用户名: 密码: 验证码:
人类胚胎干细胞体外培养过程中Wnt基因在饲养层和人类胚胎干细胞中的差异表达及Wnt9a的RNAi研究;生精相关新基因Cymg1和Rcet1的克隆及初步功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:对核型正常和异常的人类胚胎干细胞(hESCs)在体外培养过程中Wnt基因在饲养层和hESCs中的差异表达分析,分别筛选出可能促进hESCs正常增殖和引起核型发生变化的候选Wnt基因,并对其中的Wntga候选基因进行RNAi(RNA干扰)研究,了解其生理功能;在小鼠睾丸或生殖域中克隆与生精相关的新基因,并对其功能进行初步研究。
     研究方法:用RT-PCR方法对核型正常和异常的hESCs在体外培养过程中Wnt基因在饲养层和hES细胞中的差异表达分析,分别筛选维持hESCs正常增殖和促使其核型变化的候选基因:用RT-PCR、原位杂交、免疫组化、细胞定位和过表达方法研究其定位和表达,并构建pAVU6+27/siWnt9as针对人Wnt9a RNA干扰的表达载体,采用原位杂交方法检测RNA干扰效应,以及流式分析过表达和低表达人Wnt9a对细胞周期的影响;应用DDD(数据库削减杂交)结合实验方法,克隆在睾丸或生殖域中特异表达的新基因,采用RT-PCR、Northern、原位杂交、免疫组化、蛋白表达和细胞定位等方法研究新基因的初步功能。
     研究结果:①Wnt7a在培养核型正常hESCs 6天后的hEFs(人类胚胎成纤维细胞)和ICR小鼠胚胎成纤维细胞(mEFs)中表达,在对照和培养第一号染色体核型异常的hESCs 6天后的hEFs和ICR mEFs中无表达。Wnt3a在培养核型正常hESCs 6天后的ICR mEFs中高表达,在对照和培养核型异常hESCs 6天后的ICR小鼠mEFs中无表达。Wnt3在培养第一号染色体核型异常的hESCs 6天后的hEFs和ICRmEFs中表达,且表达量逐渐增强,对照和培养核型正常hESCs后的hEFs中无表达;但培养正常hESCs 6天后的ICR和昆明小白鼠mEFs中有Wnt3的表达;同时,昆明小白鼠mEFs对照中也有Wnt3的表达。Wnt9a的表达量在未培养正常hESCs的hEFs中表达量高,而在养hESCs后的hEFs中表达量低。Wnt16在培养正常hESCs 6天后的昆明小白鼠mEFs中有较高的表达,而对照和hEFs及ICR小鼠mEFs中均无Wnt16表达。②Wnt9a在人3个月胚胎的多组织中均表达;原位杂交和免疫组化表明Wnt9a在MCF-7人乳腺癌细胞和hESCs中表达;Wnt9a定位在胞浆中表达;原位杂交检测表明转染了pAVU6+27/siWnt9as的MCF-7细胞无杂交信号或杂交信号弱,未转染
Objective: The aims of our research are ① to filter candidate Wnt genes which are important for maintenance of normal hESCs or resulting in karyotypic change through analysis of Wnt genes of differential expression in human and mouse feeder cells and hESCs during culture of normal or abnormal karyotype hESCs. ② to research the function of Wnt9a that RNAi for human Wnt9a were performed. ③ to clone the spermatogenesis-related new genes expressed in mouse testes or reproductive tract and to study their function.
    Methods: ① differential expression analyses of Wnt genes in human and mouse feeder cells and hESCs during culture normal or abnormal karyotype hESCs were carried out to filter candidate Wnt genes which are important for maintenance of the normal hESCs or resulting in karyotypic change. Analyses of RT-PCR, in situ hybridization, immunohistochemistry and localization were performed to study the function of human Wnt9a. ② By synthesizing siRNAs, the pAVU6+27/siWnt9as expression vectors were constructed for human Wnt9a RNAi and then use in situ hybridization was performed to examine the effect of siRNAs for Wnt9a. MTT assay were carried out to analyze cell cycle and apoptosis at over expression and lower expression Wnt9a in MCF-7 cells. ③ DDD and experiment methods were performed to clone new genes expressed in mouse testis or reproductive tract and to study their functions by RT-PCR, northern blotting, in situ hybridization, Immunohistochemistry, protein expression and cell location analysis.
