用户名: 密码: 验证码:
中空夹层钢管混凝土压弯构件的力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从理论和试验两个方面较系统地研究了圆、方中空夹层钢管混凝土构件在单调加载(包括轴压、纯弯、压弯荷载)下的力学性能和工作机理,以及其在往复荷载作用下的滞回性能,并在参数分析的基础上,提出了圆、方中空夹层钢管混凝土轴压、纯弯和压弯构件承载力的实用计算方法和弯矩-曲率、荷载-位移滞回关系模型及延性系数的确定方法。
     本文具体进行了以下几个方面的工作:
     (1)分别以径厚比、空心率、长细比、偏心距等为主要变化参数,较系统地进行了轴压、纯弯和压弯构件在单调加载下的试验研究。
     (2)用纤维模型和ABAQUS有限元软件建模两种方法对轴压、纯弯和压弯构件的荷载-变形全过程进行计算,计算结果均得到试验结果的验证。在此基础上,用ABAQUS建模对轴压、纯弯和压弯构件受力全过程中内外钢管与混凝土的应力分布、三者之间的相互作用以及内外钢管的破坏形态进行了研究。分析了空心率对轴压、纯弯和压弯构件力学性能的影响,讨论了加载路径对压弯构件承载力的影响。用纤维模型法系统地分析了截面含钢率、空心率、钢材和混凝土强度等因素对构件承载力的影响,提出了轴压、纯弯和压弯构件承载力的实用计算方法。
     (3)以空心率和轴压比为主要变化参数,进行了压弯构件在往复荷载作用下的试验研究。
     (4)利用纤维模型法,对压弯构件的M-φ和P-Δ滞回关系曲线及其骨架线进行了分析。利用ABAQUS建模对构件的荷载-位移骨架曲线进行了计算,两种计算方法都得到了试验结果的验证。用纤维模型法系统地分析了轴压比、长细比、截面含钢率、钢材和混凝土强度等参数对M-φ和P-Δ滞回曲线骨架线的影响规律,提出了压弯构件M-φ、P-Δ滞回关系模型及延性系数的确定方法。
Behavior and mechanism of Concrete filled double-skin steel tubular (CFDST) beam-columns subjected to monotonic or cyclic loading were investigated. Two kinds of CFDST section tubes were studied in this paper, that is, the outer steel tubes are circular hollow sections (CHS) or square hollow sections (SHS), while all the inner steel tubes are CHS. Based on systematic parameter analysis, simplified models were derived to predict the load-carrying capacities of the composite members, and simplified moment-curvature and lateral load-lateral deflection hysteretic models, as well as ductility coefficient were suggested.
     The main achievements were summarized in detail as follows:
     (1) The CFDST tubular beams, columns and beam-columns with CHS outer steel tubes were tested systematically. The main experimental parameters were tube diameter-to-thickness ratio, hollow section ratio, eccentricity and slenderness ratio.
     (2) Load-deformation relationship curves of CFDST subjected to compression and bending were analyzed by finite element method and fiber element method. The predicted load versus deformation relationship curves are in good agreement with those of tests. Stress distributions of steel and concrete, interactions between steel and concrete and failure modes of inner and outer steel tubes were analyzed by finite element method. The influences of hollow section ratio on the mechanism of CFDST beams, columns and beam-columns were analyzed. The influences of different loading paths on the bearing capacities of the CFDST beam-columns were also discussed. Parametric analysis was performed on the influences of bearing capacities of the composite members by fiber element method. The selected parameters were hollow section ratio, steel ratio, strength of the materials, etc. Simplified models were derived for the member capacities of the composite beam-columns.
     (3) The CFDST beam-columns were tested under constant compressive axial load and cyclic lateral load. The main parameters varied in the tests are axial load ratio and hollow section ratio.
     (4) Moment-curvature hysteretic curves, load-displacement hysteretic curves and their skeleton curves were calculated by fiber element method. Moment-curvature relationship skeleton curves and load-displacement relationship skeleton curves were also calculated by finite element method. The predicted curves are in good agreement with those of tests. Based on the fiber element method, parametric analysis was performed on the behaviors of moment-curvature and lateral load-lateral displacement relationships for the composite beam-columns. The selected parameters were the axial load level, slenderness ratio, steel ratio, strength of the materials, etc. Finally, simplified models for the moment-curvature and the lateral load-lateral displacement hysteretic relationships, as well as simplified formula for calculating ductility coefficient were suggested.
