用户名: 密码: 验证码:
骨质疏松及相关椎体骨折的磁共振功能成像评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分 磁共振波谱成像(MRs)定量评估兔椎体骨髓状况的初步研究
     目的:初步探讨兔椎体MRS测量值同相应组织形态学结果的相关性。材料与方法:采用单体素PRESS(Point resolred spectroscopy)序列对15只不同月龄(4~13月,平均8.6±3.2月)健康新西兰雌性白兔行L7椎体MRS采集。波谱分析采用SAGE 7.0波谱分析软件,计算椎体波谱的脂水比(Lipid waterratio,LWR)。MRS采集结束后取出相应扫描椎体,并制作常规HE染色切片,组织切片图像分析采用Image-pro plus 5.0软件,计算黄髓、红髓的面积比。结果:兔椎体MRS显示LWR 0.263~2.594,平均0.881±0.59;组织切片黄、红髓面积比0.114~3.45,平均1.166±0.88,两者相关系数r=0.817(P<0.01),直线回归方程LWR=0.24+0.55×黄红髓面积比。结论:椎体MRS同组织形态学结果存在相关性,椎体骨髓中红、黄髓组成比例的变化可以较好地被LWR予以反映,从而为椎体MRS提供了一定的组织形态学基础。
     第二部分 骨质疏松及相关椎体骨折的磁共振波谱成像(MRS)评估
     目的:探讨椎体~1H MRS测量值同DXA、QCT所测骨密度的相关性及其对骨质疏松及相关椎体骨折的评估价值。材料与方法:共有152例(30~80岁,平均58.2±14.2岁)女性志愿者分别进行以下检查:胸腰椎侧位(T4-L4)平片,并采用Genant半定量法对其进行评阅。腰椎及股骨近端双能X线(DXA)骨密度测量。腰椎定量CT(QCT)骨密度测量。腰椎常规矢状位T_2WI、T_1WI和横轴位T_2WI扫描。
Part one: Pilot study of vertebral bone marrow by MR
    Spectroscopy in rabbits
     Objective: The aim of the study was to evaluate the relationship between vertebral magnetic resonance spectroscopy (MRS) and histomorphology in rabbits. Materials and methods: A total of fifteen healthy Zelanian rabbits (mean age 8.6 ± 3.2 months, range 4~13months) underwent single voxel (SV) ~1H MRS examination at the lumbar spine (L7) with point resolved spectroscopy (PRESS) sequence. Lipid water ratio (LWR) was measured by SAGE 7.0 software. The vertebral body was dissected after MRS examination. Then the histomorphological slices were stained with H.E method. The Image-pro plus 5.0 software was used to analyze the histomorphological slices and to calculate the ratio of yellow bone marrow area to red bone marrow area in vertebral body. Results: Mean value of LWR of the vertebral body was 0.881±0.59 (range 0.263~2.594). The mean yellow/red bone marrow ratio from histomorphological slices was 1.166±0.88 (range 0.114~ 3.457). A positive correlation was found between LWR and area ratio (r=0.817,P<0.01). The linear regression equation from the correlation was obtained (LWR=0.24+0.55 × area ratio). Conclusion: LWR could partially reflect the yellow/red bone marrow ratio in vertebral body. The changes of vertebral bone marrow could provide a histomorphological basis for the vertebral MRS.
    Part two: Potential value of vertebral proton MR Spectroscopy
    in determining osteoporosis and vertebral fracture
    Objective: To investigate the correlation between vertebral proton
引文
1.王荫槐.兔.见:王荫槐,主编.实验动物与动物实验.第1版.北京:中国建材工业出版社,1998.122—130.
    2. Burkhardt R, Kettner G, Bohm W, et al. Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone, 1987, 8(3): 157-164.
    3. Dunnill MS, Anderson JA, Whitehead R. Quantitative histological studies on age changes in bone. J Pathol Bacteriol, 1967, 94(2): 275-291.
    4. Lang P, Steiger P, Faulkner K, et al. Osteoporosis. Current techniques and recent developments in quantitative bone densitometry. Radiol Clin North Am, 1991, 29(1): 49-76.
    5. Verma S, Rajaratnam JH, Denton J, et al. Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol, 2002, 55(9): 693-698.
    6. Justesen J, Stenderup K, Ebbesen EN, et al. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology, 2001, 2(3): 165-171.
    7. Meunier P, Aaron J, Edouard C, et al. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res, 1971, 80(1): 147-154.
    8. Rozman C, Feliu E, Berga L, et al. Age-related variations of fat tissue fraction in normal human bone marrow depend both on size and number of adipocytes: a stereological study. Exp Hematol, 1989, 17(1): 34-37.
    9. Kugel H, Jung C, Schulte O, et al. Age- and sex-specific differences in the H-1-spectrum of vertebral bone marrow. J Magn Reson Imaging, 2001, 13(2): 263-268.