    Results: ① Wnt7a was expressed in hEFCs and ICR mEFCs after culture normal karyotype hESCs, but not expressed in control and in hEFCs and ICR mEFCs after culturing abnormal karyotype hESCs with karyotypic change in chromosome NO. 1. Wnt3a was expressed in ICR and KUNMINGBAI mouse mEFCs after culturing normal karyotype hESCs, but not expressed in control and in mEFCs after culture abnormal karyotype hESCs. Wnt3 was expressed in ICR mEFCs and hEFCs after culture abnormal karyotype hESCs, not expressed in control, but
引文
[1] Stem cells: scientific progress and future research directions. National Institutes of Health, 2001
    [2] Wiilert K, Brown J D, Danenberg E, et al. Wnt proteins arelipid-modified and can act as stem cell growth factors. Nature, 2003,423 (6938): 448-452
    [3] K. Cadigan, R. Nusse, Genes Dev. 11, 3286 (1997).
    [4] Miller JR. The Wnts. Genome Biol, 2002, 3(3001): 123001-15.
    [5] Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNAin C. elegens. Nature, 1998,391: 806-811.
    [6] Sehutze N. siRNA technology. Mol Cell Endocrinol, 2004,213:115-119.
    [7] TANG Fu-Chou, XUE You-Fang. RNA interference and gene silencing. Heredi tas (Beijing), 2001,23 (2) : 167-172.
    [8] YUAN Wu-Zhou, BODMER Rolf, ZHU Chuan-Bing, et al. The use of RNAi as. a technique to study t he function of heart-related genes in Dro2sophi la. Acta Genetica S inica, 2002, 29 (1): 34~38.
    [9] MAJun, ZHOU Hong-Lin, SU Lei, et al. Influence of basonu-elin gene expression in mice oocyte using exogenous dsRNA. Science inChina Series (C), 2002, 32(3): 248~255.
    [10] ZHANG Li-Sheng, CHEN Da-Yuan. RNA interference and itspromising future. Hereditas(Beijing),2003,25(3):341-343.
    [11] MENGHe, CHEN Xue- Hui, WANG Qi- Shah , et al. Inhibition of green fluorescent protein gene expres2sion in chicken blastoderm cells by siRNA. Acta Zoologica Sinica, 2004,50(2): 302~307.
    [12] Napoli C, Lemieux C, Jorgensen R A. Introduction of a chaleone synthase gene into Petunia results in reversible co2suppression of ho2mologous genes in trans. Plant Cell, 1990, 2: 279-289.
    [13] Bemstein E, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001,409(6818):363-366
    [14] Elbashir S M, Harborth J, Weber K, et al. Analysis of genefunction in somatic mammalian cells using small interfering RNAs.Methods ,2002,26: 199-213.
    [15] Miller V M, Xia H, Marts GL, et al. Allele-specific silencing of dominant disease genes.Proc Natl Acad Sci , 2003,100: 7195~7200.
    [16] Song E, Lee S K, Wang J, et al. RNA interference targeting Fas protectsmice from fulminant hepatitis. Nature Medicine, 2003,9: 347~351.
    [17] Paddison P J, Silva J M, Conklin D S, et al. A resource for large scale RNA interference basedscreens in mammals. Nature, 2004, 428: 427-431.
    [18] Betas K, Hijmans E M, Mullenders J, et al. A large2scale RNAi screen in human cells identifiesnew components of the pathway. Nature, 2004, 428:431-437.
    [19] Gail A. Cornwall , Nelson Hsia. A new subgroup of the family 2 cystatins. Molecular and Cellular Endocrinology, 2003, 200:1-8
    [20] J.P., Abrahamson, M., Olafsson et al. Structure and expression of the gene encoding cystatin D, a novel human cysteine proteinase inhibitor. J. Biol. Chem. 1991, 266: 20538-20543.
    [21] J., Fernandez, M.A., Danielsson, L., et al. Cystatin F is a glycosylated human low molecular weight cysteine proteinase inhibitor. J. Biol. Chem.. 1998, 273: 24797-24804.
    [22] D.P., Thiesse, M. and Hicks, M.J. Expression of type 2 cystatin genes CST1-CST5 in adult human tissues and the developing submandibular gland. DNA Cell Biol. 2002, 21:47-65
    [23] L.A., Lehesjoki, A.E., et al., Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1). Science 1996, 271: 1731-1734.
    [24] K., Pennacchio, L.A., Park, M., et al. Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes. Hum. Mol. Genet. 2001, 10:1867-1871.
    [25] A., Jensson, O., Gudmundsson, G., Amason, et al. Abnormal metabolism of gamma-trace alkaline microprotein. The basic defect in hereditary cerebral hemorrhage with amyloidosis. N. Engl. J. Med. 1984, 311: 1547-1549.
    [26] Evans M J, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981, 9, 292(5819): 154-156
    [27] Martin GR. Isolation of a pluropotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA, 1981, 78:7634-7638
    [28] Doetschman T, Williams P, Maeda N, et al. Establishment of hamster blastocyst-derived embryonic stem (ES) cells. Dev Biol, 1988, 127(1): 224-227
    [29] Graves KH, Moreadith RW. Derivation and characterization of putative pluripotential embryonic stem cells from preimplantation rabbit embryos. Mol Reprod Dev, 1993, 36(4): 424-433
    [30] Notarianni E, Laurie S, Moor RM, et al. Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts, J Reprod Fertil Suppl, 1990; 41:51-66.
