用户名: 密码: 验证码:
多孔氧化物微球的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1992年,Mobil公司发明了以超分子模板法合成介孔氧化硅分子筛M41S以来,越来越多的研究者以超分子模板法合成具有不同组成,新型孔道结构以及具有特殊性质的多孔材料。本文选择具有单分散高比表面积的二氧化硅为研究对象,利用化学方法将氧化物如氧化钛和氧化铝包覆在二氧化硅微球的表面,形成具有单分散、高比表面积、且有“核—壳”结构的氧化物复合微球,旨在研究这种新型复合微球的制备方法,并研究“壳层”材料对微孔二氧化硅微球的宏观粒径、形貌、微观孔结构及性能的影响。
     本论文工作主要分为五个部分:第一部分以1-烷基胺(alkylamine)为模板剂,通过正硅酸乙酯(TEOS)的水解-缩聚反应,制备出单分散的多孔二氧化硅微球。通过改变1-烷基胺的碳链长度,二氧化硅的颗粒大小、形貌和孔结构都受到明显地影响。随着1-烷基胺的碳链长度的增加,其孔尺寸、孔隙率和孔体积增加,相反比表面积减小。相比之下,用十二胺为模板剂比十六胺和十八胺可得到质量更好的二氧化硅微球,它的最佳合成条件如下:正硅酸乙酯浓度范围为0.11-0.18mol L~(-1);十二胺浓度为0.016-0.24mol L~(-1);水解反应温度为15℃左右。随着试样焙烧温度的升高,其比表面积、孔容逐渐增大,而平均孔径变得越来越小。小角X射线衍射(XRD)和高分辨透射电镜(HRTEM)的结果证明用此种方法合成的二氧化硅微球具有无序的微孔结构。
     第二部分以前一部分介绍的单分散高比表面积的SiO_2为核,利用静电吸附沉积法在SiO_2微球的表面均匀涂覆TiO_2胶体颗粒,合成具有单分散且高比表面积的SiO_2/TiO_2复合微球。SiO_2/TiO_2复合微球的分散性和形貌与悬浮液的pH值有关,要使TiO_2胶粒均匀涂覆在SiO_2微球的表面,悬浮液的最佳pH范围为3.0~5.0。合成的SiO_2/TiO_2复合微球在600℃煅烧后的比表面积和孔体积分别为960m~2g~(-1)和0.48mLg~(-1)。
     第三部分采用单分散高比表面积的SiO_2为核,钛酸丁酯(TTBT)在羟甲基纤维素(HPC)为表面脂化剂和多孔模板剂的作用下水解,合成以微孔SiO_2为核、介孔二氧化钛为壳的具有“核—壳”结构的SiO_2/TiO_2复合微球。复合微球的大小和形貌与混合溶液中HPC的添加量有关。当调控HPC的浓度为3.2mmolL~(-1)时,可得到分散性良好且TiO_2涂层均匀的SiO_2/TiO_2复合微球。经900℃热处理后的SiO_2/TiO_2复合微球中即含有锐钛矿相又含有金红石相。这种“核-
The development of mesoporous silica materials by researchers of Mobil Corporation in 1992 stimulated explosive research on the preparation of porous materials through templates approaches. In this thesis, we focused on the preparation of monodispersed SiO_2 microspheres with high specific surface area, and then oxide particles deposited on the surface of the as-prepared SiO_2 microspheres by two main chemical methods to obtain monodispersed oxide composite microspheres with core/shell structures. The effects of experimental conditions and methods on particle size, morphology and microstructure of composite microspheres were investigated and discussed as main tasks in this paper.
    This thesis was divided into five major parts. The first part reported the synthesis of monodispersed microporous silica microspheres by hydrolysis and condensation of tetraethoxysilane (TEOS) using alkylamine as template. The results showed that the alkyl chain length of 1-alkylamine obviously influenced the morphologies and sizes of SiO_2 particles. With increasing the alkyl chain length of 1-alkylamine, the pore volume and average pore size increased, however, surface area decreased. The quality of the silica microspheres synthesized using hexadecylamine and octadecylamine as templates were inferior to that of the silica microspheres synthesized using dodecylamine as a template. The optimal synthesis conditions were as follows: [TEOS] = 0.11-0.18 mol L~(-1), [DDA] = 0.016-0.24 mol L~(-1) and hydrolysis temperature = 15°C. The small angle XRD and HRTEM results confirmed that the prepared SiO_2 microspheres had disordered pore structures
    In part 2, monodispersed porous SiO_2/TiO_2 composite microspheres with high specific surface areas were prepared by depositing titania colloid particles on the surface of monodispersed microporous silica microspheres using a simple electrostatic attraction strategy. Uniform titania coatings could be deposited on the surface of silica microspheres by adjusting the pH value of the reaction solution to a optimal pH value ranges of about 3-5. The specific surface area and pore volume of the SiO_2/TiO_2 composite microspheres calcined at 600°C were 960 m~2g~(-1) and 0.48 mLg~(-1), respectively.
    In part 3, SiO_2/TiO_2 composite microspheres with microporous core/mesoporous
引文
[1] 卢天贶,程龙江,纳米:科技新大陆,湖南科学技术出版社,2002.
