用户名: 密码: 验证码:
长周期光纤光栅的制作与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能材料与结构是近年来在世界上兴起并迅速发展的材料技术的一个新领域。智能材料与结构具有四种主要特性,即敏感特性、传输特性、智能特性和自适应特性,它代表着21世纪先进新材料发展的一个方向。光纤传感器作为智能材料与结构理想的核心部件,正在受到越来越多的关注,而其中光纤光栅传感器是目前研究和应用的热点。
     自从1995年A.M.vengsarkar等人在光纤中成功地写入长周期光纤光栅(Long-period Fiber Grating以下简称LPG)以来,LPG作为光纤器件在光纤通信和传感领域得到了越来越广泛的研究和应用。已经证实LPG可以改进掺铒光纤放大器系统,因此可以用作带阻滤波器和增益平坦滤波器,另外它也可以用作温度和压力传感器,还可以用作光纤光栅传感解调器。LPG的独特之处在于其对包层的灵敏性,这是LPG一个独一无二的特性,它的这种包层灵敏性可以用来制作生物化学传感器。
     为了能使LPG广泛的应用于光通信和传感领域,本论文研究了LPG的制作、特性和其在光通信和传感领域的应用情况。文章首先采用耦合模理论模拟了长短周期光纤光栅的光谱形状基础,然后进行光纤的载氢增敏实验,采用普通单模光纤,经过载氢增敏,利用振幅掩模法和逐点法制作出LPG,并对其的传感特性进行了研究。
     以三层阶跃折射率波导结构和耦合模理论为基础,考虑到氢分子引起的折射率变化,针对氢载LPG提出了一个简单的模型,对LPG的退火进行了分析和模拟,所得到的结果与实验符合得很好。
     采用LPG实现了RTM工艺中的流动前沿监测。实验研究了LPG在各种工艺条件下的光谱信号响应情况,结果表明LPG能可靠地探测中-低纤维体积含量预成型体中的树脂流动前沿,在高纤维体积含量情况中以及探测三维厚度方向不同深度的树脂流动前沿时的应用受树脂折射率的限制。
     采用普通单模光纤设计制作LPG,在此基础上,普通单模光纤LPG的双折射效应进行了研究,获得了很好的横向压力敏感性,证明这种LPG具有极大的用作高灵敏度的光纤横向压力传感器的潜力。
     提出了一种新颖双周期光纤光栅传感器,在一段氢载光纤的相同位置上先后写入LPG、短周期布拉格光纤光栅(FBG),这样就可以利用LPG和FBG对
With four main features including sensing, information converting, automated response and self- adaptation, Smart materials and structures become the new field of materials research, and which represents a direction of advanced new material of 21th century. Because of excellent characteristic, fibers are concern by more and more researcher, thereinto fiber grating is the most important part.
    Since A. M. Vengsarkar et al. wrote successfully Long-Period Fiber Gratings (LPG) in optical fibers in 1995, LPG have become increasingly popular as fiber-optic devices for optical fiber communication and sensing. LPG have been demonstrated as band-rejection and gain-flattening filters for improving Er-doped fiber amplifier systems, and also used as temperature/strain sensors, as well as sensing demodulators. One of their unique characteristics is the sensitivity to the refractive index of the cladding, which can be used as biochemical sensor.
    This dissertation deals with the fabrication, characterization, and applications of long-period gratings in optical fiber communications and sensing systems. The aim of this project is to assess long-period gratings as fiber-optic devices for optical fiber communication and sensing. A review of the properties and characteristics of fiber gratings associated with the simple silicate fibers is provided, which includes a theoretical analysis of the principles of operation for short-period gratings (fiber Bragg gratings) and long-period gratings. The simulations of the spectral response from these two types of gratings are also presented. A number of long-period grating fabrication methods and techniques, which were reported by some researchers, are reviewed. In this project, the normal long-period gratings are fabricated by using a KrF excimer laser combined with the metal amplitude mask technique and point-by -point exposure technique. The metal mask is made of a stainless steel sheet, and the slot width (periodicity) is processed by using high quality photographic tooling.
    Considered the refractive index changes caused by hydrogenmoecular, this paper developed a simple model based three-layer step index wave guide and coupled mode theory to analyze and simulate the annealing of LPG inscribed in hydrogen loaded fiber. The results agree well with the experiments.
