. Six species have C3 photosynthesis, reported previously with C4 photosynthesis. In identifying CAM plants,δ13C method has its own limitation. Therefore, additional experiments are required. In the series of meadow types
引文
Aarssen, L.W. 1997. High productivity in grassland ecosystems: Effected by species diversity or productive species? Oikos 80: 183-184
    Aguiar, M.R., Heil, R.D. 1988. Soil organic carbon, nitrogen, and phosphorus quantities in Northern Great Plains Rangeland. Soil Sci. Soc. Am. J. 52, 1076-1081
    Aguiar, M.R., Paruelo, J.M., Sala, O.E., Lauenroth, W.K. 1996. Ecosystem responses to changes in plant functional type composition: An example from the Patagonian steppe. J. Veg. Sci., 7, 381-390
    Anderson, C., Taylor, K. 1979. Some factors affecting the growth of two populations of Festuca rubra var. arenaria in the dunes of Blakeney Point, Norflok. In: Jefferies R.L., Davy A.J. (eds.) Ecological Processes in Coastal Environment. Oxford: Blackwell Scientific Publications, 129-143
    Auclair, A.N. & Goff, F.G. 1971. Diversity relations of upland forests in the western Great Lakes area. Am. Nat. 105: 499-528
    Bai, Y., Han, X., Wu, J., Chen, Z., Li, L. 2004. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature. 431,181-184
    Barbour, M.G., Burk, J.H., Pitts, W.D., Gillian, F.S. & Schwartz, M.W. 1999. Terrestrial plant ecology. Benjamin Cummings, San Francisco, CA
    Black, C.C. 1971. Ecological implications of dividing plants into groups with distinct photosynthetic production capacities. – In: Cragg, J.B. (ed.): Advances in Ecological Research. Vol. 7. Pp. 87-114. Academic Press, New York – London
    Botkin, D.B. 1975. Functional groups of organisms in model ecosystems. In Levin, S.A. (ed.), Ecosystem Analysis and Prediction, pp. 98-102. Philadelphia: Society for Industrial and Applied Mathematics
    Box, E.O. 1981. Macroclimate and Plant Forms: An Introduction in Predictive Modeling in Phytogeography. The Hague, Dr. W. Junk
    Box, E.O. 1996. Plant functional types and climate at the global scale. J.Veg.Sci., 7,309-320
    Bugmann, H. 1996. Functional types of trees in temperate and boreal forests: Classification and testing. J. Veg. Sci. 7, 359-370
    Cameron, T. 2002. 2002: the year of the ‘diversity-ecosystem function’ debate. Trends Ecol. Evol. 17: 495- 497
    Castro-Diez, P., Villar-Salvador, P., Perez-Rontome, C., Maestro Martinez, M.& Monteserrat-Marti, G. 1997. Leaf morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain. Trees, 11,127-134
    Chapin, F.S. 1993. Functional role of growth forms in ecosystem and global process. In: Ehleringer, J.R. & Field, C.B. (eds.), Scaling physiological processes. pp.388. Academic Press, San Diego, California, USA
    Chapin, F.S. III, Bret-Harte, M.S., Hobbie, S.E. & Zhong, H. 1996. Plant functional types as predictors of transient responses of arctic vegetation to global change. J. Veg. Sci. 7, 347-358
    Collatz, G..J., Berry, J.A., Clark, J.S. 1998. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. – Oecologia 114: 441-454
    Collins, R. P. and Jones, M. B. 1985. The influence of climatic factors on the distribution of C4 species in Europe. Vegetatio, (64): 121 ~ 129
    Cummins, K.W. 1974. Structure and function of stream ecosystems. Bioscience, 24, 631-641.