    [2] 吴庆生、郑能武,分子自组装与纳米材料的制备,化学世界,1999,5,233.
    [3] 张立德,纳米材料的研究现状和发展趋势,现代科学仪器,1998,1,27.
    [4] 陈艾,电子科技导报,1998,12,19.
    [5] IUPAC Manual of Symbols and Terinology, Pure Appl. Chem. 1972, 31, 578.
    [6] 徐如人、庞文琴,分子筛与多孔材料化学,科学出版社,2004.
    [7] Beck, S. J.; Vartuli, J. C.; Roth, W. J. et al. J. Am. Chem. Soc. 1992, 114, 10834.
    [8] Kresge, C. T.; Leonow icz, M. E.; Roth, W. J. et al. Nature, 1992, 359, 710.
    [9] Antonelli, D. M.; Ying, J. Y. Angew Chem Int Ed Engl, 1995, 34, 2014.
    [10] 张兆荣、索继栓、张小明,介孔硅基分子筛研究新进展,化学进展,1999,11,11.
    [11] Velev, O. D.; Jede, T. A.; Lobo, R. F. Chem. Mater. 1998, 10, 3597.
    [12] Imhof, A.; Pine, D. J. Nature 1997, 389, 948.
    [13] Davis, S. A.; Burkett, S. L.; Mendelson, N. H. et al., Nature 1997, 385,420.
    [14] 王秀丽、曾永飞、卜显和,模板法合成纳米结构材料,化学通报,2005,10,723.
    [15] Ryoo, R.; Joo, S. H.; Jun, S. J. Phys. Chem. B 1999, 103, 7743.
    [16] Kang, M.; Yi, S. H.; Lee, H. I.; Yie, J. E.; Kim, J. M. Chem. Commun. 2002, 1944.
    [17] Taguchi, A.; Smatt, J. H.; Linden, M. Adv. Mater. 2003, 15, 1209.
    [18] Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Oshuna, T.; Terasaki, O. J. Am.Chem. Soc. 2000, 122, 10712.
    [19] 刘超、成国祥,模板法制备介孔材料的研究进展,离子交换与吸附,2003,4,374.
    [20] 危恒毅、杨辉荣、宋晓锐、郭建维,精细石油化工进展,2002,3,42.
    [21] Danumah, C. H.; Vaudreuil, S.; Bonneviot, L. Micro. Meso. Mater. 2001, 44, 241.
    [22] Tanev, P. T.; Pinavaia, T. J.; Science 1995, 267, 865.
    [23] Holland, B. T.; Isbester, P. K.; Blandford, C. F. J. Am. Chem. Soc. 1997, 119, 6796.
    [24] Blin, J. L.; Becue, A.; Pauwels, B. Micro. Meso. Mater. 2001, 44, 41.
    [25] Templin, M.; Frank, A.; Chesne, A. D. Science 1997, 278, 1795.
    [26] Zhao, D. Y.; Huo, Q. S.; Feng, J. L. J. Am. Chem. Soc. 1998, 120, 6024.
    [27] Chen, F. X.; Song, F. B.; Li, Q. Z. Micro. Meso. Mater. 1999, 29, 305.
    [28] Zhao, W.; Yao, J. D.; Huang, X. D. Chinese Science Bulletin, 2001, 46, 1436.
    [29] Raman N. K.; Anderson M. T.; Brinker C. J. Chem. Mater. 1996, 8, 1682.
    [30] Kresge, C. T.; Leonowice, M. E.; Roth W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
    [31] Beck, J. S.; Vartuli, J. C.; Roth W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu,C. T. W.; Olsen, D. H.; Sheppard, E. W.; Mccullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am.Chem. Soc. 1992, 114, 10834.
    [32] Monnier, A,; Schuth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.;Stucky, G. D.; etal. Science 1993, 261,1299.
    [33] Bagshaw, S. A.; Prouzet, E.; Pinnavaia, T. J. Science 1995, 269, 1242.
    [34] Firouzi, A.; Atef, F.; Oertli, A. G. et al. J. Am. Chem. Soc. 1997,119, 3596.
    [35] Zhou, W.; Hunter, H. M. A.; Wright, P. A.; Ge, Q.; Thomas, J. M. J. Phys.Chem. B. 1998, 102,6933.
    [36] Huo, Q.; Margolese, D. I.; Stucky, G. D. Chem. Mater. 1996, 8, 1147.
    [37] Ohsuna, T.; Terasaki, O.; Carr, S. W.; Anderson, M.; Alfredsson, V.; Bovin,J. O.; Watanabe,D.; Proc. R. Soc. London 1996, 452, 715.
    [38] Yu, C.; Yu, Y.; Zhao, D. Chem. Commun. 2000, 575.
    [39] Ryoo, R., Kim, J. M. & Shin, C. H. J. Phys. Chem. B 1996, 100, 17718.
    [40] 朱培旭、吴明娒、黄爱红,功能材料,2001,32,590.
    [41] Yang, H.; Kuperman, A.; Coombs, N. Nature 1996, 379, 703.
    [42] Huo, Q.; Feng, J.; Schuth, F.; Stucky, G. D. Chem. Mater. 1997, 9, 14.
    [43] Aksay, I.; Trau, M.; Manne, S. et al. Science 1996, 273,892.
    [44] Yang, H.; Coombs, N.; Sokolov, I. et a. Nature 1996, 381,589.
    [45] Yang, H.; Kuperman, A.; Coombs, N. et al. Nature 1996, 379, 703.
    [46] Tolbert, S. H.; Schaffer, T. E.; Feng, J. L.; et al. Chem. Mater. 1997, 9, 1962.