引文
1. K. O. Hill, Y. Fujii, et al Photo_sensitivity in optical fiber waveguildes: Application toreflection filter fabrication, Appl. Phys. Lett., vol. 32, pp 647-649, 1978.
    2. G. Meltz, W. W. Morey, and N. J. Doran Formation og Bragg gratings in optical fibers by a transverse holographic method, Opt. Lett., vol. 14, pp. 823-825, 1989.
    3. K. O. Hill, B. Malo, et al, Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask, Appl. Phys. Lett., vol. 62. pp. 1035-1037, 1993.
    4. Marten de Vries, Vikram Bhatia, Tiffanie D'Alberto, Photoinduced grating-based optical fiber sensors for structural analysis and control, Engineering Structures, Vol. 20, No. 3, pp. 205-210. 1998
    5.涂亚庆.光纤智能结构.重庆:重庆出版社,2000
    6. Ashish M. Vengsarkar, Paul J. Lemaire, Justin B. Judkins, Long-Period Fiber Gratings as Band-Rejection Filters, Journal of Lightwave Technology, Vol. 14, No. 1, January 1996
    7. Bai-Ou Guan, Hwa-Yaw Tam, Siu-Lau Ho, Growth of Long-Period Gratings in H2-Loaded Fiber After 193-nm UV Inscription, IEEE Photonics technology letters, Vol. 12, No. 6, June 2000
    8. Trevor W. MacDougall, Generalized Expression for the Growth of Long Period Gratings, IEEE Photonics technology letters, Vol. 10, No. 10, October 1998
    9. L. Zhang, Y. Liu, L. Everall, Design and Realization of Long-Period Grating Devices in Conventional and High Birefringence Fibers and Their Novel Applications as Fiber-Optic Load Sensors IEEE Journal of selected topics in quantum electronics, Vol. 5 No. 5 September/October 1999
    10. T. Allsop, L. Zhang, D. J. Webb, Discrimination between strain and temperature effects Using first and second-order diffraction from a Long-period grating Optics Communications 211, 1 October, (2002) 103-108
    11. Y. Liu, J. A. R. Williams, L. Zhang, Phase shifted and cascaded long-period fiber gratings, 1 June Optics Communications 164 1999 27-31
    12. Joon Yong Cho, Kyung Shik Lee A birefringence compensation method for mechanically induced long-period fiber gratings, Optics Communications 213 (2002) 281-284
    13. Xuewen Shu, Dexiu Huang Highly sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-mm-period fiber Grating, 15 November, Optics Communications 171 1999 65-69
    14. R. Falciai, A. G. Mignani, A. Vannini, Long period gratings as solution concentration sensors, Sensors and Actuators B 74 (2001) 74-77
    15. C. E. Chryssou, Gain-equalizing filters for wavelength division multiplexing Optical communication systems: a comparison of notch and long-period grating filters for integrated optoelectronics 15 October, Optics Communications 184 (2000) 375-384
    16. D. P. Pouliosa, J. P. Spoonhower, N. P. Bigelow Influence of oxygen deficiencies and hydrogen loading on defect luminescence in irradiated Ge-doped silica glasses, Journal of Luminescence 101 (2003)23-33
    17. Mei Nar Ng, Kin Seng Chiang, Thermal effects on the transmission spectra of long-period fiber gratings, 15 July, Optics Communications 208 (2002) 321-327