    10. Schellinger D, Lin CS, Fertikh D, et al. Normal lumbar vertebrae: anatomic, age, and sex variance in subjects at proton MR spectroscopy--initial experience. Radiology, 2000, 215(3): 910-916.
    11. Schellinger D, Lin CS, Lim J, et al. Bone marrow fat and bone mineral density on proton MR spectroscopy and dual-energy X-ray absorptiometry: their ratio as a new indicator of bone weakening. AJR Am J Roentgenol, 2004, 183(6): 1761-1765.
    12. Schellinger D, Lin CS, Hatipoglu HG, et al. Potential value of vertebral proton??MR spectroscopy in determining bone weakness. AJNR Am J Neuroradiol, 2001,22(8): 1620-1627.
    13. Shih TT, Chang CJ, Hsu CY, et al. Correlation of bone marrow lipid water content with bone mineral density on the lumbar spine. Spine, 2004, 29(24): 2844-2850.
    14. Griffith JF, Yeung DK, Antonio GE, et al. Vertebral Bone Mineral Density, Marrow Perfusion, and Fat Content in Healthy Men and Men with Osteoporosis: Dynamic Contrast-enhanced MR Imaging and MR Spectroscopy. Radiology, 2005,236(3): 945-951.
    15. Egermann M, Goldhahn J, Schneider E. Animal models for fracture treatment in osteoporosis. Osteoporos Int, 2005,16(Suppl 2): S129-S138.
    16. Herneth AM, Friedrich K, Weidekamm C, et al. Diffusion weighted imaging of bone marrow pathologies. Eur J Radiol, 2005, 55(1): 74-83.
    17. Baur A, Reiser MF. Diffusion-weighted imaging of the musculoskeletal system in humans. Skeletal Radiol, 2000, 29(10): 555-562.
    18. Bammer R, Skare S, Newbould R, et al. Foundations of advanced magnetic resonance imaging. NeuroRx, 2005, 2(2): 167-196.
    19. Gonen O, Gruber S, Li BS, et al. Multivoxel 3D proton spectroscopy in the brain at 1.5 versus 3.0 T: signal-to-noise ratio and resolution comparison. AJNR Am J Neuroradiol, 2001, 22(9): 1727-1731.
    20. Barker PB, Hearshen DO, Boska MD. Single-voxel proton MRS of the human brain at 1.5T and 3.0T. Magn Reson Med, 2001,45(5): 765-769.
    21. Shah AP, Patton PW, Rajon DA, et al. Adipocyte spatial distributions in bone marrow: Implications for skeletal dosimetry models. J Nucl Med, 2003, 44(5): 774-783.
    22. Gevers EF, Loveridge N, Robinson ICAF. Bone marrow adipocytes: A neglected target tissue for growth hormone. Endocrinology, 2002, 143(10): 4065-4073.
    23. Vande Berg BC, Malghem J, Lecouvet FE, et al. Magnetic resonance imaging of normal bone marrow. Eur Radiol, 1998, 8(8): 1327-1334.
    24. Yeung DK, Griffith JF, Antonio GE, et al. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging, 2005, 22(2): 279-285.1.江森.女性生殖系统生理.见:乐杰,主编.妇产科学.第4版.北京:人民卫生出版社,1999.18-33.
    2. Genant HK, Wu CY, van Kuijk C, et al. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res, 1993, 8(9): 1137-1148.
    3.余卫,秦明伟,徐苓,等.正常人腰椎骨密度变化.中华放射学杂志,1996,30(9):625-629.
    4.余卫,秦明伟,徐苓,等.正常人股骨近端骨密度变化.中华放射学杂志,1998,32(1):23-26.
    5. Kanis JA, Melton L J, Ⅲ, Christiansen C, et al. The diagnosis of osteoporosis. J Bone Miner Res, 1994, 9(8): 1137-1141.
    6. ISCD. Position statement: executive summary. The Writing Group for the International Society for Clinical Densitometry (ISCD) Position Development Conference. J Clin Densitom, 2004, 7(1): 7-12.
    7.余卫.秦明伟,邢小平,等.正常人腰椎骨密度不同测量方法的比较分析.中华放射学杂志,1999,33(5):320—323.
    8.秦明伟,余卫,孟迅吾,等.正常人腰椎骨密度变化—445例QCT测量分析.中国医学科学院学报,1996,18(6):339—443.
    9. Steiger P, Block JE, Steiger S, et al. Spinal bone mineral density measured with quantitative CT: effect of region of interest, vertebral level, and technique. Radiology, 1990, 175(2): 537-543.
    10. QCT5000 Bone densitometry user's guide. Image Analysis Ine. Columbia. 2001
    11. Link TM, Doren M, Lewing G, et al. Cross-sectional area of lumbar vertebrae in peri-and postmenopausal patients with and without osteoporosis. Osteoporos Int, 2000, 11(4): 304-309.