    [31] Talbot NC, Powell AM, Rexroad CE Jr. In vitro pluripotency of epiblasts derived from bovine blastocysts. Mol Reprod Dev,1995, 42(1): 35-52
    [32] Kuhholzer B, Baguisi A, Overstrom EW. Long-term culture and characterization of goat primordial germ cells. Theriogenology, 2000, 53(5): 1071-1079
    [33] Iannaccone PM, Tabom GU, Garton RL, et al. Pluripotent embryonic stem cells from the rat are capable of producing chimeras. Dev Biol, 1994, 163(1): 288-292
    [34] Sukoyan MA, Golubitsa AN, Zhelezova AI, et al. Isolation and cultivation of blastocyst-derived stem cell lines from American mink (Mustela vison). Mol Reprod Dev, 1992, 33(4): 418-431
    [35] Thomson JA, Kalishman J, Golos TG, et al. Isolation of a primate embryonic stem cell line. Proc. Natl. Acad. Sci. USA, 1995, 92 (17):7844-7848
    [36] Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282 (5391): 1145-1147
    [37] Shamblott M J, Axelman J, Shunping Wang, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad Sci. USA, 1998, 95(23): 13726-13731
    [38] Hori Y, Rulifson IC, Tsai BC, et al. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc. Natl. Acad. Sci. USA, 2002, 99 (25): 16105-16110
    [39] Kim JH, Auerhach JM, Rodriguez-Gomez JA, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature, 2002, 418(6893):50-56
    [40] Smith A. Cell therapy: In search of pluripotency. Curr Biol, 1998, 8(22): R802-R804]
    [41] Bloom FE. Breakthroughs 1999. Science 1999,286 (5448):2267.
    [42] 李凌松,朱建健,杜仪琴等.干细胞的研究进展及临床应用前景.生理科学进展,2001,32(2):138-140
    [43] Scholer HR, Ciesiolka T, Gruss P. A nexus between Oct-4 and E1A: implications for gene regulation in embryonic stem cells. Cell, 1991, 66(2): 291-304
    [44] Prudhomme W, Daley G Q, Zandstra P, et al. Multivariate proteomic analysis of murine embryonic stem cell self-renewal versus differentiation signaling. Proc Natl Acad Sci USA, 2004,101 (9): 2900-2905
    [45] Thomson J, Itskovitz J, Shapiro S S, et al. Embryonic stem cell lines derived from human blastocysts. Science, 1998,282 (5391) : 1145~1147
    [46] Xu C H , Inokuma M S , Denham J , et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol, 2001, 19 (10): 971-974
    [47] Sato N, Sanjuan I M, Heke M, et al. Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol, 2003, 260 (2):404-413
    [48] Ying Q L, Nichols J, Chambers I, et al. BMP induction of Id proteinssuppresses differentiation and sustains embryonic stem cellself-renewal in collaboration with STAT3. Cell, 2003, 115(3):281-292
    [49] Qi X, Li TG, Hao J, et al. BMP4 supports self-renewal of embryonicstem cells by inhibiting mitogen-activated protein kinasepathways. Proc Nail Acad Sci USA, 2004, 101(16): 6027-6032
    [50] Huelsken J, Vogel R, Erdmann B. et al. beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell. 2001,105(4):533-45.
    [51] Wnt gene homepage:http://www.stanford.edu/~musse/wntwindow.html
    [52] Caroline Kemp, Erik Willems, Shaaban Abdo, et al. Expression of All Wnt Genes and TheirSecreted Antagonists During Mouse Blastocystand Postimplantation Development。 DEVELOPMENTAL DYNAMICS.2005, 233:1064-1075
    [53] Tannishtha Reyal & Hans Clevers. Wnt signalling in stem cells and cancer. NATURE 2005, 434:843-850
    [54] Niwa H. Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct Funct, 2001, 26(3): 137-148
    [55] Constantinescu S. Sternness, fusion and renewal of hematopoietic and embryonic stem cells, J Cell Mol Med, 2003, 7(2): 103-112
    [56] Sato N, Meijer L, Skaltsotmis L, et al. Maintenance of pluripotencyin human and mouse embryonic stem cells through activationof Writ signaling by a pharmacological GSK-3-specific inhibitor.Nat Med, 2004, 10(1): 55-63
    [57] Humphrey R K, Beattie G M, Lopez A D, et al. Maintenance ofpluripotency in human embryonic stem cells is STAT3 independent.Stern Cells, 2004, 22(4): 522-530;
    [58] Smith A G. Embryo-derived stem cells: Of mice and men. AnnuRev Cell Dev Biol, 2001, 17:435-462
    [59] Nakajima K, Yamaaaka Y, Nakae K, et al. A central role for Stat3in IL-6-induced regulation of growth and differentiation in Mlleukemia cells. EMBO J, 1996, 15(14): 3651-3658
    [60] Rosner MH, Vigano MA, Ozato K, et al. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo.Nature,1990, 345(6277):686-692
    [61] Okamoto K, Okazawa H, Okuda A, et al. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell,1990, 60(3):461-472
    [62] Saijoh Y, Fujii H, Meno C, et al. Identification of putative downstream genes of Oct-3, a pluripotent cell-specific transcription factor. Genes Cells, 1996,1(2):239-252
    [63] Pesce M, Gross MK, Scholer HR. In line with our ancestors: Oct-4 and the mammalian germ. Bioessays., 1998, 20(9):722-732
    [64] Scholer HR, Dressler GR, Bailing R, et al. Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. EMBO J, 1990, 9 (7):2185-95.