    18. L. Zhang, Y. Liu, L. Everall, Design and Realization of Long-Period Grating Devices in Conventional and High Birefringence Fibers and Their Novel Applications as Fiber-Optic Load Sensors IEEE Journal of selected topics in quantum electronics, Vol. 5, No. 5, September/October 1999
    19.范崇澄,彭吉虎.导波光学.北京:北京理工大学,1988
    20.叶培大,吴彝尊.光波导技术基本理论.北京:人民邮电出版社,1984
    21.陈根祥.光波技术基础.北京:中国铁道出版社,2000
    22. L. Qin, Z. X. Wei, Q. Y. Wang, Compact temperature-compensating package for long period fiber gratings, Optical Materials 14 (2000) 239-242
    23. Zongqiang Lina; b;., Xiangfei Chena, Fei Wub, A novel method for fabricating apodized fiber Bragg gratings, Optics & Laser Technology 35 (2003) 315-318
    24. R. P. espindola, R. S. Windeler, A. A. Abramov, External refractive index insensitive air-clad long period fibre grating, Electronics letters 18th February 1991 vol. 35, No. 4
    25.汤树成,徐奎,韦春龙.EDFA增益平坦用LPG的研究.现代有线传输,2003年6月第2期
    26.裴丽,谢增华,宁提纲等.长、短周期光纤光栅退火实验研究.光学技术,2001年7月第27卷第4期
    27.柳青,李新碗,叶爱伦等.LPG包层模场分布及其耦合系数.上海交通大学学报,2002年2月第34卷第2期
    28. T. Allsop, L. Zhang, I. Bennion, Detection of organic aromatic compounds in paraffin by a long-period fider grating optical sensor with optimized sensitivity, Optics Communications 191 (2001) 181-190
    29. Y. Liu, L. Zhang, J. A. R. Williams, I. Bennion, Bend sensing by measuring the resonance splitting of long-period fiber gratings, Optics Communications 193(2001) 69-72
    30. Shizhuo Yin, Kun-Wook Chung, Xin Zhn, A novel all-optic tunable long-period grating using a unique double-cladding layer, Optics Communications 196(2001) 181-186
    31. H. J. Patrick, G. M. Williams, A. D. Kersey, Hybrid Fiber Bragg Grating/Long Period Fiber Grating Sensor for Strain/Temperature Discrimination, Ieee Photonics Technology Letters, Vol. 8, No. 9, September 1996
    32. L. R. Chen, Phase-shifted long-period gratings by refractive index-shifting, Optics Communications 200(2001) 187-191
    33. Xuewen Shu, Lin Zhang, Ian Bennion, Fabrication and characterization of ultra-long-period fibre gratings, Optics Communications 203(2002)277-281
    34. L. R. Chen, Design of flat-top bandpass filters based on symmetric multiple phase-shifted long-period fiber gratings, Optics Communications 205(2002)271-276
    35. G. A. Gurchonok, I. A. Djodjua, S. R. Amirova, Using fiber grating in the short-length sensors based on micromecanical vibrations, Sensors and actuators A 93 (2001) 197-205
    36. Davis D. D., Gaylord J. K., Glytsts E. N, et al, "Long-period fiber grating fabrication with focused CO_2 laser pulses", Electron. Lett., 1998, 34, pp302-303.
    37. A. Yariv, "Coupled-mode theory for guided-wave optics, " IEEE J. Quantum Electron., Vol. QE-9, pp. 919-933, 1973.
    38. Kogelnik H., "Filter response of non uniform almost-periodic structures, " Bell syst. Tech. J., 1976, 55(1): 109-126
    39. Weller-Brophy L. A. and Hall D. G., "Analysis of waveguide gratings: application of Rouard's method, " J. Opt. Soc. Am. B 2(6), 863-871 (1985).
    40. Weller-Brophy L. A. and Hall D. G., "Analysis of waveguide gratings: a comparison of the results of Rouard's method and coupled-mode theory, " J. Opt. Soc. Am. A 4(1), 60-65 (1987).