    Danin, A. 1983. Desert vegetation of Israel and Sinai. Cana, Jerusalem
    Danin, A. 1996. Plants of desert dunes. Springer-Verlag, Berlin, Heidelberg, New York
    Darwin, C., 1859. The origin of species by means of natural selection. London: John Murray Deckers, B., Verheyen, K., Hermy, M., Muys, B. 2004. differential environmental response of plant functional types in hedgerow habitats. Basic and Applied Ecology, 5, 551-566
    Diaz Barradas, M.C., Zunzunegui, M., Tirado, R., Ain-Lhout, F. & Garcia Novo, F. 1999. Plant functional types and ecosystem function in Mediterranean shrubland. J. Veg. Sci. 10, 709-716
    Diaz, S. & Cabido, M. 1997. Plant functional types and ecosystem function in relation to global change. J. Veg. Sci. 8, 463-474
    Disraeli, D.J. 1984. The effect of sand deposits on the growth and morphology of Ammophila breviligulata. Journal of Ecology 72, 145-154
    Dormann C.F. & Woodin S.J. 2002. Climate Change in the Arctic: using plant functional types in a meta-analysis of field experiments. Funct. Ecol. 16, 4-17
    Downton, W. J. S. and Tregunna, E. B. 1968.Carbon dioxide compensation – its relation to photosynthetic carboxylation reactions, systematics of the Gramineae and leaf anatomy. Canadian Journal of Botany, (46): 207~ 215
    Downton, W.J.S. 1975. The occurrence of C4 photosynthesis among plants. – Photosynthetica 9: 96-105
    Ehleringer, J. R., Cerling, T. E. and Helliker, B. R. 1997. C4 photosynthesis, atmospheric CO2, and climate. Oecologia, (112): 285~ 299
    Ehleringer, J.R., Sage, R.S., Flanagan, L.B. & Pearcy, R.W. 1991. Climate change and the evolution of C4 photosynthesis. Trends Ecol. Evol. 6, 95-99
    Ervin, G.N. and Wetzel, R.G. 2002. Influence of a dominant macrophyte, Juncus effusus, on wetland plant species richness, diversity, and community composition. Oecologia, 130, 626-636
    Fahn A., Culter D. 1992. Xerophytes. Borntraeger, Berlin
    Freeman, C.C. & Hulbert, L.C. 1985. An annotated list of the vascular flora of Konza Prairie Research Natural Area, Kansas. Transactions of the Kansas Acad. Sci. 88, 84–115
    Fridley, J.D. 2002. Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia 132, 271-277
    Forys, E.A. & Allen, C.R. 2002. Functional group change within and across scales following invasions and extinctions in the everglades ecosystem. Ecosystem 5, 339-347
    Giller, P.S. 1984. Community structure and the niche. Chapman and Hall. London
    Gitay, H. & Noble, I.R. 1997. What are functional types and how should we seek them? In: Smith, T.M., Shugart, H.H. & Woodward, F.I. (Eds.) Plant functional Types, pp. 3-19. Cambridge University Press. Cambridge
    Grime, J.P., Hodgson, J.G. & Hunt, R. 1988. Comparative Plant Ecology: A Functional Approach to common British Species. London: Unwin Hyman
    Gough, L., Grace, J.B., Taylor, K.L. 1994. the relationship between species richness and community biomass: the importance of environmental variables. Oikos. 70, 271-279
    Golluscio, R.A., and Sala, O.E. 1993. Plant functional types and ecological strategies in Patagonian forbs. J. Veg. Sci. 4, 839-846
    Harris, D., Davy, A. J. 1988. Carbon and nutrient allocation in Elymus farctus seedlings after burial with sand. Annals of Botany 61, 147-157
    Hassel, M.P. & Varley, G.C. 1969. New inductive population model for insect parasites and its bearing on biological control. Nature 223, 1133-1136
    Hattersley, P.W. 1987. Variations in photosynthetic pathway. – In: Soderstrom, T.R., Hilu, K.W., Campbell, C.D.S., Barkworth, M.E. (ed.): Grass Systematics and Evolution. Pp. 49-64. Smithsonian Institute Press, Washington
    Haxeltine, A., Prentice, I. C. & Creswell, I. D.1996. A coupled carbon and water flux model to predict vegetation structure. J. Veg. Sci., 7, 651~666
    Haxeltine A, Prentice I. C. 1996. BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles, 10, 693~709
    Hector, A., Schmid, B., Beierkuhnlein, C., et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123-1127
    Hooper, D.U. & Vitousek, P.M. 1997. The effects of plant composition and diversity on ecosystem process. Science 277, 1302-1305
    Hooper, D.U. & Vitousek, P.M. 1998. Effects of plant composition and diversity on nutrient cycling. Ecol. Monogr. 68, 121-149