    [47] Ogawa, M.; Kikuchi, T.Adv. Mate. 1998, 10, 1077.
    [48] Ryoo, R.; Ko, C. H.; Cho, S. J. et al. J. Phys Chem. B. 1997, 101, 10610.
    [49] Martin, J. E.; Anderson, M. T.; DinekJ, O. et a. Langmiur 1997, 4133.
    [50] Miyata, H.; Kuroda, K. Chem. Mater. 2000, 12, 49.
    [51] Hua, Z. L.; Shi, J. L.; Wang, L. et al. J. Non-Crystalline Solids 2001, 292, 177.
    [52] Zhao, D. Y.; Yang, P. D.; Margolese, D. I. et al. Chem. Commun. 1998, 2499.
    [53] Zhao, D. Y.; Yang, P. D.; Margolese, D. I. et al. Adv. Mater. 1998, 10, 1380.
    [54] Ogawa, M.; Masukawa, N. Micro. Meso. Mater. 2000, 38, 35.
    [55] 张慧波、乔志刚、孙向东,抚顺石油学院学报,1998,4,16.
    [56] Nishiyama, N.; Koide A, Egashira Y, et al. Chem. Commun. 1998, 2147.
    [57] Nishiyama N, Park D H, Koide A, et al. J. Membr. Sci. 2001, 182, 235.
    [58] Park D H, Nishiyama N, Egashira Y, et al. Ind Eng. Chem. Res. 2001, 40, 6105.
    [59] Nishiyama N, Saputra H, Park D H, et al. J. Membr. Sci. 2003, 218, 165.
    [60] Park D H, Nishiyama N, Egashira Y, et al. Micro. Meso. Mater. 2003, 66, 69.
    [61] Liu, J.; Feng, X.; Fryxell, G. E. et al. Adv. Mater. 1998, 10, 161.
    [62] Grun, M.; Lauer, I.; Unger, K. K. Adv. Mater. 1997, 9, 254.
    [63] Pauwels, B.; Tendeloo, G. V. Thoelen, C. et al. Adv. Mater. 2001, 13, 1317.
    [64] Kosuge, K.; Sigh, P. S. Micro. Meso. Mater. 2001, 44-45, 139.
    [65] Qi, L. M. J. Mater. Sci. Letters 2001, 20, 2153.
    [66] 余承忠、范杰、赵东元,化学学报,2002,60,1357.
    [67] Izutsu, H.; Mizukami,F.; Nair, P. K. et al. J. Mater. Chem. 1997, 7, 767.
    [68] 赵睿、李新会、刘国诠,色谱,2005,23,616.
    [69] Schacht, S.; Huo, Q.; Voigt-Martion, G.; Stucky, G. D.; Schuth, F. Science 1996, 273, 768.
    [70] Li, H. P.; Mou, C. Y.; Liu, S. B. Chem. Commun. 2001, 2028.
    [71] Li, H. P.; Cheng, Y. R.; Mou, C. Y. Chem. Mater. 1998, 10, 3772.
    [72] 石可瑜、陈百顺、杨克莲、何尚锦、刘晓东、杜宗杰,催化学报,2002,23,301.
    [73] Yoon, S. B.; Sohn K.; Kim, J. Y. Adv. Mater. 2002, 14, 19.
    [74] Marlow, F.; Spliethoff, B.; Tesche, B.; Zhao, D. Y. Adv. Mater. 2000, 12, 961.
    [75] Yang, P. D.; Zhao, D. Y.; Chmelka, B. F. Chem. Mater. 1998, 10, 2033.
    [76] Wakayama, H.; Fukushima, Y. Chem. Mater. 2000, 12, 756.
    [77] Lin, H. P.; Mou, C. Y. Science 1996, 27, 765.
    [78] Lin, H. P.; Mou, C. Y. Acc. Chem. Res. 2002, 35,927.
    [79] Lin, H. P.; Cheng, S.; Mou, C. Y. Chem. Mater. 1998, 581.
    [80] Lin, H. P.; Hwang, J. H.; Mou, C. Y.; Tang, C. Y. J. Chin. Chem. Soc. 2000, 4, 1077.
    [81] 郑均林、张晔、吴东、孙予罕,化学学报,2004,62,1357.
    [82] Liu, Y.; Pinnavaia, T. J. J. Mater. Chem. 2002, 12, 3179.
    [83] Liu, Y.; Zhang, W. Z.; Pinnavaia, T. J. Angew. Chem. Int. Ed. 2001, 40, 1255.
    [84] Zhang, Z. T.; Han, Y.; Xiao, F. S.; Qiu, S. L.; Zhu, L.; Wang, R. W.; Yu, Y.; Zhang, Z; Zhou, B. S.; Wang, Y. Q.; Zhao, D. Y. Angew. Chem. Int. Ed. 2001, 40, 1258.
    [85] 李工、阚秋斌、吴通好、章慧杰,化学学报,2002,60,1350.
    [86] 郑均林、张晔、吴东、孙予罕,物理化学学报,2003,19,907.
    [87] Feng, E Y.; Bu, X. H.; Stucky, G. D.; Pine, D. J. J. Am. Chem. Soc. 2000, 122, 994.
    [88] Yang, H.; Shi, Q.; Tian, B.; Xie, S.; Zhang, F.; Yah, Y,; Zhao, D. Chem. Mater 2003, 15, 536.
    [89] Kim, S. S.; Zhang, W.; Pinnavaia, T. J. Science, 1998, 282, 1302.
    [90] 余承忠、天博之、范杰、屠波、赵东元,高等学校化学学报,2003,24,5.
    [91] Tanev, P. T.; Chibwe, M.; Pinnavaia, T. J. Nature, 1994, 368, 321.
    [92] Liu, C. B.; Ye, X. K.; Wu, Y. Catal. Lett. 1996, 36, 263.
    [93] 徐应明、李军幸、戴晓华等,应用化学,2002,19,941.
    [94] 林永兴、孙立军、张文彬、郑雪萍,材料导报,2003,17,226.
    [1] Kresege, C. T.; Leonowicz, M. E.; Roth, W. J.; Beck, J. S. Nature 1992, 359, 710.
    