    12. Andresen R, Haidekker MA, Radmer S, et al. CT determination of bone mineral density and structural investigations on the axial skeleton for estimating the osteoporosis-related fracture risk by means of a risk score. Br J Radiol, 1999, 72(858): 569-578.
    13. Schick F, Bongers H, Jung WI, et al. Volume-selective proton MRS in vertebral bodies. Magn Reson Med, 1992, 26(2): 207-217.
    14. Brix G; Heiland S, Bellemann ME, et al. MR imaging of fat-containing tissues: valuation of two quantitative imaging techniques in comparison with localized??proton spectroscopy. Magn Reson Imaging, 1993, 11(7): 977-991.
    15. Kugel H, Jung C, Schulte O, et al. Age- and sex-specific differences in the H-1-spectrum of vertebral bone marrow. J Magn Reson Imaging, 2001, 13(2): 263-268.
    16. Yeung DK, Griffith JF, Antonio GE, et al. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging, 2005, 22(2): 279-285.
    17. Schellinger D, Lin CS, Fertikh D, et al. Normal lumbar vertebrae: anatomic, age, and sex variance in subjects at proton MR spectroscopy--initial experience. Radiology, 2000, 215(3): 910-916.
    18. Schellinger D, Lin CS, Hatipoglu HG, et al. Potential value of vertebral proton MR spectroscopy in determining bone weakness. AJNR Am J Neuroradiol, 2001, 22(8): 1620-1627.
    19. Schellinger D, Lin CS, Lim J, et al. Bone marrow fat and bone mineral density on proton MR spectroscopy and dual-energy X-ray absorptiometry: their ratio as a new indicator of bone weakening. AJR Am J Roentgenol, 2004, 183(6): 1761-1765.
    20.张文彤.聚类分析与判别分析.见:张文彤,主编.SPSS 11统计分析教程.第1版.北京:北京希望电子出版社,2002.166-189.
    21. Genant HK, Engelke K, Fuerst T, et al. Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res, 1996, 11(6): 707-730.
    22. Henriksen O. MR spectroscopy in clinical research. Acta Radiol, 1994, 35(2): 96-116.
    23. Burtscher IM, Holtas S. Proton MR spectroscopy in clinical routine. J Magn Reson Imaging, 2001, 13(4): 560-567.
    24. Howe FA, Opstad KS. 1H MR spectroscopy of brain tumours and masses. NMR Biomed, 2003, 16(3): 123-131.
    25. Shah GV, Gandhi D, Mukherji SK. Magnetic resonance spectroscopy of head and neck neoplasms. Top Magn Reson Imaging, 2004, 15(2): 87-94.
    26. Golder W. Magnetic resonance spectroscopy in clinical oncology. Onkologie, 2004, 27(3): 304-309.
    27.赵喜平.磁共振波谱及其医学应用.见:赵喜平,主编.磁共振成像.第1版.北京:科学出版社,2004.802-865.28. Mulkern RV, Meng J, Bowers JL, et al. In vivo bone marrow lipid characterization with line scan Carr-Purcell-Meiboom-Gill proton spectroscopic imaging. Magn Reson Imaging, 1997, 15(7): 823-837.
    29. Gonen O, Gruber S, Li BS, et al. Multivoxel 3D proton spectroscopy in the brain at 1.5 versus 3.0 T: signal-to-noise ratio and resolution comparison. AJNR Am J Neuroradiol, 2001, 22(9): 1727-1731.
    30. Barker PB, Hearshen DO, Boska MD. Single-voxel proton MRS of the human brain at 1.5T and 3.0T. Magn Reson Med, 2001,45(5): 765-769.
    31. Shih TT, Chang CJ, Hsu CY, et al. Correlation of bone marrow lipid water content with bone mineral density on the lumbar spine. Spine, 2004, 29(24): 2844-2850.
    32. Torriani M, Thomas BJ, Halpern EF, et al. Intramyocellular lipid quantification: repeatability with 1H MR spectroscopy. Radiology, 2005, 236(2): 609-614.
    33. Bonnick SL, Johnston CC, Jr., Kleerekoper M, et al. Importance of precision in bone density measurements. J Clin Densitom, 2001, 4(2): 105-110.
    34. Lodder MC, Lems WF, Ader HJ, et al. Reproducibility of bone mineral density measurement in daily practice. Ann Rheum Dis, 2004, 63(3): 285-289.
    35. Fleckenstein JL. What's New about Osteoporosis? Radiology, 2005, 236(3): 745-746.
    36. Schick F, Einsele H, Weiss B, et al. Assessment of the composition of bone marrow prior to and following autologous BMT and PBSCT by magnetic resonance. Ann Hematol, 1996, 72(6): 361-370.