引文
[1] 钟善桐. 钢管混凝土结构(第三版). 北京:清华大学出版社, 2003.
    [2] 蔡绍怀. 现代钢管混凝土结构. 北京:人民交通出版社, 2003.
    [3] 韩林海, 钟善桐.钢管混凝土力学. 大连: 大连理工大学出版社, 1996.
    [4] 韩林海. 钢管混凝土结构. 北京: 科学出版社, 2000.
    [5] 韩林海. 钢管混凝土结构-理论与实践. 北京: 科学出版社, 2004.
    [6] 陶忠, 于清. 新型组合结构柱-试验、理论与方法. 北京: 科学出版社, 2006.
    [7] 韩林海, 杨有福. 现代钢管混凝土结构技术. 北京: 中国建筑工业出版社, 2004.
    [8] H WRIGHT, T ODYEMI, H R EVANS. The Experimental Behavior of Double Skin Composite Elements. Journal of Constructional Steel Research. 1991, 19: 91-110.
    [9] 杨有福, 韩林海. 圆中空夹层钢管混凝土柱耐火性能初探. 工程建设与设计. 2005, 2: 21-23.
    [10] Kloppel V. K., Goder W. An investigation of the load carrying capacity of concrete-filled steel tubes and development of design formula. Der Stahlbau, 1957a, 26 (1): 1-10.
    [11] Kloppel V. K., Goder W. An Investigation of the load carrying capacity of concrete-filled steel tubes and development of design formula. Der Stahlbau, 1957b, 26 (2): 44-50.
    [12] Gardner J.,Jacobson E. R. Structural behaviour of concrete filled steel tubes. ACI Structural Journal, 1967,64 (7): 404-413.
    [13] Furlong R. W. Strength of steel-encased concrete beam-columns. Journal of Structural Division, ASCE, 1967, 93 (ST5): 113-124.
    [14] Knowles R. B., Park R. Strength of concrete filled steel tubular columns. Journal of Structural Division, ASCE, 1969, 95 (ST12): 2565-2587.
    [15] Knowles R. B., Park R. Axial load design for concrete filled steel tubes. Journal of Structural Division, ASCE, 1970, 96 (ST10): 2125-2153.
    [16] Bridge R. Q. Concrete filled steel tubular columns. Report No. R283, School of Civil Engineering, University of Sydney, Sydney, Australia, 1976.
    [17] Morishita Y, Tomii M, Yoshimura K. Experimental studies on bond strength in concrete filled circular steel tubular columns subjected to axial loads. Transactions of Japan Concrete Institute, 1979a: 351-358.
    [18] Morishita Y, Tomii M, Yoshimura K. Experimental studies on bond strength in concrete filled square and octagonal steel tubular columns subjected to axial loads. Transactions of Japan Concrete Institute, 1979b: 359-336.
    [19] Morishita Y., Tomii M. Experimental studies on bond strength between square steel tube and encased concrete core under cyclic shearing force and constant axial force. Transactions of Japan Concrete Institute, Vol. 4, 1982, 363-370.
    [20] 蔡绍怀,焦占拴.钢管混凝土短柱的基本性能和强度计算. 建筑结构学报, 1984, 5(6): 13-29.
    [21] 蔡绍怀,顾万黎.钢管混凝土长柱的性能和强度计算. 建筑结构学报, 1985a, 6(1): 32-40.
    [22] 蔡绍怀,顾万黎.钢管混凝土抗弯强度的试验研究. 建筑技术通讯 (建筑结构), 1985b, (3):28-29.
    [23] 蔡绍怀,邸小坛.钢管混凝土偏压柱的性能和强度计算. 建筑结构学报, 1985, 6(4): 32-41.
    [24] 李继读.钢管混凝土轴压承载力的研究.工业建筑, 1985, (2): 25-31.
    [25] 张正国.方钢管混凝土偏压短柱基本性能研究.建筑结构学报. 1989,(6): 10-20.
    [26] 潘友光.钢管混凝土受弯构件承载力研究.哈尔滨建筑工程学院学报, 1990, (2): 41-49.