    [2] Beck, J. S.; Vartuli, J. C; Roth, W. J.; Lenowicz, M. E.; Schlenker, J. L. J. Am. Chem. Soc. 1992,114, 10834.
    
    [3] Buchmeiser, M. R. J. Chromatogr. A 2001, 918, 233.
    
    [4] Kirkland, J. J.; Truszkowski, F. A.; Dilks Jr, C. H.; Engel, G. S.; J. Chromatogr. A 2000, 890, 3.
    
    [5] Qi, L. M.; Ma, J. M.; Cheng, H. M.; Zhao, Z. G.; Chem. Mater. 1998, 10, 1623.
    
    [6] Limmer, S. J.; Hubler, T. L.; Cao, G. Z. J. Sol-Gel Sci. Tech. 1999, 15, 243.
    
    [7] Etienne, M.; Lebeau, B.; Walcarius, A. New J. Chem. 2002, 26, 384.
    
    [8] Fowler, C. E.; Khushalani, D.; Mann, S.; Chem. Commun. 2001, 2028.
    
    [9] Guo, R.; Yu, J. G.; Zhao, L.; Zhao, X. J. Acta Chim. Sinica 2004, 62, 493.
    
    [10] Ni, P. G.; Dong, P.; Cheng, B. V.; Li, X. Y.; Zhang, D. Z. Adv. Mater. 2001, 13,437.
    
    [11] Etienne, M.; Lebeau, B.; Walcarius, A. New J. Chem. 2002, 26, 384.
    
    [12] Nooney, R. I.; Thirunavukkarasu, D.; Chen, Y. M.; Josephs, R.; Ostafin, A. E. Chem. Mater. 2002, 14,4721.
    
    [13] Izutsu, H.; Mizukami, F.; Nair, P. K.; Kiyozumi, Y.; Maeda, K. J. Mater. Chem. 1997, 5, 767.
    
    [14] Vacassy, R.; Flatt, R. J.; Hofmann, H.; Choi, K. S.; Singh, R. K. J. Colloid Interface Sci. 2000, 227, 302.
    
    [15] Qi, L. M.; J. Mater. Sci. Lett. 2001, 20, 2153.
    
    [16] Ma, Y.R.; Qi, L. M.; Ma, J. M.; Wu, Y. Q.; Liu, O.; Cheng, H. M. Chem. Mater. 1998, 10, 1623.
    
    [17] Lefevre, B.; Galarneau, A.; Iapichella, J.; Petitto, C; Di Renzo, F.; Fajula, F.; Bayram-Hahn, Z.; Skudas, R.; Unger, K.; Chem. Mater. 2005, 17, 601.
    
    [18] Barrett, E. P.; Joyner, L. G; Halenda, P. H. J. Am. Chem. Soc. 1951, 73, 373.
    
    [19] Yao, B. D.; Zhang, L. D. J. Mater. Sci. 1999, 34, 5983.
    
    [20] Zhao, X. S.; Lu, G. Q. J. Phys. Chem. B 1998, 102, 1556.
    
    [21] Yu, J. G.; Yu, J. C; Zhao, X. J. J. Sol-Gel Sci. Tech. 2002, 24, 95.
    
    [22] Wang, Y. D.; Ma, C. L.; Sun, X. D.; Li, H. D. J. Non-Cryst. Solids 2003, 319, 109.
    
    [23] Stober, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62.
    
    [24] Kosuge, K.; Singh, P. S. Chem. Mater. 2001, 13, 2476.
    
    [25] Kosuge, K.; Murakami, T.; Kikukawa, N.; Takemori, M. Chem. Mater. 2003, 15, 3184.
    
    [26] Arriagada, F. J.; Osseo-Asare, K. J. Colloid Interface Sci. 1999, 211,210.
    