    [65] Palmieri S L, Peter W, Hess H, et al. Oct-4 transcription factor isdifferentially expressed in the mouse embryo during establishmentof the first two extraembryonic cell lineages involved in implantation.Dev Biol, 1994, 166(1): 259-267
    [66] Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotentstem cells in the mammalian embryo depends on the POUtranscription factor Oct4. Cell, 1998, 95(3): 379-391
    [67] Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4defines differentiation, dedifferentiation or self-renewal of EScells. Nat Genet, 2000, 24(4): 372-376
    [68] Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003, 113(5):643-655
    [69] Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 2003, 113(5):631-642
    [70] Cavaleri F, Scholer H R. Nanog: a new recruit to the embryonicstem cell orchestra. Cell, 2003, 113(5): 551-552
    [71] Fujikura J, Yamato E, Yonemura S, et al. Differentiation of embryonicstem cells is induced by GATA factors. Genes Dev, 2002,16(7): 784-789]
    [72] Yuan H, Corbi N, Basilico C, et al. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3.Uenes Dev,1995,9 (21):2635-2645.
    [73] Guo Y, Costa R, Ramsey H, et al. The embryonic stem cell transcription factors Oct-4 and FoxD3 interact to regulate endodermal-specific promoter expression.Proc Natl Acad Sci USA, 2002, 99(6):3663-3667
    [74] Avilion AA, Nicolis SK, Pevny LH,et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev, 2003,17(1): 126-140
    [75] Hanna L.A,Foreman R.K,Tarasenko I.A,et al. Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev, 2002, 16(20):2650-2661
    [76] Nusse R,Varmus H E. Wnt Genes. Cell, 1992, 69 (7): 1073-1087
    [77] BJ Gavin and AP McMahon. Differential regulation of the Wnt gene family during pregnancy and lactation suggests a role in postnatal development of the mammary gland. Mol. Cell. Biol. 1992, 12(5):2418-2423
    [78] Markus Panhuysen, Daniela M. Vogt Weisenhorn, Veronique Blanquet, a,l Claude Brodski,a,b Ulrich Heinzmann,c Wolfgang Beisker,d and Wolfgang Wursta,b,*。Effects of Wnt1 signaling on proliferation in the developing mid-/hindbrain region。Mol. Cell. Neurosci. 2004, 26:101-111
    [79] S.E. Ross, N. Hemati, K.A. Longo, et al. Inhibition of adipogenesis by Wnt signaling, Science 2000, 289:950-953.
    [80] C.N. Bennett, S.E. Ross, K.A. Longo, et al. Regulation of Wnt signaling during adipogenesis, J. Biol. Chem. 277 (2002)30998-31004.
    [81] Xu, Z.; Mazieres, J.; He, B.; et al. Wnt2 as a new therapeutic target in malignant pleural mesothelioma. Lung Cancer 2005, 49:75-76
    [82] Masaru Katoh, Hiroyuki Kirikoshi, Harumi Terasaki, et al. WNT2B2 mRNA, Up-Regulated in Primary GastricCancer, Is a Positive Regulator of the WNT-b-Catenin-TCF Signaling Pathway. Biochemical and Biophysical Research Communications.2001,289, 1093-1098
    [83] Kubo F, Takeiehi M, Nakagawa S. retinal cell differentiation at the ciliary marginal zone. Development 2003, 130:587-598
    [84] The Wnt Homepage; Niemann S, Zhao C, et al. Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am J Hum Genet. 2004 Mar;74(3):558-63. Epub 2004 Feb 5.
    [85] Liu, P., Wakarniya, M., Shea, M. J., et al. Requirement for Wnt3 in vertebrate axis formation. Nat.Genet. 1999, 22:361-365.
    [86] Shimizu, H., Julius, M. A., Giarre, et al. Transformation by Wnt family proteins correlateswith regulation of beta-catenin. Cell Growth Differ. 1997, 8:1349-1358.