    [27] 顾维平,蔡绍怀,冯文林.钢管高强混凝土长柱性能和承载能力的研究. 建筑科学, 1991,(3):3-8
    [28] Luksha L. K., Nesterovich A. P. Strength testing of larger-diameter concrete filled steel tubular members. Proceedings of the Third International Conference on Steel-Concrete Composite Structures, ASCCS, Fukuoka, Japan, 1991, 67-70.
    [29] Ge H. B.,Usami T. Strength of concrete-filled thin-walled steel box columns: experiment. Journal of Structural Engineering, ASCE, 1992, 118 (11): 3006-3054.
    [30] Ge H. B.,Usami T. Strength analysis of concrete-filled thin-walled steel box columns. Journal of Constructional Steel Research, 1994, 30: 607-612.
    [31] Grauers M. Composite columns of hollow steel sections filled with high strength concrete. Division of Concrete Structures, Chalmers University of Technology, Goteborg, Sweden, 140, 1993.
    [32] Lu Y. Q., Kennedy D. J. L. The flexural behaviour of concrete-filled hollow structural sections. Canadian Journal of Civil Engineering, 1994, 21 (1): 111-130.
    [33] Kato B. Column curves of steel-concrete composite members. Journal of Constructional Steel Research, 1996, 39(2): 121~135.
    [34] Bradford M. A. Design strength of slender concrete filled rectangular steel tubes. ACI Structural Journal, 1996, 93 (2): 229-235.
    [35] Bridge R. Q., Patrick M., Webb J. High strength materials in composite construction. Conference Report of International Conference on Composite Construction-Conventional and Innovative, Innsbruck, Austria.1997, 29-40.
    [36] 蔡绍怀, 焦占拴. 复式钢管混凝土柱的基本性能和承载力计算. 建筑结构学报, 1997, 18(6): 20-25.
    [37] Cederwall K., Engstrom B.,Grauers M. High-strength concrete used in composite columns. High-Strength concrete, SP 121-11, 1997, 195-210
    [38] Konno K., Sato Y., Kakuta Y., Ohira M. The property of recycled concrete column encased by steel tube subjected to axial compression. Transactions of the Japan Concrete Institute, 1997, 19: 351-358.
    [39] Hajjar J F, Gourley B C. Representation of concrete-filled tubes(I): formulation. Journal of Structural Engineering, ASCE, 1997, 123(6): 736-744.
    [40] O’Shea M. D., Bridge R. Q. Tests on circular thin-walled steel tubes filled with medium and high strength concrete. Department of Civil Engineering Research Report No. R755, the University of Sydney, Sydney, Australia, 1997a.
    [41] O’Shea M. D., Bridge R. Q. Tests on circular thin-walled steel tubes filled with very high strength concrete. Department of Civil Engineering Research Report No. R754, the University of Sydney, Sydney, Australia, 1997b.
    [42] O’Shea M. D., Bridge R. Q. Local Buckling of thin-walled circular steel sections with or without internal restraint. Department of Civil Engineering Research Report No. R740, the University of Sydney, Sydney,Australia, 1997c.
    [43] O’Shea M. D., Bridge R. Q. Behaviour of thin-walled box sections with lateral restraint. Department of Civil Engineering Research Report No. R739, the University of Sydney, Sydney, Australia, 1997d.
    [44] Russell Q.Bridge, Martin D.O'Shea. Behaviour of thin-walled steel box sections with or without internal restraint. Journal of Constructional Steel Research. 1998, 47:73-91.
    [45] Schneider S P. Axially loaded concrete-filled steel tubes. Journal of Structural Engineering, ASCE, 1998, 124(10): 1125-1138.
    [46] 吕西林, 余勇, 陈以一, 等. 轴心受压方钢管混凝土短柱的性能研究Ⅰ:试验. 建筑结构, 1999, 10: 41-43.
    [47] 张素梅,周明.方钢管约束下混凝土的抗压强度. 哈尔滨建筑大学学报增刊(中国钢协钢-混凝土组合结构协会第七次年会论文集), 1999, (3): 14-18.
    [48] Zhang W Z, Shahrooz B M. Comparison between ACI and AISC for concrete-filled tubular columns. Journal of Structural Engineering, ASCE, 1999, 125(11): 1213-1223.
    [49] 谭克锋, 蒲心诚, 蔡绍怀. 钢管超高强混凝土的性能与极限承载能力的研究. 建筑结构学报, 1999, 20(1): 10-15.