    [27] Sing, K. S. W.; Everett, D. H.; R. Haul, A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J., Siemieniewska, T. Pure Appl Chem. 1985, 57, 603.
    [28] Gregg, S. J.; Sing, K. S. W. Adsorption, Surface Area and Porosity, Academic Press, London,1982.
    [29] Lin, H. P.; Cheng, S.; Mou, C. Y. Microporous Mater. 1997, 10, 111.
    [30] Wang, Y. D.; Ma, C. L.; Sun, X. D.; Li, H. D. Mater. Lett. 2002, 54, 359.
    [31] Pan, C. L.; Zhang, W. X.; Wang, Y. L.; Zhou, Z.; Jiang, D. Z.; Wu, S. J.; Wu, T. H. Mater. Lett. 2003, 57, 3815.
    [32] Pauly, T. R.; Pinnavaia, T. J. Chem. Mater. 2001, 13, 987.
    [33] Igarashi, N.; Koyano, K. A.; Tanaka, Y.; Nakata, S.; Hashimoto, K.; Tatsumi, T. Micropor. Mesopor. Mater. 2003, 59, 43.
    [34] Kosuge, K.; Singh, P. S. Micropor. Mesopor. Mater. 2001, 44, 139.
    [35] Kim, K. S.; Kim, J. K.; Kim, W. S. Ceram. Int. 2002, 28, 187.
    [36] Park, H. K.; Kim, D. K.; Kim, C. H. J. Am. Ceram. Soc. 1997, 80, 743.
    [37] Horvath, G.; Kawazoe, K. J. Chem. Engng Jpn 1985, 57, 603.
    [1] Viravathana, P.; Marr, D.W.M.J. Colloid Interface Sci. 2000, 221,301.
    [2] Niu, Z.W.; Yang, Z. Z.; Hu, Z. B.; Lu, Y. F.; Han, C.C. Adv. Funct. Mater. 2003, 13, 949.
    [3] Yu, J.G.; Yu, J.C.; Zhao, X. J. J. Sol-Gel Sci. Tech. 2002, 24, 95.
    [4] Nooney, R. I.; Thirunavukkarasu, D.; Chen, Y. M.; Josephs, R.; Ostafin, A. E. Langmuir 2003, 19, 7628.
    [5] Yoshitake, H.; Sugihara, T.; Tatsumi, T. Chem. Mater 2002, 14, 1023.
    [6] Wang, Y. Q.; Tang, X. H.; Yin, L. X.; Huang, W. P.; Hacohen, Y. R.; Gedanken, A. Adv. Mater 2000, 12, 1183.
    [7] Guo, H. X.; Zhao, X. P.; Guo, H. L.; Zhao, Q. Langmuir 2003, 19, 9799.
    [8] Caruso, F.; Shi, X. Y.; Caruso, R.A.; Susha, A. Adv Mater. 2001, 13, 740.
    [9] Yu, J. G.; Zhao, X. J.; Yu, J. C.; Zhong, G. R.; Han, J. J.; Zhao, Q. N. J. Mater Sci. Lett. 2001, 20, 1745.
    [10] Cheng, P.; Zheng, M. P.; Jin, Y. P.; Huang, Q.; Gu, M. Y. Matter. Lett. 2003, 57, 2989.
    [11] Hong, S. S.; Lee, M. S.; Park, S. S.; Lee, G. D. Catal. Today 2003, 87, 99.
    [12] Enomoto, N.; Kawasaki, K.; Yoshida, M.; Li, X. Y.; Uehara, M.; Hojo, J. Solid State Ionics 2002, 151,171.
    [13] Kimura, I.; Kase, T.; Taguchi, Y.; Tanaka, M. Mater. Res. Bull. 2003, 38, 585.
    [14] Hart, J.; Kumacheva, E. Langmuir 2001, 17, 7912.
    [15] Holgado, M.; Cintas, A.; Ibisate, M.; Serna, C. J.; Lopez, C.; Meseguer, F. J. Colloid Interface Sci. 2000, 229, 6.
    [16] Dutoit, D. C. M.; Schneider, M.; Balker, A. J. Catal. 1995, 153, 165.
    [17] Khalil, K. M. S.; Elsamahy, A. A.; Elanany, M. S. J. Colloid Interface Sci. 2002, 249, 359.
    [18] Retuert, J.; Quijada, R.; Fuenzalida, V. M. J. Mater. Chem. 2000, 10, 2818.
    [19] Han, J.; Kumacheva, E. Langumir 2001, 17, 7912.
    
    [20] Horvath, G; Kawazoe, K. J. Chem. Engng Jpn. 1983, 16, 470.
    
    [21] Yao, B. D.; L.D. Zhang, J. Mater. Sci. 1999, 34, 5983.
    
    [22] Larson, I.; Drummond, C. J.; Chan, D. Y. C; Grieser, F. J. Am. Chem. Soc. 1993, 115, 11885.
    
    [23] Wiese, G. R.; Healy, T. W. J. Colloid Interface Sci. 1975, 51, 427.
    
    [24] Yotsumoto, H.; Yoon, R. H. J. Colloid Interface Sci. 1993, 157, 426.
    
    [25] Veeramasuneni, S.; Yalamanchili, M R.; Miller, J. D. Colloids Surf. A 1998,31, 77.
    
    [26] Subramaniam, K.; Yiacoumi, S.; Tsouris, C. Colloids Surf. A 2000, 177, 133.
    
    [27] Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. J. Am. Chem. Soc. 1940, 62, 1723.
    
    [28] Sing, K. S.W.; Everett, D. H.; Haul, R. A. W.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603.
    