    [87] Majlinda Lakoa, Susan Lindsayb, Joy Lincolna, et al. Charaeterisation of Wnt gene expression during the differentiation ofrnurine embryonic stem cells in vitro:role of Wnt3 in enhancing haematopoietie differentiation. Mechanisms of Development. 2001,103 49-59.
    [88] Nusse and Varmus. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982,31(1):99-109.
    [89] Tsukamoto A, Grossehedl R, Guzman R, et al. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenoearcinomas in male and female mice. 1988, Cell, 55, 619-625.
    [90] Lane TF and Leder P. Wnt-10b directs hypermorphie development and transformation in mammary glands of male and female mice. 1997,Oncogene, 15, 2133-2144
    [91] Noboru Sato, Laurent Meijer, Leandros Skaltsounis, et al. Maintence of pluripoteney in human and mouse embryonic stem cells through activiation of Wnt signaling by a pharmacological GSL-3-specific inhibitor. Nature, 2004, 1(10):55-63.
    [92] Reya T, Duncan A W, Ailles L, et al. A role for Wnt signalling inself-renewal of haematopoietic stem cells. Nature, 2003, 423(6938):409-414
    [93] Nelson W J, Nusse R. Comvergence of Wnt, βcatenin, and cadherinpathways. Science, 2004, 303 (5663): 1483-1487
    [94] Boland GM, Perkins G, Hall D J, et al.promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem. 2004 Dec 15;93(6):1210-30.
    [95] Parr B A, McMahon A P. Sexually dimorphic development of themammalian reproductive tract requires Wnt7a. Nature, 1998,395 (6703): 707-710
    [96] Anna Biason-Lauber, M.D., Daniel Konrad, et al. A WNT4 Mutation Associated with Mullerian-Duct Regression and Virilization in a 46,ⅩⅩ Woman. Endocrinology.2004.351:792-798
    [97] Jordan B K, Mohammed M , Ching S T , et al . Up2regulation ofWNT24 signaling and dosage2sensitive sex reversal in humans. AmJ Hum Genet, 2001,68 (5):1102-1109
    [98] Lipschutz JH.Molecular development of the kidney ,a reviewof the results of gene disruption structures. Am J Kidney Dis, 1998,31(3):383.
    [99] Dawies JA, Perera AD ,Walker CL. Expression of the Wntgene family during late nephrogenesis and complete ureteralobstruction. Lab Invest,1999,6(2),647.
    [100] Changgong Li, Jing Xiao, Khadija Hormi, et al.Wnt5a Participates in Distal Lung Morphogenesis。Developmental Biology 248, 68-81 (2002)
    [101] Kelly B. Chaa, Kristin R. Douglasa, et al. WNTSA signaling affects pituitary gland shape。Mechanisms of Development. 121 (2004) 183-194
    [102] Akio. Kanazawa, Syuuichi. Tsukada, Akihiro. Sekine, et al.Association of the Gene Encoding Wingless-Type Mammary Tumor Virus Integration-Site Family Member 5B (WNT5B) with Type 2 Diabetes。Am J Hum Genet. 2004;75(5): 832-843.
    [103] Akio Kanazawa, Shuichi Tsukada, Masumi Kamiyama, et al. Wnt5b partially inhibits canonical Wnt/b-catenin signaling pathwayand promotes adipogenesis in 3T3-L1 preadipocytes. Biochemical and Biophysical Research Communications 330 (2005) 505-510
    [104] Corina Sehmidt, Mechthild Stoeckelhuber, lain McKinnell,et al. Wnt 6 regulates the epithelialisation process of the segmental platemesoderm leading to somite formation. Developmental Biology. 2004,271:198-209
    [105] Marti n I. Garci a-Castro,* Christophe Marcelle, Marianne Bronner-Fraser. Ectodermal Wnt Function as aNeural Crest Inducer2. SCIENCE. 2002,297:848-851
    [106] Yusuke Hirabayashi, Yasuhiro Itoh, Hidenori Tabata, et al.The Wnt/β-catenin pathway directs neuronal differentiation of cortical neural precursor cells。 Development.2004,1242:2791-2801
    [107] Jane Viti, Alexandra Gulacsi, and Laura Lillien.Wnt Regulation of Progenitor Maturation in the CortexDepends on Shh or Fibroblast Growth Factor 2。The Journal of Neuroscience, 2003, 23(13): 5919-5927
    [108] Ivan B. Lobovl, Sujata Raol, Thomas J, et al. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature, 2005,437(15):417-421.