    41. J. N. Jang, H. G. Kim, S. G. Shin, Effects of hydrogen molecule diffusion on LP_(0m) mode coupling of long-period gratings, Journal of Non Crystalline Solids 259(1999) 156-164
    42. Yinian Zhu, Chao Lu, B. M. Lacquet, Wavelength-tunable add/drop multiplexes for dense wavelength division multiplexing using long-period gratings and fiber stretches, 15 July Optics Communications 208(2002) 337-344
    43. Georges Humbert, Abdelrafik Malki, Characterizations at very high temperature of electric arc-induced long-period fiber gratings, Optics Communications 208(2002)329-335
    44. Wojtek J. Bock, Tinko A. Eftimov, Polarization-Sensitive Intermodal All-fiber Sensor Using Spectrally Resolved Detection
    45. Joy P. Dunkers, Joseph L. Lenhart, Sylvia R. Kueh, Fiber optic flow and cure sensing for liquid composite molding, Optics and Lasers in Engineering 35(2001)91-104
    46. H. Jeong, K. Oh, Enhancement of free spectral range of the resonance peaks in a long-period fiber grating by controlling material dispersion of cladding modes, Optics Communications 199(2001) 103-110
    47. Marten de Vries, Vikram Bhafia, Tffanie D'Alberto, Photoinduced grating-based optical fiber sensors for structural analysis and control, Engineering Structures, Vol. 20 No. 3 pp. 205-210, 1998
    48. C. Y. Wei, C. C. Ye, S. W. James, AFM observation of surface topography of fibre Bragg gratings fabricated in germanium-boron codoped fibres and hydrogen-loaded fibres, Optical Materials 20(2002)283-294
    49.孔梅,李春跃,石邦任.基于LPG的增益均衡器设计.半导体光电,2001年8月弟22卷第4期
    50.刘云启,柳贺良,刘志国等.基于LPG滤波的全光纤光纤光栅传感器研究.传感技术学报,2000年12月第4期
    51.童治,魏淮,王目光等.氢载LPG退火的分析和模拟.中国激光,2002年10月第29卷第10期
    52.钱景仁,陈后飞.相移LPG及其在增益谱平坦化中的应用.光学学报,1999年9月第19卷第9期
    53.高侃,蔡海文,陈高庭等.一种改善LPG热稳定性的方法.光学学报,2002年9月第22卷第9期
    54.艾江,叶爱伦,刘宇乔等.一种新的LPG制作方法.光学学报,1999年5月第19卷第5期
    55.李栩辉,夏历,冯佳等.一种新的LPG制作技术.光学学报,2003年3月第23卷第3期
    56.黎敏,廖延彪,赖淑蓉等.一种新型的光纤光栅制作方法.激光杂志,2001年第22卷第1期
    57.H.Y Tam,杜卫冲,Michael.S.Y用微透镜阵列在单模光纤中写入LPG的新方法.光学学报,1998年第11月18卷11期
    58. Sylvia R. M. Kueh, Richard S. Parnas, Suresh G. Advani, A methodology for using long-period gratings and mold-filling simulations to minimize the intrusiveness of flow sensors in liquid composite molding, Composites Science and Technology 62(2002)311-327
    59. Ashish M. Vengsarkar, Paul J. Lemaire, Justin B. Judkins, Long-Period Fiber Gratings as Band-Rejection Filters, Journal of Lightwave Technology, Vol. 14, No. 1, January 1996
    60. Amnon Yariv. Coupled-Mode Theory for Guided-Wave Optics. IEEE Journal of Quantum Electronics, Vol. QE-9 No. 9 September 1973
    61. Trevor W. MacDougall, Saeed Pilevar. Generalized Expression for the Growth of Long Period Gratings. IEEE Photonics Technology letters, Vol. 10 No. 10 October 1998
    62.关柏鸥,Tam.H.Y Ho.S.L.紫外均匀曝光对LPG耦合特性的影响.光学学报,2001年2月第21卷第2期
    63.王海平.光纤Bragg光栅在FBG型传感器中的应用(M).福建师范大学硕士论文,2003年4月
    64.陆耀东.弯曲光纤光栅的研究(M).福建师范大学硕士论文,2001年1月
    65.李丰丽.光纤光栅特性及应用研究(M).暨南大学硕士学位论文,2003年4月
    66.何万迅,施文康,何朔等.模式耦合理论在圆周对称LPG建模中的应用.光学技术,2002年3月第28卷第2期
    67.何万迅,施文康,叶爱伦等.LPG模式与耦合的研究.光学学报,2003年3月第23卷第3期
    68.朱涛,饶云江,冉曾令等.一种基于新型LPG的动态增益均衡器.光子学报,2003年3月第32卷第3期
    69.谢增华,陈根祥,李唐军.运用LPG实现EDFA的增益平坦化.中国激光,2001年6月第28卷第6期
    70. Yahei Koyamada. Numerical Analysis of Core-Mode to Radiation-Mode Coupling in Long-Period Fiber Gratings. IEEE Photonics Technology letters, Vol. 13 No. 4 April 2001
    71. P. J. Lemaire, R. M. Atkins, V. Mizrahi and W. A. Reed "High pressure H_2 Loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers" Elec. Lett 29 (1993) 1191
    72. L. Dong, J. L. Archambault, L Reekie, et al, "Photoinduced absorption change in germanosilicate performs: evidence for the color-center model of photosensitivity", Appl. Opt. Vol. 34, No. 18, pp. 3436-3440 (1995).