    [50] 谭克锋, 蒲心诚. 钢管超高强混凝土长柱及偏压柱的性能与极限承载能力的研究. 建筑结构学报, 2000, 21(2): 12-19.
    [51] Liang Q Q, Uy B. Theoretical study on the post-local buckling of steel plates in concrete-filled box columns. Computers and Structures, 2000, 75(5): 479-490.
    [52] 余勇, 吕西林, Tanaka Kiyoshi, 等. 轴心受压方钢管混凝土短柱的性能研究Ⅱ:分析. 建筑结构, 2000, 30(2): 43-46.
    [53] Amit H. Varma. Seismic behavior, analysis, and design of high strength square concrete filled steel tube (CFT) columns: [paper for the degree of doctor]. Candidacy: Lehigh University, 2000.
    [54] Uy B. Strength of concrete filled steel box columns incorporating local buckling. Journal of Structural Engineering, ASCE, 2000, 126(3): 341-352.
    [55] Susantha K A S, Ge H B, Usami T. Confinement evaluation of concrete-filled box-shaped steel columns. Steel and Composite Structures, 2001,1(3): 313-328.
    [56] Gupta L. M.,Parlewar P. M. An investigation of concrete-filled steel box columns. Journal of Structural Engineering, 2001, 28 (1): 33-38.
    [57] Johansson M, Gylltoft K. Structural behavior of slender circular steel-concrete composite columns under various means of load application. Steel and Composite Structures, 2001, 1(4): 393-410.
    [58] Johansson M, Gylltoft K. Mechanical behavior of circular steel-concrete composite. Journal of Structural Engineering, 2002, 128(8): 1073-1081.
    [59] Bradford M A, Loh H Y, Uy B. Slenderness limits for filled circular steel tubes. Journal of Constructional Steel Research, 2002, 58 (2): 243-252.
    [60] Lakshmi B, Shanmugam N E. Nonlinear analysis of in-filled steel-concrete composite columns. Journal of Structural Engineering, ASCE, 2002, 128(7): 922-933.
    [61] Shanmugam N E, Lakshmi B, Uy B. An analytical model for thin-walled steel box columns with concretein-fill. Engineering Structures, 2002, 24(6): 825-838.
    [62] 余志武, 丁发兴, 林松. 钢管高性能混凝土短柱受力性能研究. 建筑结构学报, 2002, 23(2): 41-47.
    [63] Hu H T, Huang C S, Wu M H, Wu Y M. Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect. Journal of Structural Engineering, 2003, 129(10): 1322-1329.
    [64] 王力尚, 钱稼茹. 钢管高强混凝土柱轴向受压承载力试验研究. 建筑结构, 2003, 33(7): 46-49.
    [65] 陈宝春,王来永,欧智菁,韩林海.钢管混凝土偏心受压应力-应变试验研究.工程力学,2003, 20(6):154-159.
    [66] 李斌,闻洋.钢管混凝土轴压长柱承载力的试验研究.地震工程与工程振动, 2003, 23(5):130-133
    [67] 陈宝春,陈友杰,王来永,韩林海.钢管混凝土偏心受压应力-应变关系模型研究.中国公路学报,2004, 17(1):24-28.
    [68] 卢辉,韩林海.圆钢管混凝土抗弯刚度计算方法探讨. 工业建筑,2004, 34(1):1-5.
    [69] 李学平. 矩形钢管混凝土柱的基本力学性能研究:[博士学位论文].上海: 同济大学 2004.
    [70] 钱稼茹,王刚,赵作周,康钊.钢管高强混凝土构件截面弯矩-曲率全曲线研究.工业建筑,2004, 34(8):70-72.
    [71] 张素梅, 王玉银. 圆钢管高强混凝土轴压短柱的破坏模式. 土木工程学报, 2004, 37(9): 1-10.
    [72] 张素梅, 郭兰慧, 叶再利, 王玉银. 方钢管高强混凝土轴压短柱的试验研究. 哈尔滨工业大学学报, 2004, 36(12): 1610-1614.
    [73] 张春梅, 阴毅, 周云. 双钢管高强混凝土柱轴压承载力的试验研究. 广州大学学报(自然科学版), 2004, 3(1): 61-65.