    [29] Yu, J.G.; Yu, J.C.; Ho, W. K.; Leung, M. K. P.; Cheng, B.; Zhang, G. K.; Zhao, X. J. Appl. Catal. A 2003, 255, 309.
    [1] Hayashi, H.; Torii, K. J. Mater. Chem. 2002, 12, 3671.
    [2] Kosuge, K.; Singh, P. S. Chem. Mater. 2001, 13, 2476.
    [3] Shen, S. D; Tian, B. Z.; Yu, C. Z.; Xie, S. H.; Zhang, Z. D.; Tu, B.; Zhao, D. Y. Chem. Mater. 2003, 15, 4046.
    [4] Yu, C. Z.; Yu, Y. H; Zhao, D. Y. Chem. Commun. 2000, 7, 575.
    [5] Yu, C. Z.; Tian, B. Z.; Fan, J.; Stucky, G. D.; Zhao, D.Y.J. Am. Chem. Soc. 2002, 124, 4556.
    [6] Nair, P. K.; Mizukami, F.; Nair, J.; Salou, M.; Oosawa, Y.; Izutsu, H.; Maeda, K.; Okubo, T. Mater Res. Bull. 1998, 33, 1495.
    [7] Zhang, Y. H.; Reller, A. Mater. Lett. 2003, 57, 4108.
    [8] Fu, X. A.; Qutubuddin, S. Colloids Surf. A 2001, 178, 151.
    [9] Kimura, I.; Kase, T.; Taguchi, Y.; Tanaka, M. Mater Res. Bull. 2003, 38, 585.
    [10] Jiang, X. C.; Herricks, T.; Xia, Y. N. Adv. Mater. 2003, 15, 1205.
    [11] Yu, J. G.; Zhao, X. J.; Yu, J. C.; Zhong, G. R.; Han, J, J.; Zhao, Q. N. J. Mater Sci. Lett. 2001, 20, 1745.
    [12] Cheng, P.; Zheng, M. P.; Jin, Y. P.; Huang, Q.; Gu, M. Y. Matter. Lett. 2003, 57, 2989.
    
    [13] Hong, S. S.; Lee, M. S.; Park, S. S.; Lee, G. D. Catal. Today 2003, 87, 99.
    
    [14] Holgado, M.; Cintas, A.; Ibisate, M.; Serna, C. J.; Lopez, C; Meseguer, F. J. Colloid Interface Sci. 2000, 229, 6.
    
    [15] Muller, C. A.; Schneider, M.; Mallat, T.; Baiker, A. Appl. Catal. A 2000, 201, 253.
    
    [16] Han, J.; Kumacheva, E. Langmuir 2001, 17, 7912.
    
    [17] Khalil, K. M. S.; Elsamahy, A. A.; Elanany, M. S. J. Colloid Interface Sci. 2002, 249, 359.
    
    [18] Retuert, J.; Quijada, R.; Fuenzalida, V. M. J. Mater. Chem. 2000, 10, 2818.
    
    [19] Li, Q. Y; Dong, P. J. Colloid Interface Sci. 2003,261 , 325.
    
    [20] Vartuli, J. C; Malek, A.; Roth, W. J.; Kresge, C. T.; Mccullen, S. B. Micropor. Mesopor. Mater. 2001,44, 691.
    
    [21] Zhao, L.; Yu, J. G; Guo, R.; Cheng, B. Key Eng. Mater. 2005, 280-283,1153.
    
    [22] Buchel, G; Unger, K. K.; Matsumumoto, A.; Tsutsumi, K.Adv. Mater. 1998, 10, 1036.
    
    [23] Kirkland, J. J.; Truszkowski, F. A.; Dilks Jr., C. H.; Engel, G. S. J. Chromatogr. A 2000, 890, 3.
    
    [24] Horvath, G; Kawazoe, K. J. Chem. Engng Jpn. 1983, 16, 470.
    
    [25] Barrett, E. P.; Joyner, L. G; Halenda, P. H. J. Am. Chem. Soc. 1951, 73, 373.
    
    [26] Yao, B. D.; Zhang, L. D. J. Mater. Sci. 1999, 34, 5983.
    
    [27] Yu, J. G; Zhao, X J.; Zhao, Q. N. Thin Solid Films 2000, 379, 7.
    
    [28] Yu, J. C; Yu, J. G.; Zhang, L. Z.; Ho, W. K. J. Photochem. Photobio. A 2002, 148, 263.
    
    [29] Larson, I.; Drummond, C. J.; Chan, D. Y. C; Grieser, F. J. Am. Chem. Soc. 1993, 115, 11885.
    
    [30] Wiese, G. R.; Healy, T. W. J. Colloid Interface Sci. 1975, 51, 427.
    
    [31] Yotsumoto, H.; Yoon, R. H. J. Colloid Interface Sci. 1993, 157, 426.
    
    [32] Veeramasuneni, S.; Yalamanchili, M. R.; Miller, J. D. Colloids Surf. A 1998, 31, 77.
    
    [33] Subramaniam, K.; Yiacoumi, S.; Tsouris, C. Colloids Surf. A 2001, 177, 133.
    
    [34] Viravathana, P.; Marr, D. W. M. J. Colloid Interface Sci. 2000, 221,301.
    
    [35] Van Helden, A. K.; Jansen, J. W.; Vrij, A. J. Colloid Interface Sci. 1981, 81, 354.
    
    [36] Van Helden, A. K.; Vrij, A. J. Colloid Interface Sci. 1980, 78, 312.
    
    [37] Prescott, S. W.; Fellows, C. M.; Considine, R. F.; Drummond, C. J.; Gilbert, R. G. Polymer 2002,43,3191.
    
    [38] Yu, J. C; Yu, J. G; Ho, W. K.; Zhang, L. Z. Chem. Mater. 2002, 14, 3808.
    
    [39] Yu, J. C; Yu, J. G; Zhao, J. C. Appl. Catal. B 2002, 36, 31.
    
    [40] Anderson, C; Bard, A. J. J. Phys. Chem. B 1997,101,2611.
    
    [41] Yu, J. G; Yu, J. C; Leung, M. K. P.; Ho, W. K.; Cheng, B.; Zhao, X. J.; Zhao, J.C. J. Catal. 2003,217,69.
    
    [42] Yu, J. G; Yu, H. G; Cheng, B.; Zhao, X. J.; Yu, J. C; Ho, W. K. J. Phys. Chem. B 2003, 107, 13871.
    