    37. Ishijima H, Ishizaka H, Horikoshi H, et al. Water fraction of lumbar vertebral bone marrow estimated from chemical shift misregistration on MR imaging: normal variations with age and sex. AJR Am J Roentgenol, 1996, 167(2): 355-358.
    38. Vande Berg BC, Lecouvet FE, Malghem J. Sex-related difference in marrow conversion in the proximal femur: does it exist? Radiology, 1998, 209(2): 587-588.
    39. Duda SH, Laniado M, Schick F, et al. Normal bone marrow in the sacrum of young adults: differences between the sexes seen on chemical-shift MR imaging. AJR Am J Roentgenol, 1995,164(4): 935-940.
    40. Vande Berg BC, Malghem J, Lecouvet FE, et al. Magnetic resonance imaging of normal bone marrow. Eur Radiol, 1998, 8(8): 1327-1334.41. Dooms GC, Fisher MR, Hricak H, et al. Bone marrow imaging: magnetic resonance studies related to age and sex. Radiology, 1985, 155(2): 429-432.
    42. Ricci C, Cova M, Kang YS, et al. Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology, 1990, 177(1): 83-88.
    43. Justesen J, Stenderup K, Ebbesen EN, et al. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology, 2001, 2(3): 165-171.
    44. Dunnill MS, Anderson JA, Whitehead R. Quantitative histological studies on age changes in bone. J Pathol Bacteriol, 1967, 94(2): 275-291.
    45. Verma S, Rajaratnam JH, Denton J, et al. Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol, 2002, 55(9): 693-698.
    46. Meunier P, Aaron J, Edouard C, et al. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res, 1971, 80(1): 147-154.
    47. Rozman C, Feliu E, Berga L, et al. Age-related variations of fat tissue fraction in normal human bone marrow depend both on size and number of adipocytes: a stereological study. Exp Hematol, 1989, 17(1): 34-37.
    48. Burkhardt R, Kettner G, Bohm W, et al. Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone, 1987, 8(3): 157-164.
    49. Griffith JF, Yeung DK, Antonio GE, et al. Vertebral Bone Mineral Density, Marrow Perfusion, and Fat Content in Healthy Men and Men with Osteoporosis: Dynamic Contrast-enhanced MR Imaging and MR Spectroscopy. Radiology, 2005, 236(3): 945-951.
    50. Yu W, Gluer CC, Fuerst T, et al. Influence of degenerative joint disease on spinal bone mineral measurements in postmenopausal women. Calcif Tissue Int, 1995, 57(3): 169-174.
    51. Yu W, Gluer CC, Grampp S, et al. Spinal bone mineral assessment in postmenopausal women: a comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos Int, 1995, 5(6): 433-439.
    52.余卫,秦明伟,张燕.等.腰椎退行性骨关节病对骨密度测定的影响.中华放射学杂志 2002,36(3):245—248.53. Kanis JA, Borgstrom F, De Laet C, et al. Assessment of fracture risk. Osteoporos Int, 2005, 16(6): 581-589.
    54. Lindsay R, Silverman SL, Cooper C, et al. Risk of new vertebral fracture in the year following a fracture. JAMA, 2001, 285(3): 320-323.
    55. Nevitt MC, Ross PD, Palermo L, et al. Association of prevalent vertebral fractures, bone density, and alendronate treatment with incident vertebral fractures: effect of number and spinal location of fractures. The Fracture Intervention Trial Research Group. Bone, 1999, 25(5): 613-619.
    56. Ross PD, Davis JW, Epstein RS, et al. Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med, 1991, 114(11): 919-923.
    57. Rubin CD. Emerging concepts in osteoporosis and bone strength. Curr Med Res Opin, 2005, 21(7): 1049-1056.
    58. Link TM, Majumdar S. Osteoporosis imaging. Radiol Clin North Am, 2003, 41(4): 813-839.
    59. NIH. Osteoporosis prevention, diagnosis, and therapy. JAMA, 2001, 285(6): 785-795.
    60.刘润幸.判别分析.见:刘润幸,主编.SPSS 10.0医学统计方法与应用(下册).第1版.广州:广东人民出版社,2001.106-130.
    61. Gimble JM, Robinson CE, Wu X, et al. The fimction of adipocytes in the bone marrow stroma: an update. Bone, 1996, 19(5): 421-428.
    62. Maurin AC, Chavassieux PM, Frappart L, et al. Influence of mature adipocytes on osteoblast proliferation in human primary cocultures. Bone, 2000, 26(5): 485-489.
    63. Nuttall ME, Gimble JM. Is there a therapeutic opportunity to either prevent or treat osteopenic disorders by inhibiting marrow adipogenesis? Bone, 2000, 27(2): 177-184.