    Jiang, G., Tang, H., Yu, M., Dong, M. 1999. Response of photosynthesis of different plant functional types to environmental changes along Northeast China Transect. Trees, 14, 72-82
    Katagawa, M. 1998. Neo-Lineamenta Floreae Manshuricae. - Oecologia 116: 85-97
    Krueger-Mangold, J., Sheley, R., Engel, R., 2004. et al. Identification of the limiting resource within a semi-arid plant association. J. Arid Envir. 58,309-320
    Lavorel, S., McIntyre, S., and Grigulis, K. 1999. Plant response to disturbance in a Mediterranean grassland: how many functional groups? J. Veg. Sci. 10, 661–672
    Lavorel S., Garnier E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct.Ecol. 16, 545-556
    Leemans, R. 1997. The use of plant functional type classifications to model the global land cover and simulate the interactions between the terrestrial biosphere and the atmosphere. - In: Smith, T.M., Shugart, H.H., Woodward, F.I. (ed.): Plant Functional Types: Their Relevance to Ecosystem Properties and Global Change. Pp. 271-288. Cambridge University Press, Cambridge
    Leps, J. Osbornova-Kosinova, J. & Rejmanek, M. 1982. Community stability, complexity and species life history strategies. Vegetatio 50, 53-63
    Liu, X.Q., Wang R.Z., & Li, Y.Z. 2004. Photosynthetic pathway types in rangeland plant species from Inner Mongolia, North China. Photosynthetica 42(3): 339-344
    Looman, J. 1983. Distribution of plant species and vegetation types in relation to climate. Vegetatio 54, 17-25
    MacGillivray, C.W. & Grime, J.P. 1995. Testing predictions of the resistance and resilience of vegetation subjected to extreme events. Funct. Ecol. 9, 640-649
    McIntyre, S., Lavorel, S., Landsberg, J. & Forbes, T.D.A. 1999. Disturbance response in vegetation-towards a global perspective on functional traits. J. Veg. Sci., 10, 621-630
    McNaughton, S.J. 1983. Serengeti grassland ecology: the role of composite environmental factors and contingency in community organization. Ecol. Monogr. 53, 291-320
    Micael, J. & Bjorn, M. 2003. Mechanisms behind positive diversity effects on ecosystem functioning: testing the facilitation and interference hypotheses. Oecologia 134, 554-559
    Milchunas, D.G., Lauenroth, W.K., Chapman, P.L., Kazempour, M.K., 1989. Effects of grazing, topography, and precipitation on the structure of a semiarid grassland. Vegetatio 80, 11-23
    Moore, D.R. & Keddy, P.A. 1989. The relationship between species richness and standing crop in wetlands: the importance of scale. Vegetatio 79, 99-106
    Naeem, S., Thompson, L.J., Lawler, S.P. & Woodfin, R.M. 1994. Declining biodiversity can alter the performance of ecosystems. Nature 368: 734-737
    Naeem, S. 1998. Species redundancy and ecosystem reliability. Conserv. Biol. 12, 39-45
    Ni, J., 2003. Plant functional types and climate along a precipitation gradient in temperate grasslands, north-east China and south-east Mongolia. J. Arid Envir. 53: 501-516
    Niu, S.L., Jiang, G.M., Gao, L.M., Li, Y.G. & Liu, M.Z. 2003. Comparison of gas exchange traits of different plant species in Hunshandak sand area. Acta Phytoecologica Sinica 27, 318-324
    Noble, I.R. & Gitay, H. 1996. A functional classification for predicting the dynamics of landscapes. J. Veg. Sci. 7, 329-336
    Odum, E. P. 1969. The strategy of ecosystem development. Science. 164, 262-270
    Oksanen, J. 1996. Is the humped relationship between species richness and biomass an artefact due to plot size? J. Ecol. 84, 293-295
    Orshan, G. 1986. The deserts of the Middle East. In: Evenari M., Noy-Meir, I. and Goodall, D.W. (eds), Ecosystems of the world, Vol 12B. Hot deserts and arid shrublands. Elsevier, Amsterdam, 1-28 pp
    Owen, J.G. 1988. On productivity as a predictor of rodent and carnivore diversity. Ecology 69, 1161-1165
    Paruelo, J.M. & Lauenroth, W.K. 1996. Relative abundance of plant functional types in grasslands and shrublands of North America. Ecol. Appl. 6, 1212-1224
    Pavlik, B.M. 1980. Patterns of water potential and photosynthesis of desert sand dune plant, Eureka Valley, California. Oecologia, 46, 147-154
    Peterson D.L. & Waring, R.H. 1994. Overview of the Oregon transect ecosystem research project. Ecol. Appl., 4,211-225.