    [74] Zhong Tao, Lin-hai Han, Zhi-Bin Wang. Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns. Journal of Constructional Steel Research, 2004, 39(2): 121-135.
    [75] 何保康, 杨晓冰, 周天华. 矩形钢管混凝土柱管壁局部屈曲性能研究. 建筑结构, 2005, 35(1): 13-15.
    [76] 刘威. 钢管混凝土局部受压时的工作机理研究: [博士学位论文].福州: 福州大学 2005.
    [77] 郭兰慧, 张素梅, 王玉银, 刘界鹏. 矩形钢管高强混凝土中长柱轴压构件的试验研究与理论分析. 工业建筑, 2005, 35(3): 75-79.
    [78] 张耀春, 王秋萍, 毛小勇, 曹宝珠. 薄壁钢管混凝土短柱轴压力学性能试验研究. 建筑结构, 2005a, 35(1): 22-27.
    [79] 张耀春, 许辉, 曹宝珠. 薄壁钢管混凝土长柱轴压性能试验研究. 建筑结构, 2005b, 35(1): 28-31.
    [80] 张耀春, 曹宝珠. 轴心受压薄壁圆钢管混凝土柱临界径厚比的确定. 工程力学, 2005, 22(1): 170-174.
    [81] Timo K.Tikka, S.Ali Mirza. Nonlinear Equation for Flexural Stiffness of Slender Composite Columns in Major Axis Bending. Journal of Structural Engineering, ASCE, 2006, 132(3): 387-399.
    [82] Sakino K, Tomii M. Hysteretic behavior of concrete filled square steel tubular beam-columns failed in flexure. Transactions of the Japan Concrete Engineering, ASCE, 1981, 3: 439-446.
    [83] Morishita Y, Tomii M. Experimental studies on bond strength between square steel tube and encased concrete core under cyclic shearing force and constant axial force. Transactions of Japan ConcreteInstitute, 1982, 4: 363-370.
    [84] 屠永清. 钢管混凝土压弯构件恢复力特性研究:[博士学位论文].哈尔滨: 哈尔滨建筑大学, 1994.
    [85] Prion H G L, Boehme J. Beam-column behaviour of steel tubes filled with high strength concrete. Canadian Journal of Civil Engineering, 1994, 21: 207-218.
    [86] Ge H B, Usami T. Cyclic tests of concrete filled steel box columns. Journal of Structural Engineering, ASCE, 1996, 122(10): 1169-1177.
    [87] 邱法维,杨卫东,欧进萍. 钢管混凝土柱滞回耗能和累积损伤的实验研究. 哈尔滨建筑大学学报, 1996, 29(3):41-45.
    [88] Boyd P F, Cofer W F, Mclean D I. Seismic performance of steel-encased concrete columns under flexural loading. ACI Structural Journal, 1995, 92 (3): 355-364.
    [89] Hajjar J F, Gourley B C. Representation of concrete-filled tubes, I : formulation. Journal of Structural Engineering, ASCE, 1997, 123(6): 736-744.
    [90] Hajjar J F, Molodan A, Schiler P H. A distributed plasticity model for cyclic analysis of concrete-filled steel tube beam-columns and composite frames. Engineering Structures, 1998, 20(4-6): 398-412.
    [91] Kang C H, Moon T S. Behavior of concrete-filled steel tubular beam-column under combined axial and lateral forces. Proceeding of the Fifth Pacific Structural Steel Conference, Seoul, Korea, 1998, 961-966.
    [92] Sakino K, Inai E, Nakahara H. Tests and analysis on elasto-plastic behavior of CFT beam-columns-U.S.-Japan cooperative earthquake research program. Proceedings of the Fifth Pacific Structural Steel Conference, Seoul, Korea, 1998, 901-906.
    [93] Lahlou K, Lachemi M, Aitcin P C.. Confined High-Strength Concrete under Dynamic Compressive Loading. Journal of Structural Engineering, ASCE, 1999, 125(10): 1100-1108.
    [94] Nakanishi.K, Kitada.T, Nakai.H. Experimental study on ultimate strength and ductility of concrete filled steel columns under strong earthquake. Journal of Constructional Steel Research, 1999, 51:297-319.
    [95] Zhao X L, Grzebieta R H. Void-Filled SHS Beams Subjected to Large Deformation Cyclic Bending. Journal of Structural Engineering, ASCE, 1999, 125(9): 1020-1027.