    64. Nawrocki AR, Scherer PE. The adipocyte as a drug discovery target. Drug Discov Today, 2005, 10(18): 1219-1230.
    65. Wang G J, Sweet DE, Reger SI, et al. Fat-cell changes as a mechanism of avascular necrosis of the femoral head in cortisone-treated rabbits. J Bone Joint Surg Am, 1977, 59(6): 729-735.
    66. Rosen CJ. Clinical practice. Postmenopausal osteoporosis. N Engl J Med,??2005, 353(6): 595-603.
    67. Compston JE. Bone marrow and bone: a functional unit. J Endocrinol, 2002, 173(3): 387-394.
    68. Gimble JM, Nuttall ME. Bone and fat - Old questions, new insights. Endocrine, 2004, 23(2-3): 183-188.
    69. Lin CS, Fertikh D, Davis B, et al. 2D CSI proton MR spectroscopy of human spinal vertebra: Feasibility studies. J Magn Reson Imaging, 2000, 11(3): 287-293.
    70. McFarlane SI, Muniyappa R, Shin JJ, et al. Osteoporosis and cardiovascular disease: brittle bones and boned arteries, is there a link? Endocrine, 2004, 23(1): 1-10.
    71. Parhami F, Garfinkel A, Demer LL. Role of lipids in osteoporosis. Arterioscler Thromb Vasc Biol, 2000, 20(11): 2346-2348.
    72. Parhami F. Possible role of oxidized lipids in osteoporosis: could hyperlipidemia be a risk factor? Prostaglandins Leukot Essent Fatty Acids, 2003, 68(6): 373-378.
    73. Tanko LB, Christiansen C, Cox DA, et al. Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J Bone Miner Res, 2005,20(11): 1912-1920.
    74. Chi Y, Gupta RK. Alterations in membrane fatty acid unsaturation and chain length in hypertension as observed by 1H NMR spectroscopy. Am J Hypertens, 1998, 11(3): 340-348.
    75. Noula C, Bonzom P, Brown A, et al. 1H-NMR lipid profiles of human blood platelets; links with coronary artery disease. Biochim Biophys Acta, 2000, 1487(1): 15-23.
    76. Plumb MS, Aspden RM. High levels of fat and (n-6) fatty acids in cancellous bone in osteoarthritis. Lipids Health Dis, 2004, 3(1): 12-14.
    77. Sun D, Krishnan A, Zaman K, et al. Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. J Bone Miner Res, 2003,18(7): 1206-1216.
    78. Sun L, Tamaki H, Ishimaru T, et al. Inhibition of osteoporosis due to restricted food intake by the fish oils DHA and EPA and perilla oil in the rat. Biosci Biotechnol Biochem, 2004, 68(12): 2613-2615.
    79. Claassen N, Potgieter HC, Seppa M, et al. Supplemented gamma-linolenic??acid and eicosapentaenoic acid influence bone status in young male rats: effects on free urinary collagen crosslinks, total urinary hydroxyproline, and bone calcium content. Bone, 1995, 16(4 Suppl): 385S-392S.
    80. Kruger MC, Coetzer H, de Winter R, et al. Calcium, gamma-linolenic acid and eicosapentaenoic acid supplementation in senile osteoporosis. Aging (Milano ), 1998, 10(5): 385-394.
    81. Albertazzi P, Coupland K. Polyunsaturated fatty acids. Is there a role in postmenopausal osteoporosis prevention? Maturitas, 2002,42(1): 13-22.
    82. Weiss LA, Barrett-Connor E, von Muhlen D. Ratio of n-6 to n-3 fatty acids and bone mineral density in older adults: the Rancho Bernardo study. Am J Clin Nutr, 2005, 81(4): 934-938.
    83. Atkinson TG, Barker HJ, Meckling-Gill KA. Incorporation of long-chain n-3 fatty acids in tissues and enhanced bone marrow cellularity with docosahexaenoic acid feeding in post-weanling Fischer 344 rats. Lipids, 1997, 32(3): 293-302.
    84. Kokkinos PP, Shaye R, Alam BS, et al. Dietary lipids, prostaglandin E2 levels, and tooth movement in alveolar bone of rats. Calcif Tissue Int, 1993, 53(5): 333-337.
    85. Maurin AC, Chavassieux PM, Vericel E, et al. Role of polyunsaturated fatty acids in the inhibitory effect of human adipocytes on osteoblastic proliferation. Bone, 2002, 31(1): 260-266.
    86. Maurin AC, Chavassieux PM, Meunier PJ. Expression of PPAR gamma and beta/delta in human primary osteoblastic cells: Influence of polyunsaturated fatty acids. Calcif Tissue Int, 2005, 76(5): 385-392.
    87. Akune T, Ohba S, Kamekura S, et al. PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest, 2004,113(6): 846-855.
    88. Nuttall ME, Gimble JM. Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr Opin Pharmacol, 2004, 4(3): 290-294.
    89. Kawaguchi H, Akune T, Yamaguchi M, et al. Distinct effects of PPARgamma insufficiency on bone marrow cells, osteoblasts, and osteoclastic cells. J Bone Miner Metab, 2005, 23(4): 275-279.1. Bammer R, Skare S, Newbould R, et al. Foundations of advanced magnetic resonance imaging. NeuroRx, 2005, 2(2): 167-196.