    73.徐新华,崔一平.矩形折射率调制型LPG传输谱的理论分析及数值计算.物理学报,2003年1月第52卷第1期
    74.冉曾令,饶云江,朱涛.基于新型LPG的掺铒光纤放大器.光子学报,2003年1月第32卷第1期
    75.郑伟,卓仲畅,秦莉等.LPG的制作及热退火特性.哈尔滨师范大学自然科学学报,2002年第18卷第6期
    76. D. E Hand and E St. J. Russell, "Photoinduced refractive-index changes in germanosilicate fibers", Opt. Lett. Vol. 15, No. 2, pp. 102-104(1990).
    77. J. Albert, B. Malo, K. O. Hill, et al, "Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses", Apply. Phys. Lett. 67(24), pp. 3529-3531(1995).
    78. E. J. Friebele and D. L. Griscom, in Proceedings of the Materials Research Society Symposium (Materials Research Society, Pitts Burgh, Pa., 1986), p. 319.
    79. D. L. Williams, S. T. Davey, R. Kashyap, et al, "Direct Observation of UV induced bleaching of 240nm absorption band in photosensitive germanosilicate glass fibers", Electron. Lett. Vol. 28, No. 4, pp. 369-371(1992).
    80. Turan Erdogan. Fiber Grating Spectra. Journal of light wave technology, Vol. 15 No. 8 August 1997
    81. Bai-Ou Ouan, Hwa-Yaw Tam, Siu-Lau Ho, Growth of Long-Period Gratings in H_2-Loaded Fiber After 193-nm UV Inscription, IEEE Phntonics technology letters, Vol. 12, No. 6, June 2000
    82. Trevor W. MacDougall, Generalized Expression for the Growth of Long Period Gratings, IEEE Photonics technology letters, Vol. 10, No. 10, October 1998
    83. T. Allsop, L. Zhang, D. J. Webb, Discrimination between strain and temperature effects Using first and second-order diffraction from a Long-period grating Optics Communications 211, 1 October,
    84. Y. Liu, J. A. R. Williams, L. Zhang, Phase shifted and cascaded long-period fiber gratings, 1 June Optics Communications 164 1999 27-31
    85.刘云启.葛春风,赵东晖.LPG强度型温度传感研究.光子学报,1999年4月第28卷第4期
    86.童治,魏淮,王目光等.LPG特性的理论及实验研究.铁道学报,2001年12月第23卷第6期
    87.王义平,饶云江,曾祥楷.LPG弯曲特性的模式耦合理论分析.光子学报,2002年10月第31卷第10期
    88.刘云启,东晖,春风等.LFG温度和应力传感特性研究.光子学报,1999年2月第28卷第2期
    89.秦莉,韦占雄,王庆亚等.LPG温度稳定性分析及其改善.光子学报,2000年2月第20卷第2期
    90.舒学文,朱雪梅,王青林等.LPG谐振波长的特性研究.光学学报,2000年8月第20卷第8期
    91. Joon Yong Cho, Kyung Shik Lee A birefringence compensation method for mechanically induced long-period fiber gratings, Optics Communications 213 (2002) 281-284
    92. Xuewen Shu, Dexiu Huang Highly sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-mm-period fiber Grating, 15 November, Optics Communications 171 1999 65-69
    93. R. Falciai, A. G. Mignani, A. Vannini, Long period gratings as solution concentration sensors, Sensors and Actuators B 74 (2001) 74-77
    94. C. E. Chryssou, Gain-equalizing filters for wavelength division multiplexing Optical communication systems: a comparison of notch and long-period grating filters for integrated optoelectronics 15 October, Optics Communications 184 (2000) 375-384
    95. D. P. Pouliosa, J. P. Spoonhower, N. P. Bigelow Influence of oxygen deficiencies and hydrogen loading on defect luminescence in irradiated Ge-doped silica glasses, Journal of Luminescence 101 (2003) 23-33