    [96] 吕西林, 陆伟东. 反复荷载作用下方钢管混凝土柱的抗震性能试验研究. 建筑结构学报, 2000, 21(2): 2-11.
    [97] 王湛,甄永辉.钢管高强混凝土压弯构件滞回性能的研究.地震工程与工程振动, 2000, 20(4):51-55.
    [98] Aval S B B, Saadeghvaziri M A, Golafshani A A. Comprehensive composite inelastic fiber element for cyclic analysis of concrete-filled steel tube columns. Journal of Engineering Mechanics, ASCE, 2002, 128(4): 428-437.
    [99] Elremaily, A. and Azizinamini, A. . Behavior and Strength of Circular Concrete – Filled Tube Columns. Journal of Constructional Steel Research, 2002, 58(12): 1567-1591.
    [100] 李佳,易伟健 . 钢管混凝土压弯构件滞回模型分析 . 湖南大学学报 ( 自然科学版 ), 2002, 29(3):133-136.
    [101] 杨有福, 韩林海. 圆钢管混凝土压弯构件荷载-位移滞回模型研究. 地震工程与工程振动, 2003, 23(6):117-123.
    [102] 余志武, 石挺丰, 林松, 丁发兴. 钢管高性能混凝土柱抗震性能试验研究. 工业建筑, 2003, 33(10):59-61.
    [103] 韩林海, 杨有福, 游经团, 黄宏. 圆钢管混凝土压弯构件滞回性能的试验研究与理论分析. 中国公路学报, 2004a, 17(3): 51-56.
    [104] 韩林海, 游经团, 杨有福, 陶忠. 往复荷载作用下矩形钢管混凝土构件力学性能的研究. 土木工程学报, 2004b, 37(11): 11-22.
    [105] 杨有福, 韩林海. 圆钢管混凝土压弯构件弯矩-曲率滞回模型研究. 地震工程与工程振动, 2004, 24(1):186-192.
    [106] 张春梅,阴毅,周云. 钢管高强混凝土柱抗震性能的试验研究.地震工程与工程振动, 2004, 24(4):86-89.
    [107] 尧国皇, 韩林海. 钢管约束混凝土压弯构件滞回性能的实验研究. 地震工程与工程振动, 2004, 24(6):89-96.
    [108] 游经团, 韩林海. 钢管高性能混凝土压弯构件滞回性能试验研究. 地震工程与工程振动, 2005, 25(3): 98-103.
    [109] 林晓康, 韩林海. 火灾后方钢管混凝土压弯构件滞回性能理论分析. 地震工程与工程振动, 2005, 25(3): 104-109.
    [110] 林晓康, 韩林海. 火灾作用后圆钢管混凝土柱荷载-位移滞回性能的研究. 建筑结构学报, 2005, 26(3):19-29.
    [111] 李学平, 吕西林, 郭少春. 反复荷载下矩形钢管混凝土柱的抗震性能Ⅱ: 分析研究. 地震工程与工程振动, 2005a, 25(5): 104-111.
    [112] 李学平, 吕西林, 郭少春. 反复荷载下矩形钢管混凝土柱的抗震性能Ⅰ:试验研究. 地震工程与工程振动, 2005b, 25(5): 96-103.
    [113] 张素梅, 刘界鹏, 王玉银, 郭兰慧. 双向压弯方钢管高强混凝土构件滞回性能试验与分析. 建筑结构学报, 2005, 26(3): 9-18.
    [114] 庄金平. FRP 加固火灾后钢管混凝土柱滞回性能研究. [硕士学位论文].福州: 福州大学, 2005.
    [115] 林松. 高性能钢管混凝土柱在水平低周反复荷载作用下的试验研究. 铁道科学与工程学报. 2006, 3(1): 22-26.
    [116] S WEI, S T MAU, C VIPULANANDAN, S K MANTRALA. Performance of New Sandwich Tube under Axial Loading: Experiment. Journal of Structural Engineering. 1995a, 121(12): 1806-1814.
    [117] S WEI, S T MAU, C VIPULANANDAN, S K MANTRALA. Performance of New Sandwich Tube under Axial Loading: Analysis. Journal of Structural Engineering. 1995b, 121(12): 1815-1821.