    Pillar V.D. 1999. On the identification of optimal plant functional types. J.Veg. Sci. 10, 631–640.
    Pillar,V.D. & Sosinski Jr, E.E. 2003. An improved method for searching plant functional types by numerical analysis. J. Veg. Sci. 14, 323-332
    Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A., Solomon, A.M. 1992. A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography, 19, 117~134
    Puerto, A., Rico, M., Matias, M.D. & Garcia, J.A. 1990. Variation in structure and diversity in Mediterranean grasslands related to trophic status and grazing intensity. J. Veg. Sci. 1, 445-452
    Pyankov, V. I., Gunin, P. D., Tsoog, S. and Black, C. C. 2000. C4 plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate. Oecologia, (123): 15~31
    Raich, J.W., Russell, A.E., Vitousek, P.M. 1997. Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawaii. Ecology 78, 707-721
    Raunkiaer, C. 1934. The life forms of plants and statistical plant geography. Oxford: Clarendon Press
    Redmann, R.E., Yin, L., Wang, P. 1995. Photosynthetic pathway types in grassland plant species from Northeast China. – Pho-tosynthetica 31: 251-255
    Robert, S.S. & Dethier, M.N. 1994. A functional group approach to the structure of algal-dominated communities. Oikos 69, 476-498
    Rutherford, M.C. 1980. Annual plant production-precipitation relations in arid and semi-arid regions. South African Journal of Science, 76, 53-56
    Sage, R.F., Wedin D.A., Li, M. R. 1999. The biogeography of C4 photosynthesis patterns and controlling factors. In: Sage,R.F., Monson, R.K., (eds). C4 plant biology. San Diego: Acadimic Press, 313-373
    Schulze, E.D. & Mooney, H.A. 1993. Biodiversity and ecosystem function. Springer-Verlag Semenova G.V. & Van der Maarel, E. 2000. Plant functional types – a strategic perspective. J. Veg. Sci. 11, 917-922
    Shugart, H.H. 1997. Plant and ecosystem functional types. In: Smith, T.M., Shugart, H.H. & Woodward, F.I. (Eds.) Plant functional Types, pp. 3-19. Cambridge University Press Cambridge
    Skarpe, C. 1992. Dynamics of savanna ecosystems. J. Veg. Sci., 3(3), 293-400
    Smeck, N.E. 1973. Phosphorus: an indicator of pedogenetic weathering processes. Soil Science 115,199-206
    Smith, B.N., Brown, W.V. 1973. The Kranz syndrome in the Gra-mineae as indicated by carbon isotopic ratios. – Amer. J. Bot. 60: 505-513
    Smith, T.M. & Shugart, H.H. 1996. The application of patch models in global change research. In: Walker, B. & Steffen, W. (eds.) Global change and terrestrial ecosystems. Pp.127-148. Cambridge University Press, Cambridge, UK