    [109] Brian A. Parr, Valerie A. Cornish, Myron I. Cybulsky,et al. Wnt7b Regulates Placental Development in Mice. Developmental Biology. 2001,237, 324-332
    [110] Antoine Agathon, Christine Thisse & Bernard Thisse. The molecular nature of thezebrafish tail organizer. NATURE, 2003, 424:448-452
    [111] Saitoh T, Mine T, Katoh M.Expression and regulation of WNT8A and WNT8B mRNAs in human tumor cell lines: up-regulation of WNT8B mRNA by beta-estradiol in MCF-7 cells, and down-regulation of WNT8A and WNT8B mRNAs by retinoic acid in NT2 cells. Int J Oncol. 2002,20(5):999-1003.
    [112] A. L. GARDA, L. PUELLES, J. L. R. RUBENSTEINc et al. EXPRESSION PATTERNS OF Wnt8b AND Wnt7b IN THE CHICKENEMBRYONIC BRAIN SUGGEST A CORRELATION WITH FOREBRAINPATrERNING CENTERS AND MORPHOGENESIS。Neuroscience, 2002, 113:689-698,
    [113] Kim SH, Shin J, Park HC, et al.Specification of an anterior neuroectoderm patterning by FrizzledSa-mediated Wnt8b signalling during late gastrulation in zebrafish.。Development. 2002,129(19):4443-55
    [114] Saitoh T, Mine T, Katoh M. Up-regulation of WNT8B mRNA in human gastric cancer. Int J Oncol. 2002,20(2):343-8.
    [115] Anthony D. Persona, Robert J. Garriocka, Paul A. Kriega,et al.Frzb modulates Wnt-9a-mediated h-catenin signaling during avianatrioventricular cardiac cushion development。Developmental Biology. 2005, 278:35-48
    [116] Carroll TJ, Park JS, Hayashi S,et al.Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell. 2005,9(2):283-92
    [117] Kelly GM, Lai CJ, Moon RT. Expression of wntl0a in the central nervous system of developing zebrafish. Dev Biol. 1993,158(1): 113-21.
    [118] Narita T, Sasaoka S, Udagawa K, et al.Wnt10a is involved in AER formation during chick limb development。Dev Dyn. 2005,233(2):282-287
    [119] Kirikoshi H, Sekihara H, Katoh M. Up-regulation of WNT10A by tumor necrosis factor alpha and Helicobacter pylori in gastric cancer. Int J Oncol. 2001,19(3):533-6.
    [120] Ulrich F, Krieg M, Schotz EM, et al. Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin. Dev Cell. 2005,9(4):555-64]
    [121] Cavodeassi F, Carreira-Barbosa F, Young RM et al. Early stages of zebrafish eye formation require the coordinated activity of Wnt11, Fz5, and the Wnt/beta-catenin pathway. Neuron. 2005,47(1):43-56.
    [122] Carl-Philipp Heisenberg, Masazumi Tada, Gerd-JoE rg Ranch, et al. Silberblick/Wnt11 mediates convergent extensionmovements during zebra(?)shgastrulation. NATURE, 2000,405:76-81
    [123] T. Brand. Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol. 2003,258(1):1-19. Review.
    [124] Hiromi Teramia, Kyoko Hidakaa, Takashi Katsumataa.et al.Wnt11 facilitates embryonic stem cell differentiationto Nkx2.5-positive cardiomyocytes. Biochemical and Biophysical Research Communications 325 (2004) 968-975
    [125] Mazieres J, You L, He B et al. Inhibition of Wnt16 in human acute lymphoblastoid leukemia cells containing the t(1;19) translocation induces apoptosis. Oncogene. 2005,24(34):5396-400.
    [126] Sijen T, Simmer F, Fire A.et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell. 2001;107(4):465-476.