    [43] Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. J. Am. Chem. Soc. 1940, 62, 1723.
    [44] Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603.
    [45] Schrijnemakers, K.; Vansant, E. F. J. Porous Mat. 2001, 8, 83.
    [46] Yu, J. G.; Yu, J. C.; Ho, W. K.; Leung, M. K. R; Cheng, B.; Zhang, G. K.; Zhao, X. J. Appl. Catal. A 2003, 255,309.
    [47] Kumar, K. N. R; Keizer, K.; Burggraaf, A. J. J. Mater Chem. 1993, 3, 1141.
    [1] Gun'ko, V. M.; Zarko, V. I.; Turov, V. V.; Leboda, R.; Chibowski, E.; Pakhlov, E. M.; Goncharuk, E.V.J. Colloid Interface Sci. 1999, 220, 302.
    [2] Choudhary, V. R.; Jana, S. K.; Mamman, A. S. Micropor. Mesopor. Mater. 2002, 56, 65.
    [3] Beguin, B.; Gazbowski, E.; Primet, M. J. Catal. 1991, 127, 595.
    [4] Omegna, A.; Van Bokhoven, J.A.; Prins, R. J. Phys. Chem. B 2003, 107, 8854.
    [5] Yang, Z. H.; Lin, Y. S. Ind. Eng. Chem. Res. 2000, 39, 4944.
    [6] Goldbourt, A.; Landau, M. V.; Vega, S. J. Phys. Chem. B 2003, 107, 724.
    [7] Hu, B.; Gay, I. D. J. Phys. Chem. B 2001, 105,217.
    [8] Corma, A. Chem, Rev. 1997, 97, 2373.
    [9] Mural, S.; Fujita, K.; Nakanishi, K.; Hirao, K. J. Phys. Chem. B 2004, 108, 16670.
    [10] Calemma, V.; Peratello, S.; Perego, C. Appl. Catal. A 2000, 190,207.
    [11] Hu, C. L.; Rahanman, M. N. J. Am. Ceram. Soc. 1993, 76, 2549.
    [12] Fyfe, C. A.; Bretherton, J. L.; Lam, L. Y. J. Am. Chem. Soc. 2001, 123, 5285.
    [13] De Boer, J. H.; Lippens, B. C.; Linsen, B. G.; Broekhoff, J. C. P.; Van den Heuwel, A.; Osinga, T. J. J. Colloid Interface Sci. 1966, 21, 405.
    [14] Horvath, G.; Kawazoe, K. J. Chem. Engng Jpn. 1983, 16, 470.
    [15] Dubinin, M. M. Chem. Rev. 1960, 60, 235.
    [16] Yao, B. D.; Zhang, L. D. J. Mater. Sci. 1999, 34, 5983.
    
    [17] Zarko, V. I.; Gun'ko, V. M.; Chibowski, E.; Dudnik, V. V.; Leboda, R. Colloids Surf. A 1997, 127,11.
    
    [18] Veeramasuneni, S.; Yalamanchili, M. R.; Miller, J. D. Colloids Surf. A 1998, 133, 77.
    
    [19] Subramaniam, K.; Yiacoumi, S.; Tsouris, C. Colloids Surf. A 2000, 177, 133.
    
    [20] Zhang, J. X.; Gao, L. Q. Geramics International 2001, 27 , 143.
    
    [21] Malkin, A. I.; Chernov, A. A.; Alexeev, I. V. J. Crystal Growth 1989, 97 , 765.
    
    [22] strohm, H.; Lobmann, P. Chem. Mater. 2005, 17, 6772.
    
    [23] Liu, X. Y; Lim, S. W. J. Am. Chem. Soc. 2003, 125, 888.
    