    Solomon , A.M. 1986. Transient-response of forests to CO2 –induced climate change: simulation modeling experiments in eastern North-America. Oecologia 68, 567-579
    Song, M.H. & Dong, M. 2002. Clonal plants and plant species diversity in wetland ecosystems in China. J. Veg. Sci. 13, 237-244
    Spanner, M., Johnson, L., Miller, J., McCreight, R., Freemantle, J., Runyon, J., Gong, P. 1994. Remote sensing of seasonal leaf area index acrossthe Oregon transect. Ecol. Appl., 4, 258-271
    Symstad, A.J., Tilman, D., Willson, J. & Knops, J.M.H. 1998. Species loss and ecosystem functioning: effects of species identity and community composition. Oikos 81, 389-397
    Taiz, L., Zeiger, E. 1991. Plant Physiology. Redwpood: Benjamin/Cummings Publ. Co. Inc Takeda, T. and Hakoyama, S. 1985. Studies on the ecology and geographical distribution of C3 and C4 grasses. 2. Geographical distribution of C3 and C4 grasses in far east and south east Asia. Japanese Journal of Crop Sciences, (54): 65 ~ 71
    Tang, H. P. and Zhang, X. S. 1999. A new approach to distinguishing photosynthetic types of Plants: A case study in Northeast China Transect (NECT) platform. Photosynthetica, (37): 97~ 106
    Tang, H.P. 1999. Distribution of C4 plants along the Northeast China transect and its correlation to the environmental factors. Chinese Science Bulletin 44: 1316-1320
    Teeri, J. A. and Stowe, L. G. Livingstone, D. A. 1980. The distribution of C4 species of the Cyperaceae in North America in relation to climate. Oecologia, (47): 307~ 310
    The Editorial Committee of Flora of Inner Mongolian 1989-1998. Flora of Inner Mongolia. People Press of Inner Mongolia, Hohhot
    Thompson, K., Hillier, S.H.,Grime, J.P., Bossard CC, Band SR. 1996. A functional analysis of a. limestone grassland community. J. Veg. Sci. 7, 371-380
    Tilman, D. & Downing, J.A. 1994. Biodiversity and stability in grasslands. Nature 367, 363-365.
    Tilman, D., Knops, J., Wedin, D. Reich, P., Ritchie, M. & Siemann, E. 1997. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300-1302
    Tilman, D., Reich, P.B., Knops, J., Wedin, D., Mielke, D. & Lehman, C. 2001. Diversity and productivity in a long-term grassland experiment. Science 294, 843-845
    Troumbis, A.Y. & Memtsas, D. 2000. Observational evidence that diversity may increase productivity in Mediterranean shrublands. Oecologia 125,101-108
    Turner, C.L. & Knapp, A.K. 1996. Responses of a C4 grass and three C3 forbs to variation in nitrogen and light in tallgrass prairie. Ecology 77, 1738–1749
    Van der Valk. 1974. Environmental factors controlling the distribution of forbs on coastal foredunes in Cape Hatteras National Seashore. Canadian Journal of Botany 52, 1057-1073.