    [127] Lipardi C, Wei Q, Paterson BM. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell, 2001,107(3):297-307
    [128] Billy E,Zhang HD, Filipowicz W. Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc Natl Acad Sci USA, 2001,98(25): 14428-14433
    [129] Elbashir SM, Lendeckel W, Tuschl T, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001,411(6836): 428-429
    [130] Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet, 2003,33(3):401-406
    [131] Barton GM, Medzhitov R. Retroviral delivery of small interfering RNA into primary cells. Proc Natl Acad Sci U S A,2002,99(23): 14943-14945
    [132] Lee NS, Bauer G, Rossi J. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol,2002,20(5):500-505
    [133] Capodici J, Kariko K, Weissman D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J Immunol, 2002,169(9):5196-5201
    [134] Kapadia SB, Brideau-Andersen A, Chisari FV. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci U S A, 2003,100 (4):2014-2018
    [135] Wilson JA, Jayasena S, Khvorova A, et al. RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc Natl Acad Sci U S A,2003,100(5):2783-2788
    [136] Shlomai A, Shaul Y. Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology, 2003,37(4):764-770
    [137] McCaffrey AP, Nakai H, Pandey K, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol, 2003,21(6):639-644
    [138] Wilda M, Fuchs U, Wossmann W, et al. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene,2002,21(37): 5716-5724
    [139] Wohlbold L, Van Der Kuip H, Miething C, et al. Inhibition of bcr-ab1 gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571). Blood, 2003,102(6):2236-223
    [140] Jiang M, Milner J. Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene, 2002,21(39):6041-6048
    [141] Hall AH, Alexander KA. RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. J Virol, 2003,77(10):6066-6069
    [142] Enrico M, Ferlin A, Pauline HY, et al. Male infertility caused by a de novo partial deletion of the DAZ cluster on the Y Chromosome. J Clin Endocrinol Metab,2000,85(11): 4069-4073
    [143] Stuppia L, Gatta V, Calabrese G, et al. A quarter of men with idiopathic oligoazoospermia display chromosomal abnormalities and microdelet-ions of different types in interval 6 of Yq11. Human Genetics, 1998,102 (5): 566-570
    [144] Kleiman SE, Lagziel A, Yogev L, et al. Expression of CDY1 may identify complete spermatogenesis. Fertility and Sterility,2001,75(1): 166-173
    [145] Seboun E, Barbaux S, Bourgeron T, et al.Gene sequence, localization, and evolutionary conservation of DAZLA, a candidate male sterility gene.Genomics, 1997,41(2):227-235
    [146] Lin Ge, Xie Chang-qing,Du Juan, et al. Establishment and character of Chinese embryonic stem cell lines. Fertil Steril (Submitted)
    [147] V. and Bode, W. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett. 1991,285:213-219.
    [148] M., Mason, R.W., Hansson, H., et al. Human cystatin C. role of the N-terminal segment in the inhibition of human cysteine proteinases and in its inactivation by leucocyte elastase. Biochem. J. 1991,273 (3): 621-626.
    [149] M., Barrett, A.J., Gerhartz, B., Dando, et al. Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J. Biol. Chem. 1999,274:19195-19203.
    [150] P.H., Do, Y.S., Macaulay, et al. Identification of renal cathepsin B as a human prorenin-processing enzyme. J.. Biol. Chem. 1991,266:12633-12638.
    [151] C. C. and Sloane, B. F. Mammalian cysteine protease inhibitors: biochemical properties and possible roles in tumor progression. Biol. Chem. Hoppe. Seyler., 1995,376: 71-80.
    [152] G. A., Orgebin-Cdst, M.C. and Harm, et al. The CRES gene: a unique testis-regulated gene related to the cystatin family is highly restricted in its expression to the proximal region of the mouse epididymis. Mol. Endocrinol. 1992,6:1653-1664.
    [153] G. A., Hsia, N. and Sutton, H. G. Structure, alternative splicing and chromosomal localization of the cystatin-related epididymal spermatogenic gene. Biochem. J. 1999,340:85-93.
    [154] McLachlan RI, Mallidis C, Ma K, et al. Genetic disorders and spermatogenesis. Reprod Fertil Dev,1998,10(1):97-104
    [155] Fu JJ, Li LY, Lu GX. The relationship between microdeletion on Y chromosome and the patients with idiopathic azoospermia and severe oligozoospermia in Chinese. Chinese Medical Journal,2002,115(1): 72-75
    [156] Vogot PH, Edelmann A, Kirsch S, et al. Human Y chromosome azoospermia factor (AZF) mapped to different subregions in Yq11. Hum Mol Genet, 1996,5:933-943
    [157] Sun C, Skaletsky H, Birren B, et al. An azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y. Nat Genet,1999,23:429-432
    [158] McElreavey K, Krause C. Male infertility and the Y chromosome. Am J Hum Genet, 1999,64:928-933
    [159] Steger K, Behr R, Kleiner I, et al. Expression of activator of CREM in the testis (ACT) during normal and impaired spermatogenesis: correlation with CREM expression. Mol Hum Reprod,2004,10(2): 129-135
    [160] Fimia GM, Morion A, Macho B, et al. Transcriptional cascades during spermatogenesis: pivotal role of CREM and ACT. Mol Cell Endocrinol, 2001,20,179(1-2):17-23
    [161] Behr R, Weinbauer GF. cAMP response element modulator (CREM): an essential factor for spermatogenesis in primates? Int J Androl, 2001,24 (3): 126-135
    [162] Peri A, Serio M. The CREM system in human spermatogenesis. J Endocrinol Invest, 2000,23(9):578-583
    [163] Yong EL, Loy CJ, Sire KS. Androgen receptor gene and male infertility. Hum Reprod Update,2003,9(1): 1-7
    [164] Sasagawa I, Suzuki Y, Muroya K, et al. Androgen receptor gene and male genital anomaly.Arch Androl,2002,48(6):461-466
    [165] Heinlein CA, Chang C. Androgen receptor (AR) coregulators: an overview. Endocr Rev,2002,23(2): 175-200
    [166] Eddy EM.Role of heat shock protein HSP70-2 in spermatogenesis. Rev Reprod,1999, 4(1):23-30
    [167] Dix DJ, Hong RL. Protective mechanisms in germ cells: stress proteins in spermatogenesis. Adv Exp Med Biol, 1998,444:137-143,
    [168] Shao X, Murthy S, Demetrick DJ, et al. Human outer dense fiber gene, ODF2, localizes to chromosome 9q34.Cytogenet Cell Genet, 1998,83(3-4): 221-223
    [169] Musilova P, Stratil A, Jurakova M, et al. Assignment of the gene for outer dense fiber of sperm tails (ODF) to porcine chromosome 4p11-p14.Mamm Genome, 1997,8 (8):628
    [170] Chai NN, Phillips A, Fernandez A, et al. A putative human male infertility gene DAZLA: genomic structure and methylation status. Mol Hum Reprod, 1997,3(8):705-708
    [171] Yen PH, Chai NN, Salido EC.The human autosomal gene DAZLA: testis specificity and a candidate for male infertility. Hum Mol Genet,1996,5 (12):2013-2017
    [172] Crackower MA, Kolas NK, Noguchi J, et al. Essential role of Fkbp6 in male fertility and homologous chromosome pairing in meiosis. Science. 2003, 300(5623):1291-5.