    [118] 韩邦飞, 夏建国, 赵建明. 同种双钢管混凝土轴心受压构件的承载力的研究. 石家庄铁道学院学报, 1995, 8 (3): 75-80.
    [119] YAGISHITA, H KITOH, M SUGIMOTO, T TANIHIRA, K SONODA. Double Skin Composite Tubular Columns Subjected to Cyclic Horizontal Force and Constant Axial Force. Proc. of 6th Inter. Confer. on Steel and Concrete Composite Structures. USA, Apr., 2000: 497~503.
    [120] X L ZHAO, R GRZEBIETA, M ELCHALAKANI. Tests of Concrete-Filled Double Skin Circular Hollow Sections. First Inter. Confer. on Steel & Composite Structures. Pusan, Korea, June, 2001: 283-290.
    [121] 蔡克銓, 林育詳, 林敏郎. 中空雙鋼管混凝土柱與基礎結合之試驗行爲. 第二屆海峽兩岸及香港鋼結構技術交流會.中國, 臺北, 2001: 77-88.
    [122] 蔡克銓, 林敏郎. 雙鋼管填充混凝土中空桥柱耐震行爲(一).财团法人中兴工程顾问社专案研究计划期中报告.台北.2001.
    [123] Lin Min-Lang, Keh-Chyuan Tsai. Behavior of Double-Skinned Composite Steel Tubular Columns Subjected to Combined Axial and Flexural Loads. First International Conference on Steel & Composite Structures. Pusan, Korea, June 14-16, 2001:1145-1152.
    [124] X L ZHAO, R GRZEBIETA. Strength and Ductility of Concrete Filled Double Skin (SHS Inner and SHS Outer) tubes. Thin-Walled Structures. 2002, 40: 199-233.
    [125] X L ZHAO, R GRZEBIETA. A.Ukur and M.Elchalakani. Tests of Concrete-Filled Double Skin (SHS Outer and CHS Inner) Composite Stub Columns. Advances in Steel Structures. 2002, Vol.1: 567-574.
    [126] M Elchalakani, X L Zhao, R Grzebieta. Tests on concrete filled double-skin (CHS outer and SHS inner)composite short columns under axial compression. Thin-Walled Structures. January, 2002:1-28.
    [127] 陶忠, 韩林海, 黄宏. 方中空夹层钢管混凝土偏心受压柱力学性能的研究. 土木工程学报. 2003, 36(2): 33-40.
    [128] 黄宏. 方中空夹层钢管混凝土力学性能及承载力理论计算与试验研究:[硕士学位论文].江西南昌:华东交通大学, 2003.
    [129] 夏桂云, 曾庆元, 李传习, 等. 复式空心钢管混凝土柱抗压刚度. 长安大学学报(自然科学版), 2003, 23(4): 41-45.
    [130] 陶忠, 韩林海, 郑永乾, 黄宏. 方中空夹层钢管混凝土纯弯构件力学性能研究. 工业建筑, 2004, 34(1): 6-9.
    [131] Han Lin-Hai, Tao Zhong, Huang Hong and Zhao Xiao-ling. Concrete-Filled Double Skin (SHS outer and CHS inner) Steel Tubular Beam-Columns. Thin Walled Structures, 2004, 42(9): 1329-1355.
    [132] 谢力, 陈梦成, 张安哥. 矩形中空夹层钢管混凝土短柱力学性能的数值分析.华东交通大学学报, 2005, 22(1):4-6.
    [133] 王志滨. 矩形中空夹层钢管混凝土压弯构件力学性能研究.[硕士学位论文].福州: 福州大学, 2005.
    [134] 赵均海, 郭红香, 魏雪英. 圆中空夹层钢管混凝土柱承载力研究. 建筑科学与工程学报. 2005, 22(1): 50-54.
    [135] Zhong Tao, Lin-hai Han. Behaviour of concrete-filled double skin rectangular steel tubular beam-columns. Journal of Constructional Steel Research, 2006, 62(7): 631-646.
    [136] Abdel-Rahman N, Sivakumaran K S. Material properties models for analysis of cold-formed steel members. Journal of Structural Engineering, ASCE, 1997, 123(9): 1135-1143.
    [137] Australian Standard AS4100. Steel structures. Strathfield, Australia, 1998.
    [138] Uy B, Bradford M A. Elastic local buckling of concrete filled box columns. Engineering Structural, 1996, 18(3): 193-200.