    Wagner, R.H. 1964. The ecology of Uniola paniculata L. in the dune-strand habitat of North Carolina. Ecol. Monogr. 34, 79-95
    Wang, R.Z. 2002a. Photosynthetic pathways, life forms, and reproductive types for forage species along the desertification gradient on Hunshandake desert, North China. Photosynthetica 40(3), 321-329
    Wang, R. Z. 2002b. Photosynthetic pathway types of forage species along grazing gradient from the Songnen grassland, Northeastern China. Photosynthetica, 40(1): 57 –61
    Wang, R. Z. 2002c. The C4 photosynthetic pathway and life forms in grassland species from North China. Photosynthetica, 40 (1): 97-102
    Wang, R. Z. 2002d. Photosynthetic pathways and life forms in different grassland types from North China. Photosynthetica, 40 (2): 243-250
    Wang, R.Z. 2003. Photosynthetic pathway and morphological functional types in the steppe vegetation from Inner Mongolia, North China. – Photosynthetica 41: 143-150
    Wang, R.Z. 2004a.C4 species and response to large-scale longitudinal climate variables along the Northeastern China Transect (NECT). Photosynthetica, 42(1): 71-79
    Wang, R.Z. 2004b.Photosynthetic and morphological functional types from different steppe communities in Inner Mongolia, North China. Photosynthetica, 42(4): 493-503
    Wang, Y., Guo, Y., 1993. Establishment of artificial grasslands on the degraded stipa steppe in the Alpine area high latitude zone of China. J. Jpn. Grassl. Sci. 89, 343-348
    Wang, Y., Shiyomi, M., Tsuiki, M., Tsuysumi, M., Yu, X., Yi, R. 2002. Spatial heterogeneity of vegetation under different grazing intensities in the Northwest Heilongjiang Steppe of China. Agriculture Ecosystem & Environment, 90, 217-229
    Wardle, D.A., Zackrisson, O., Hornberg, G. & Gallet. C. 1997. The influence of island on ecosystem properties. Science 277, 1296-1299
    Walker, B. 1992. Biodiversity and ecological redundancy. Conserv. Biol. 6: 18-23
    Walker, B. 1994. Landscape to regional scale response of terrestrial ecosystems to global change. AMBIO, 23(1), 67-73
    Walker, B., Kinzig, A. & Langridge, J. 1999. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystem 2, 95-113
    Walker, B. and Langridge, J. 2002. Measuring functional diversity in plant communitied with mixed life forms: a problem of hard and soft attributes. Ecosystems 5, 529-538
    Weiher, E.,van der Werf, A., Thompson, K., Rodeick, M., Garnier, E. & Eriksson, O. 1999. Challenging Theophrastus: A common core list of plant traits for functional ecology. J. Veg. Sci. 10, 609-620
    Wheeler, B.D. & Giller, K.E. 1982. Species richness of herbaceous fen vegetation in Broadland, Norfolk in relation to the quantity of above-ground plant material. J. Ecol. 70, 179-200
    White, A.S., Witham, J.W., Hunter, Jr., Malcolm, L. & Kimball, A.J. 1999. Relationship between plant species richness and biomass in a coastal Maine Quercus-Pinus forest. J. Veg. Sci. 10, 755-762