    2. Bammer R, Fazekas F. Diffusion imaging of the human spinal cord and the vertebral column. Top Magn Reson Imaging, 2003, 14(6): 461-476.
    3. Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol, 2003, 45(3): 169-184.
    4. Baur A, Reiser MF. Diffusion-weighted imaging of the musculoskeletal system in humans. Skeletal Radiol, 2000, 29(10): 555-562.
    5. Szafer A, Zhong J, Anderson AW, et al. Diffusion-weighted imaging in tissues: theoretical models. NMR Biomed, 1995, 8(7-8): 289-296.
    6. Thoeny HC, De Keyzer F, Boesch C, et al. Diffusion-weighted imaging of the parotid gland: Influence of the choice of b-values on the apparent diffusion coefficient value. J Magn Reson Imaging, 2004, 20(5): 786-790.
    7. Yeung DK, Wong SY, Griffith JF, et al. Bone marrow diffusion in osteoporosis: evaluation with quantitative MR diffusion imaging. J Magn Reson Imaging, 2004, 19(2): 222-228.
    8.赵喜平.扩散成像及其应用.见:赵喜平,主编.磁共振成像.第1版.北京:科学出版社,2004.674-700.
    9. Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology, 2000, 217(2): 331-345.
    10. Parker GJ. Analysis of MR diffusion weighted images. Br J Radiol, 2004, 77(2): S176-S185.
    11. Ballon D, Dyke J, Schwartz LH, et al. Bone marrow segmentation in leukemia using diffusion and T (2) weighted echo planar magnetic resonance imaging. NMR Biomed, 2000, 13(6): 321-328.
    12. Chan JH, Peh WC, Tsui EY, et al. Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol, 2002, 75(891): 207-214.
    13. Herneth AM, Philipp MO, Naude J, et al. Vertebral metastases: assessment with apparent diffusion coefficient. Radiology, 2002, 225(3): 889-894.
    14. Zhou X J, Leeds NE, McKinnon GC, et al. Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR??imaging. AJNR Am J Neuroradiol, 2002, 23(1): 165-170.15. Sotak CH. Nuclear magnetic resonance (NMR) measurement of the apparent diffusion coefficient (ADC) of tissue water and its relationship to cell volume changes in pathological states. Neurochem Int, 2004, 45(4): 569-582.
    16. Ward R, Caruthers S, Yablon C, et al. Analysis of diffusion changes in posttraumatic bone marrow using navigator-corrected diffusion gradients. A JR Am J Roentgenol, 2000, 174(3): 731-734.
    17. Herneth AM, Friedrich K, Weidekamm C, et al. Diffusion weighted imaging of bone marrow pathologies. Eur J Radiol, 2005, 55(1): 74-83.
    18. Nonomura Y, Yasumoto M, Yoshimura R, et al. Relationship between bone marrow cellularity and apparent diffusion coefficient. J Magn Reson Imaging, 2001, 13(5): 757-760.
    19. Castillo M. Diffusion-weighted imaging of the spine: Is it reliable? AJNR Am J Neuroradiol, 2003, 24(6): 1251-1253.
    20.姚伟武,李明华,杨世埙,等.MR弥散技术对脊柱压缩性骨折诊断价值初探. 放射学实践.2003,18(4):258-260.
    21. Baur A, Stabler A, Bruning R, et al. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology, 1998, 207(2): 349-356.
    22. Maeda M, Sakuma H, Maier SE, et al. Quantitative assessment of diffusion abnormalities in benign and malignant vertebral compression fractures by line scan diffusion-weighted imaging. AJR Am J Roentgenol, 2003, 181(5): 1203-1209.
    23. Baur A, Dietrich O, Reiser M. Diffusion-weighted imaging of bone marrow: current status. Eur Radiol, 2003, 13(7): 1699-1708.
    24. Chen WT, Shih TT, Chen RC, et al. Vertebral bone marrow perfusion evaluated with dynamic contrast-enhanced MR imaging: significance of aging and sex. Radiology, 2001, 220(1): 213-218.
    25. Shih TT, Liu HC, Chang C J, et al. Correlation of MR lumbar spine bone marrow perfusion with bone mineral density in female subjects. Radiology, 2004, 233(1): 121-128.
    26. Shih TT, Chang C J, Tseng WY, et al. Effect of calcium channel blockers on vertebral bone marrow perfusion of the lumbar spine. Radiology, 2004, 231 (1): 24-30.27. Fleckenstein JL. What's New about Osteoporosis? Radiology, 2005, 236(3): 745-746.