    96.李智红,盛秋琴,董孝义.LPG的原理与应用.光通信技术,1998年第2期
    97.瞿荣辉,赵浩,方祖捷.LPG的制作方法和应用研究进展.激光与光电子学进展,1999年第12期
    98.周少玲。LPG的制作技术。光纤与电缆及其应用技术,2001年第5期
    99.何万迅,施文康,叶爱伦.LPG及其在通信传感领域的新应用.光学精密工程,2001年4月第9卷第2期
    100.李新碗,杜鹏超,叶爱伦.LPG耦合特性及模拟分析.电子学报,2001年11月第11期
    101.何万迅,施文康,何朔.LPG:原理、制备与应用.光学技术,2001年9月第27卷第5期
    102. Mei Nar Ng, Kin Seng Chiang, Thermal effects on the transmission spectra of long-period fiber gratings, 15 July, Optics Communications 208 (2002) 321-327
    103. T. Allsop, L. Zhang, I. Bennion, Detection of organic aromatic compounds in paraffin by a long-period fiber grating optical sensor with optimized sensitivity, Optics Communications 191 (2001) 181-190
    104.王义平,饶云江,胡爱姿等.LPG扭曲传感器.光学学报,2002年9月第22卷第9期
    105.蔡海文,瞿荣辉.赵浩等.LPG特性的实验研究.光纤通信,2002年第5期
    106.廖延彪,黎敏,田芊.LPG—新兴的光纤光栅传感器.激光与红外,1997年12月第27 卷第6期
    107. L. Qin, Z. X. Wei, Q. Y. Wang, Compact temperature-compensating package for long-period fiber gratings, Optical Materials 14 (2000) 239-242
    108. Zongqiang Lina; b;., Xiangfei Chena, Fei Wub, A novel method for fabricating apodized fiber Bragg gratings, Optics & Laser Technology 35 (2003) 315-318
    109. R. P. espindola, R. S. Windeler, A. A. Abramov, External refractive index insensitive air-clad long period fibre grating, Electronics letters 18th February 1991 vol. 35, No. 4
    110.童治,魏淮,王目光.环境折射率变化对LPG特性影响的研究.光学学报,2002年第9月第22卷第9期
    111.何万迅,益文康,叶爱伦.基于LPG的磁场传感方案的实现.光学技术,2001年11月第27卷第6期
    112.何万迅,施文康.双信道解复用LPG的实验研究.激光技术,2002年4月第26卷第2期
    113.何瑾琳,孙小菡,张明德等.相移LPG的光谱特性及其在光分插复用器中的应用.光学学报。2000年8月第20卷第8期
    114. Y. Liu, L. Zhang, J. A. R. Williams, I. Benison, Bend sensing by measuring the resonance splitting of long-period fiber gratings, Optics Communications 193(2001) 69-72
    115. Shizhuo Yin, Kun-Wook Chung, Xin Zhu, A novel all-optic tunable long-period grating using a unique double-cladding layer, Optics Communications 196(2001) 181-186
    116. H. J. Patrick, G. M. Williams, A. D. Kersey, Hybrid Fiber Bragg Grating/Long Period Fiber Grating Sensor for Strain/Temperature Discdraination, IEEE Photonics Technology Letters, Vol. 8, No. 9, September 1996
    117.孔梅,汤伟中,周文.LPG中的包层模谐振.光子学报,1998年5月第27卷第5期
    118.王义平.饶云江,冉曾令.对弯曲不敏感的LPG传感器.光子学报,2002年6月第31卷第6期
    119.宁提纲,简水生,魏淮等.封装对LPG的影响.半导体光电,2002年第23卷第1期
    120.颜严.高性能LPG.激光与光电子学进展,2000年第5期
    121.乔学光,李育林,张培坤等.光纤布拉格光栅和LPG传感器对油气井下应力和温度的同时测量.光电子激光,1999年2月第10卷第1期
    122.裴丽,谢增华,宁提纲等,光纤光栅退火特性的研究.压电与声光,2001年2月第23卷第1期
    123. L. R. Chen, Phase-shifted long-period gratings by refractive index-shifting, Optics Communications 200(2001) 187-191
    124. Xuewen Shn, Lin Zhang, Ian Benison, Fabrication and characterization of ultra-long-period fibre gratings, Optics Communications 203(2002)277-281
    125. L. R. Chen, Design of flat-top band pass filters based on symmetric multiple phase-shifted long-period fiber gratings, Optics Communications 205(2002)271-276