    Wilcox, B. P., Breshears, D.D., Turin, H.J. 2003. Hydraulic Conductivity in A Pi?on-Juniper Woodland: Influence of Vegetation. SOIL SCI. SOC. AM. J. 67(4), 1243-1249
    Williams, G. J. and Markley, J. L. 1973.The photosynthetic pathway type of North America short grass prairie species and some ecological implications. Photosynthetica, 7, 262 – 270
    Wilsey, B.J. & Potvin, C. 2000. Biodiversity and ecosystem functioning: the importance of species evenness in an old field. Ecology 81, 887-892
    Woodward, F.I., Cramer, W. 1996. Plant functional types and climatic changes: introduction. J.Veg. Sci., 7, 306-308
    Woodward, F.I., Kelly, C.K. 1997. Plant functional types: towards a definition by environmental constraints. In: Smith, T.M., Shugart, H.H. & Woodward, F.I. (Eds.) Plant functional Types, pp. 3-19. Cambridge University Press. Cambridge
    Zohary, M. 1962. Plant life of Palestine. Ronald, New York
    Zobel, K. & Liira, J. 1997. A scale-independent approach to the richness vs. biomass relationship in ground-layer plant communities. Oikos 80, 325-332
    白永飞,陈佐忠. 2000.锡林河流域羊草草原植物种群和功能群的长期变异性及其对群落稳定性的影响. 植物生态学报, 24(6): 641-647
    白永飞,张丽霞,张炎,陈佐忠.2002.内蒙古锡林河流域草原群落植物功能群组成沿水热梯度变化的样带研究. 植物生态学报,26(3):308-316
    北京师范大学主编. 1984,北京植物志. 北京: 北京出版社, 1-2卷
    常学礼,鲁春霞,高玉葆. 2003. 科尔沁沙地不同沙漠化阶段植物种多样性与草地草场地上生物量关系研究. 自然资源学报, 18(4):475-482
    陈有君,关世英,李绍良,刘钟龄, 梁存柱,王艳芬. 2000. 内蒙古浑善达克沙地土壤水分状况分析. 干旱区资源与环境,14(1): 80-85
    初玉. 2005. 混善达克沙地植物功能型多样性:[博士学位论文]. 北京:中国科学院植物研究所
    河北植物志编辑委员会主编. 1986. 河北植物志. 石家庄: 河北科学技术出版社,1-3 卷
    蒋高明. 2002.浑善达克沙地退化生态系统恢复的对策.中国科技论坛,3:13-15
    江小蕾,张卫国,杨振宇,王刚. 2003. 不同干扰类型对高寒草甸群落结构和植物多样性的影响. 西北植物学报, 23(9):1479-1485
    李建东,杨允菲.2003. 松嫩平原榆树疏林植物组分的结构型. 草地学报, 11(4):277-300
    李建东,杨允菲. 2004. 松嫩平原盐生群落植物的组合结构.草业学报, 13(1) :32-38
    李美荣. 1993. C4 光合作用植物名录. 植物生理学通报, (29):148 - 159, 221- 240
    李荣平,刘志民,蒋德明,李雪华. 2004. 植物功能型及其研究方法. 生态学杂志,23(1),102-106
    李永宏,1993 放牧对羊草草原和大针茅草原植物多样性的影响. 植物学报,35:(11),877-844
    刘守江,苏智先,张璟霞,胡进耀. 2003. 陆地植物群落生活性研究进展. 四川师范学院学报, 24(2): 155-159
    内蒙古植物志编辑委员会主编. 1980. 内蒙古植物志. 呼和浩特: 内蒙古人民出版社, 1-5卷
    倪健. 2001. 区域尺度的中国植物功能型与生物群区. 植物学报, 43(4): 419-425.
    牛书丽,蒋高明,李永庚. 2004. C3与 C4植物的环境调控. 生态学报, 24(2):308-314.
    沈泽昊,张新时. 2000. 基于植物分布地形格局的植物功能型划分研究. 植物学报, 42(11) : 1190-1196.
    孙国钧,张荣,周立. 2003. 植物功能多样性与功能群研究进展. 生态学报, 23(7):1430-1435
    孙慧珍,国庆喜,周晓峰. 2004. 植物功能型分类标准及方法. 东北林业大学学报,32(2):81-83
    唐海萍,蒋高明. 2000.植物功能型及其生态学意义. 应用生态学报, 11(3): 461-464.
    唐海萍,刘书润. 2001.内蒙古地区的 C4植物名录.内蒙古大学学报,32(4):431-438
    唐海萍,刘书润,张新时. 1999a. 内蒙古地区 C4植物及其生态地理特性的研究. 植物学报, 41(4):420-424
    唐海萍,蒋高明,张新时. 1999b. 判别分析方法在鉴别 C3、C4植物中的应用—以中国东北样带(NECT)的研究为例. 植物学报, 41(10),1132-1138
    王国宏. 2002.地带性木本植物群落功能型的水热分布格局. 林业科学, 38(1) : 15-23
    王萍,殷立娟,李建东. 1997.东北草原区 C3和 C4植物的分布及其适应盐碱环境的生理特性. 应用生态学报, 8(4):407-411
    翁恩生,周广胜. 2005.用于全球变化研究的中国植物功能型划分. 植物生态学报,29(1):81-97
    殷立娟,祝玲. 1990. 中国东北草原地区牧草资源中的 C3和 C4植物. 内蒙古草业,2: 32-40
    殷立娟,王萍. 1997. 中国东北草原植物种的 C3和 C4光合作用途径. 生态学报, 17(2): 113-123
    殷立娟,李美荣. 1997. 中国 C4植物的地理分布和生态学研究 I. 中国 C4植物及其与气候环境的关系. 生态学报, 17(4): 350-363

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700