    28. Griffith JF, Yeung DK, Antonio GE, et al. Vertebral Bone Mineral Density, Marrow Perfusion, and Fat Content in Healthy Men and Men with Osteoporosis: Dynamic Contrast-enhanced MR Imaging and MR Spectroscopy. Radiology, 2005, 236(3): 945-951.1. Melton LJ, III, Johnell O, Lau E, et al. Osteoporosis and the global competition for health care resources. J Bone Miner Res, 2004, 19(7): 1055-1058.
    2. Genant HK, Engelke K, Fuerst T, et al. Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res, 1996, 11(6): 707-730.
    3. Boehm HF, Link TM. Bone imaging: traditional techniques and their interpretation. Curr Osteoporos Rep, 2004, 2(2): 41-46.
    4. Raisz LG Clinical practice. Screening for osteoporosis. N Engl J Med, 2005, 353(2): 164-171.
    5. Werner P. Knowledge about osteoporosis: assessment, correlates and outcomes. Osteoporos Int, 2005, 16(2): 115-127.
    6. Kanis JA, Borgstrom F, De Laet C, et al. Assessment of fracture risk. Osteoporos Int, 2005, 16(6): 581-589.
    7. Jergas M. Radiology of Osteoporosis. In: Genant HK, Guglielmi G, Jergas M, eds. Bone Densitometry and Osteoporosis. Berlin: Springer, 1998;193-225.
    8. Ryan PJ, Evans P, Blake GM, et al. The effect of vertebral collapse on spinal bone mineral density measurements in osteoporosis. Bone Miner, 1992, 18(3): 267-272.
    9. Ross PD. Clinical consequences of vertebral fractures. Am J Med, 1997, 103(2 A): 30S-42S.
    10. Kalla AA, Meyers OL, Parkyn ND, et al. Osteoporosis screening--radiogrammetry revisited. Br J Rheumatol, 1989, 28(6): 511-517.
    11. Rico H, Hernandez ER. Bone radiogrametry: caliper versus magnifying glass. Calcif Tissue Int, 1989, 45(5): 285-287.
    12. Singh M, Riggs BL, Beabout JW, et al. Femoral trabecular-pattern index for evaluation of spinal osteoporosis. Ann Intern Med, 1972, 77(1): 63-67.
    13. Singh M, Nagrath AR, Maini PS. Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg Am, 1970, 52(3): 457-467.
    14. Jhamaria NL, Lal KB, Udawat M, et al. The trabecular pattern of the calcaneum as an index of osteoporosis. J Bone Joint Surg Br, 1983, 65(2): 195-198.
    15. Saitoh S, Nakatsuchi Y, Latta L, et al. An absence of structural changes in the proximal femur with osteoporosis. Skeletal Radiol, 1993, 22(6): 425-431.
    16. Gluer CC, Cummings SR, Pressman A, et al. Prediction of hip fractures from pelvic radiographs: the study of osteoporotic fractures. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res, 1994, 9(5): 671-677.17. Peacock M, Turner CH, Liu G, et al. Better discrimination of hip fracture using bone density, geometry and architecture. Osteoporos Int, 1995, 5(3): 167-173.
    18. Brownbill RA, Ilich JZ. Hip geometry and its role in fracture: what do we know so far? Curr Osteoporos Rep, 2003, 1(1): 25-31.
    19. Yates AJ, Ross PD, Lydick E, et al. Radiographic absorptiometry in the diagnosis of osteoporosis. Am J Med, 1995, 98(2A): 41S-47S.
    20. Sas TC, Keizer-Schrama SM, Stijnen T, et al. Bone mineral density assessed by phalangeal radiographic absorptiometry before and during long-term growth hormone treatment in girls with Turner's syndrome participating in a randomized dose-response study. Pediatric Research, 2001, 50(3): 417-422.
    21. van Kuijk C, Genant HK. Radiogrammetry and Radiographic Absorptiometry. In: Genant HK, Guglielmi G, Jergas M, eds. Bone Densitometry and Osteoporosis. Berlin: Springer, 1998; 291-304.
    22. Cameron JR, Sorenson JA. Measurement of bone mineral in vivo: an improved method. Science, 1963, 142(1): 230-232.
    23. Kelly TL, Crane G, Baran DT. Single X-ray absorptiometry of the forearm: precision, correlation, and reference data. Calcif Tissue Int, 1994, 54(3): 212-218.
    24. Adams JE. Single- and Dual-Energy: X-Ray Absorptiometry. In: Genant HK, Guglielmi G, Jergas M, eds. Bone Densitometry and Osteoporosis. Berlin: Springer, 1998; 303-334.
    25. Borders J, Kerr E, Sartoris DJ, et al. Quantitative dual-energy radiographic absorptiometry of the lumbar spine: in vivo comparison with dual-photon absorptiometry. Radiology, 1989, 170(1): 129-131.