    126. G. A. Gurchonok, I. A. Djodjua, S. R. Amirova, Using fiber grating in the short-length sensors based on micromecanical vibrations, Sensors and actuators A 93 (2001) 197-205
    127. J. N. Jang, H. G. Kim, S. G. Shin, Effects of hydrogen molecule diffusion on LP_(0m) mode coupling of long-period gratings, Journal of Non Crystalline Solids 259(1999) 156-164
    128.陈根祥,李唐军。刘春宁等.光纤光栅增益平坦化器件的研究.光学学报,1999年10月第19卷第10期
    129.何万迅,施文康.基于LPG的高灵敏度温度传感方案.传感技术学报,2002年3月第1期
    130.武志刚,董孝义,张伟刚等.啁啾的LPG的透射谱特性.南开大学学报(自然科学版),2002年6月第35卷第2期
    131.黄耐容,王谦,何赛灵.LPG光谱响应与结构参数关系的研究.光电子·激光,2001年第12卷
    132. Yinian Zhu, Chao Lu, B. M. Lacquet, Wavelength-tunable add/drop multiplexer for dense wavelength division multiplexing using long-period gratings and fiber stretchers, 15 July Optics Communications 208(2002) 337-344
    133. Georges Humbert, Abdelrafik Malki, Characterizations at very high temperature of electric arc-induced long-period fiber gratings, Optics Communications 208(2002) 329-335
    134.贾宏志,李育林,忽满利.LPG传感器温度和应变灵敏度分析.光子学报,1999年8月第28卷第8期
    135.孔梅,周文,汤伟中.LPG导模与包层模的耦合分析.光学学报。1999年3月第19卷第3期
    136.秦莉,韦欣,王庆亚等.LPG的发展概况.吉林大学自然科学学报,1997年10月第4期
    137.李彬,裴丽,董小伟等.LPG的几种制作方法.光通信技术,2003年第6期
    138. Wojtek J. Bock, Tinko A. Eftimov, Polarization-Sensitive Intermodal All-fiber Sensor Using Spectrally Resolved Detection
    139. Joy P. Dunkers, Joseph L. Lenhart, Sylvia R. Kueh, Fiber optic flow and cure sensing for liquid composite molding, Optics and Lasers in Engineering 35(2001) 91-104
    140. H. Jeong, K. Oh, Enhancement of free spectral range of the resonance peaks in a long-period fiber grating by controlling material dispersion of cladding modes, Optics Communications 199(2001) 103-110
    141. Marten de Vries, Vikram Bhatia, Tiffanie D'Alberto, Photoinduced grating-based optical fiber sensors for structural analysis and control, Engineering Structures, Vol. 20, No. 3, pp. 205-210, 1998
    142. C. Y. Wei, C. C. Ye, S. W. James, AFM observation of surface topography of fibre Bragg gratings fabricated in germanium-boron codoped fibres and hydrogen-loaded fibres, Optical Materials 20(2002)283-294
    143.陈根祥,春宁。唐军等.LPG的研究.光学学报,2000年5月第20卷第5期
    144.刘云启,郭转运,张爱玲.LPG折射率敏感特性研究.量子电子学报,1999年12月第16卷第6期
    145.王庆亚,王东,郑伟等.LPG制作.吉林大学自然科学学报,1996年8月第3期
    146. Sylvia R. M. Kueh, Richard S. Parnas, Suresh G. Advani, A methodology for using long-period gratings and mold-filling simulations to minimize the intrusiveness of flow sensors in liquid composite molding, Composites Science and Technology 62(2002) 311-327
    147.裴丽,谢增华,宁提纲等.长、短周期光纤光栅退火实验研究.光学技术,2001年7月第27卷第4期
    148. RAOYun—Jiang, WANG Yi—Ping, ZHU Tao. Simultaneous Measurement of Transverse Load and Temperature Using a Single Long-Period Fiber gating Element. Chin. Phys. Lett, Vol. 20 No. 1 2003 (72)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700