    [173] Nakamura T, Yao R, Ogawa T, et al. Oligo-astheno-teratozoospermia in mice lacking Cnot7, a regulator of retinoid X receptor beta. Nat Genet. 2004, 36(5):528-33
    [174] Likolai L, Lisitsyn N, Weigler M. Cloning the differences between two complex genomes.Science, 1993,259:946
    [175] Hubank M,Schatz DC.Identifying differences in mRNA expression by representational difference analysis of eDNA. Nuclei Acids Research, 1994, 22(25):5640
    [176] Diatchenko L, Lau YFC, Campbell AP, et al. Suppression subtractive hybridization: a method for generating differential regulated or tissue-specific eDNA probes and libraries. Proc Nat Acad Sci USA, 1996,93,6025
    [177] Von Stein OD, Thies WG, Hofmann M. A high throughput screening for rarely transcribed differentially expressed genes. Nuclei Acids Research, 1997, 25(13):2598
    [178] Liang P, Paradee AB. Differential display of eukaryotie messenger RNA by means of the polymerase chain reaction. Science, 1992, 257:967
    [179] Welsh J, Chada K, Dalai SS, et al. Arbitrarily primed-PCR fingerprinting of RNA. Nuclei Acids Research, 1992, 20(1):4965
    [180] Olesen C, Hansen C, Bendsen E, et al. Identification of mouse candidate genes for male infertility by digital differential display. Mol Hum Reprod. 2001, 7(1): 11-20
    [181] Scheurle D, DeYoung MP, Binninger DM, et al. Cancer gene discovery using digital differential display. Cancer Res. 2000,60(15):4037-43
    [182] De Young MP, Damania H, Scheurle D, et al. Bioinformaties-based discovery of a novel factor with apparent specificity to colon cancer. In Vivo. 2002, 16(4):239-48
    [183] Yan W, Burns KH, Ma L,et al. Identification of Zfp393, a germ cell-specific gene encoding a novel zinc finger protein. Mech Dev. 2002, 118(1-2):233-9
    [184] Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem, 1975,250(10):4007-4021
    [185] Humphery-Smith I, Blackstock W. Proteome analysis: genomics via the output rather than the input code. J Prot Chem, 1997,16(5):537-544
    [186] Foresta C, Ferlin A, Moro E. Deletion and expression analysis of AZFa genes on the human Y chromosome revealed a major role for DBY in male infertility.Hum Mol Genet 2000,9(8): 1161-1169
    [187] Ma K, Sharkey A, Kirsch S,et al. Towards the molecular localisation of the AZF locus: mapping of microdeletions in azoospermie men within 14 subintervals of interval 6 of the human Y chromosome. Hum Mol Genet,1992, 1(1):29-33
    [188] Ma K, Inglis JD, Sharkey A, et al. A Y chromosome gene family with RNA-binding protein homology: candidates for the azoospermia factor AZF controlling human spermato- genesis. Cell, 1993,75(7): 1287-1295
    [189] Elliott DJ, Millar MR, Oghene K, et al. Expression of RBM in the nuclei of human germ cells is dependent on a critical region of the Y chromosome long arm. Proc Natl Acad Sci USA,1997,94(8):3848-3853
    [190] Hiort O, Holterhus PM. Androgen insensitivity and male infertility.Int J Androl,2003,26(1):16-20
    [191] Yang XIANG, Dong-Song NIE, Jian WANG, et al. Cloning, Characterization and Primary Function Study of a Novel Gene, Cymgl, Related to Family 2 Cystatins. Acta Biochimica et Biophysica Sinica 2005, 37(1): 11-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700