    [139] Uy B. Concrete-filled fabricated steel box columns for multistory buildings: behaviour and design. Progress in Structural Engineering and Materials, 1(2): 150-158.
    [140] Sivakumaran.K.S, Abdel-Rahman.N. A finite element analysis model for the behaviour of cold-formed steel members. Thin-Walled Structures, 1998, 31(4): 305-324.
    [141] 国家技术监督局, 中华人民共和国建设部. GB 50017-2003. 中华人民共和国国家标准-钢结构设计规范.中国计划出版社, 2003.
    [142] Hibbitt, Karlson, Sorenson. ABAQUS Version 6.4: Theory Manual, Users’ Manual, Verification Manual and Example problems Manual. Hibbitt, Karlson and Sorenson Inc., 2003.
    [143] 江见鲸, 陆新征, 叶列平. 混凝土结构有限元. 北京:清华大学出版社, 2005.
    [144] 沈聚敏, 王传志, 江见鲸. 钢筋混凝土有限元与板壳极限分析. 北京:清华大学出版社, 1993.
    [145] American Concrete Institute: Building code requirements for structural concrete and commentary (ACI-318-99). Farmington Hills, Detroit, 1999.
    [146] 庄茁, 张帆, 岑松. ABAQUS 非线性有限元分析与实例. 北京: 科学出版社, 2005.
    [147] Baltay P, Gjelsvik A. Coefficient of friction for steel on concrete at high normal stress. Journal of Materials in Civil Engineering, 1990, 2(1): 46-49.
    [148] Roeder C W, Cameron B, Brown C B. Composite action in concrete filled tubes. Journal of Structural Engineering, 1999, 125(5): 234-484.
    [149] Architectural Institute of Japan (AIJ). Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures. Tokyo (Japan), 1997.
    [150] 福建省建设厅. DBJ13-51-2003. 福建省工程建设标准-钢管混凝土结构技术规程. 2003.
    [151] J.Gardner, D.A.Nethercot. Numerical modeling of stainless steel structural components-A consistent approach. Journal of Structural Engineering, ASCE, 2004, 130(10): 1581-1601.
    [152] J.G.Teng, X.Lin, J.M.Rotter, X.L.Ding. Analysis of geometric imperfection in full-scale welded steel silos. Engineering Structures, 2005, 27(7): 938-950.
    [153] Wright.H.D. Local stability of filled and encased steel section. Journal of Structural Engineering. 1995, 121(10): 1382-1388.
    [154] 曹宝珠. 薄壁钢-混凝土组合构件静力性能研究. [博士学位论文].哈尔滨: 哈尔滨工业大学, 2004.
    [155] 国家计划委员会. GB 50018-2002. 中华人民共和国国家标准-冷弯薄壁型钢结构技术规范.中国计划出版社, 2002.
    [156] 中华人民共和国建设部. GB 50205-200. 中华人民共和国国家标准-钢结构工程施工质量验收规范.中国计划出版社, 2002.
    [157] 中华人民共和国经济贸易委员会. DL/T5085-1999. 钢-混凝土组合结构设计规程. 中国电力出版社, 1999.
    [158] 解放军总后勤部. GJB 4142-2000. 国家军用标准-战时军港抢修早强型组合结构技术规程, 2001.
    [159] ATC-24. Guidelines for Cyclic Seismic Testing of Components of Steel Structures. Redwood City (CA): Applied Technology Council, 1992.
    [160] AISC. Load and Resistance Factor Design Specification for Structural Steel Buildings. Chicago, American Institute of Steel Construction, 1999.
    [161] British Standards Institutions: BS5400, Part 5, Concrete and Composite Bridges. London, U. K., 1979.
    [162] Eurocode 4. Design of Steel and Concrete Structures, Part1.1, General Rules and Rules for Building, Brussels (Belgium): European Committee for Standardization, 2005.
    [163] 李忠献. 工程结构试验理论与技术. 天津: 天津大学出版社, 2004: 227-234.
    [164] 朱伯龙, 董振祥. 钢筋混凝土非线性分析. 上海: 同济大学出版社, 1985:18-25.
    [165] 滕智明, 邹离湘. 反复荷载下钢筋混凝土构件非线性有限元分析. 土木工程学报. 1996, (2): 19-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700