    [24] Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603.
    [1] Adachi, M.; Murata, Y.; Yoshikawa, S. Chem. Lett. 2000, 8,942.
    [2] Gao, X. P.; Zhu, H. Y.; Pan, G. L.; Ye, S. H.; Lan, Y.; Wu, F.; Song, D.Y.J. Phys. Chem.B 2004, 108, 2868.
    [3] Yu, J. G.; Zhao, X. J. Mater Res. Bull. 2001, 36, 97.
    [4] Yu, J. C.; Yu, J.G.; Ho, W. K.; Zhang, L. Z. Chem. Commun. 2001, 1942.
    [5] Yu, J. G.; Xiong, J. F.; Cheng, B.; Liu, S. W. Appl. Catal. B 2005, 60, 219.
    [6] Yu, J. C.; Yu, J. G.; Zhao, J. C. Appl. Catal. B 2002, 36, 31.
    [7] Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Adv. Mater. 1999, 11, 1307.
    [8] Guari, Y.; Thieuleux, C.; Mehdi, A.; Reye, C.; Corriu, R. J. P.; Gomez-Gallardo, S.; Philippot, K.; Chaudret, B. Chem. Mater 2003, 15, 2017.
    [9] Guo, X. J.; Yang, C. M.; Liu, R H.; Cheng, M. H.; Chao, K. J. Cryst. Growth-Des. 2005, 5, 33.
    [10] Chen, S. Y.; Jang, L. Y.; Cheng, S. Chem. Mater 2004, 16, 4174.
    [11] Yang, H. F.; Shi, Q. H.; Tian, B. Z.; Lu, Q. Y.; Gao, F.; Xie, S. H.; Fan, J.; Yu, C. Z.; Tu, B.; Zhao, D. Y. J. Am. Chem. Soc. 2003, 125, 4724.
    [12] Newalkar, B. L.; Olanrewaju, J.; Komarneni, S. Chem. Mater. 2001, 13, 552.
    [13] Tuel, A.; Hubert-Pfalzgraf, L. G. J. Catal. 2003, 217, 343.
    [14] Bandyopadhyay, M.; Birkner, A.; Van den Berg, M. W. E.; Klementiev, K. V.; Schmidt, W.; Grunert, W.; Gies, H. Chem. Mater 2005, 17, 3820.
    [15] Wu, P.; Tatsumi, T. Chem. Mater. 2002, 14, 1657.
    [16] Zhang, W.; Lu, J.; Han, B.; Li, M.; Xiu, J.; Ying, P.; Li, C. Chem. Mater. 2002, 14, 3413.
    [17] Luan, Z.; Maes, E. M.; Van der Heide, P. A. W.; Zhao, D.; Czernuszewicz, R. S.; Keven, L.; Chem. Mater. 1999, 11, 3680.
    [18] Landau, M. V.; Vradman, L.; Wang, X. G.; Titelman, L. Microporous Mesoporous Mater. 2005, 78, 117.
    [19] Yan, W. F.; Mahurin, S. M.; Overbury, S. H.; Dai, S. Chem. Mater. 2005, 17, 1923.
    [20] Ding, H. M.; Sun, H.; Shan, Y. K. J. Photochem. Photobiol. A 2005, 169, 101.
    [21] Vansant, E. F.; Voort, P. V. D. Catal. Left. 2003, 88, 61.
    [22] Sun, D. H.; Liu, Z. M.; He, J.; Han, B. X.; Zhang, J. L.; Huang, Y. Microporous Mesoporous Mater. 2005, 80, 165.
    [23] Gao, F.; Lu, Q. Y.; Liu, X. Y.; Yan, Y. S. Nano Lett. 2001, 1, 743.
    [24] Yang, H. F.; Zhao, D.Y.J. Mater. Chem. 2005, 15, 1217.
    [25] Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
    [26] Barrett, E. P.; Joyner, L. G.; Halenda, P. H. or. Am. Chem. Soc. 1951, 73, 373.
    [27] Yao, B. D.; Zhang, L. D. J. Mater. Sci. 1999, 34, 5983.
    [28] Zhao, X. S.; Lu, G. Q. J. Phys. Chem. B 1998, 102, 1556.
    [29] Yu, J. G.; Yu, J. C.; Zhao, X. J. Sol-Gel Sci. Tech. 2002, 24, 95.
    [30] Tian, B. Z.; Liu, X. Y.; Yang, H. F.; Xie, S. H.; Yu, C. Z.; Tu, B.; D.Y. Zhao, Adv. Mater. 2003, 15, 1370.
    [31] Du, X. M.; Almeida, R. M. J. Mater. Res. 1996, 11, 353.
    [32] Schrijnemakers, K.; lmpens, N. R. E. N.; Vansant, E. F. Langmuir 1999, 15, 5807.
    [33] Dutoit, D. C. M.; Schneider, M.; Baiker, A. J. Catal. 1998, 153, 165.
    [34] Riegel, B.; Hartmann, I.; Kiefer, W.; Grob, J.; Fricke, J. J. Non-Cryst. Solids 1997, 211, 294.
    [35] Labrosse, A.; Burneau, A. J. Non-Cryst. Solids 1997, 211, 107.
    [36] Yanagisawa, K.; Ovenstone, J. J. Phys. Chem. B 1999, 103, 7781.
    [37] Wu, L.; Yu, J. C.; Wang, X. C.; Zhang, L. Z.; Yu, J. G. J. Solid State Chem 2005, 178, 321.
    [38] Rahman, M. M.; Krishna, K. M.; Soga, T.; Jimbo, T.; Umeno, M. J. Phys. Chem. Solids 1999, 60, 201.
    [39] Kormann, C.; Bahnemann, D. W.; Hoffmann, M. R. J. Phys. Chem. 1988, 92, 5196.
    [40] Gao, F.; Lu, Q. Y.; Zhao, D. Y. Chem. Phys. Lett. 2002, 360, 585.
    [41] 高濂、郑珊、张青红,纳米氧化钛光催化材料及应用,化学工业出版社,2002。
    [42] Kuskinski, J. J.; Gomez-Jahn, L. A.; Faran, K. J.; Gracewski, S. M.; Miller, R. J.; Dwayne, J. J. Chem. Phys. 1989, 90, 1253.
    [43] Van Grieken, R.; Aguado, J.; Lopez-Munoz, M. J.; Marugan, J.; Photochem. Photobiol. A 2002, 148,315.
    [44] Yang, C. M.; Liu, P. H.; Ho, Y. F.; Chiu, C. Y.; Chao, K. J.; Chem. Mater. 2003, 15, 275.
    [45] Hsueh, H. S.; Yang, C. T.; Zink, J. I.; Huang, M. H. J. Phys. Chem.B 2005, 109, 4404.
    [46] Vartuli, J. C.; Schmitt, K. D.; Kresege, C. T.; Roth, W. J.; Leonowicz, M. E.; McCullen, S. C.; Hellring, S. D.; Beck, J. S.; Schlenker, J. L.; Olsen, D. H.; Sheppard, E. W. Chem. Mater. 1994, 6, 2317.
    [47] Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603.
    [48] Gregg, S. J.; Sing, K. S. W. Adsorption, Surface Area and Porosity, Academic Press; London, 1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700