    26. Watts NB. Fundamentals and pitfalls of bone densitometry using dual-energy X-ray absorptiometry (DXA). Osteoporos Int, 2004, 15(11): 847-854.
    27. Lu Y, Fuerst T, Hui S, et al. Standardization of bone mineral density at femoral neck, trochanter and Ward's triangle. Osteoporos Int, 2001, 12(6): 438-444.
    28. Yu W, Gluer CC, Grampp S, et al. Spinal bone mineral assessment in postmenopausal women: a comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos Int, 1995, 5(6): 433-439.
    29.余卫,秦明伟,张燕,等.腰椎退行性骨关节病对骨密度测定的影响.中华放射学杂志2002, 36(3): 245-248.
    30. Yu W, Gluer CC, Fuerst T, et al. Influence of degenerative joint disease on spinal bone mineral measurements in postmenopausal women. Calcif Tissue Int, 1995, 57(3): 169-174.31. Blake GM, Jagathesan T, Herd RJ, et al. Dual X-ray absorptiometry of the lumbar spine: the precision of paired anteroposterior/laterai studies. Br J Radiol, 1994, 67(799): 624-630.
    32. Del Rio L, Pons F, Huguet M, et al. Anteroposterior versus lateral bone mineral density of spine assessed by dual X-ray absorptiometry. Eur J Nucl Med, 1995, 22(5): 407-412.
    33. Adams JE. Single and dual energy X-ray absorptiometry. Eur Radiol, 1997, 7(Suppl2): 20-31.
    34. Felsenberg D, Gowin W, Diessel E, et al. Recent developments in DXA. Quality of new DXA/MXA-devices for densitometry and morphometry. Eur J Radiol, 1995, 20(3): 179-184.
    35. Faulkner KG, McClung M, Cummings SR. Automated evaluation of hip axis length for predicting hip fracture. J Bone Miner Res, 1994, 9(7): 1065-1070.
    36. Herd RJ, Blake GM, Parker JC, et al. Total body studies in normal British women using dual energy X-ray absorptiometry. Br J Radiol, 1993, 66(784): 303-308.
    37. Ogle GD, Allen JR,, Humphries IR, et al. Body-composition assessment by dual-energy x-ray absorptiometry in subjects aged 4-26 y. Am J Clin Nutr, 1995, 61 (4): 746-753.
    38. Cointry GR, Capozza RF, Ferretti SE, et al. Absorptiometric assessment of muscle-bone relationships in humans: reference, validation, and application studies. J Bone Miner Metab, 2005, 23(Suppll): 109-114.
    39.秦明伟,余卫,徐苓,等.正常人全身骨量及人体组成变化.中国医学科学院学报,2003,25(1):66-69.
    40. Tothill P, Avenell A, Love J, et al. Comparisons between Hologic, Lunar and Norland dual-energy X-ray absorptiometers and other techniques used for whole-body soft tissue measurements. Eur J Clin Nutr, 1994, 48(11): 781-794.
    41. Ellis KJ, Shypailo RJ, Pratt JA, et al. Accuracy of dual-energy x-ray absorptiometry for body-composition measurements in children. Am J Clin Nutr, 1994, 60(5): 660-665.
    42. McCarthy CK, Steinberg GG, Agren M, et al. Quantifying bone loss from the proximal femur after total hip arthroplasty. J Bone Joint Surg Br, 1991, 73(5): 774-778.
    43. Koo WW, Waiters J, Bush AJ. Technical considerations of dual-energy X-ray absorptiometry-based bone mineral measurements for pediatric studies. J Bone Miner Res, 1995, 10(12): 1998-2004.
    44. Gluer CC, Blake G, Lu Y, et al. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int, 1995, 5(4): 262-270.
    45. Genant HK, Cann CE, Ettinger B, et al. Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med, 1982, 97(5): 699-705.46. Guglielmi G, Lang T, Cammisa M,et al. Quantitative Computed Tomography at the Axial Skeleton. In: Genant HK, Guglielmi G, Jergas M, eds. Bone Densitometry and Osteoporosis. Berlin: Springer, 1998;335-347.
    47. Guglielmi G, Lang TF. Quantitative computed tomography. Semin Musculoskelet Radiol, 2002, 6(3): 219-227.
    48. Laval-Jeantet AM, Roger B, Bouysee S, et al. Influence of vertebral fat content on quantitative CT density. Radiology, 1986, 159(2): 463-466.
    49. Gluer CC, Reiser UJ, Davis CA, et al. Vertebral mineral determination by quantitative computed tomography (QCT): accuracy of single and dual energy measurements. J Comput Assist Tomogr, 1988, 12(2): 242-258.
    50. Gudmundsdottir H, Jonsdottir B, Kristinsson S, et al. Vertebral bone density in Icelandic women using quantitative computed tomography without an external reference phantom. Osteoporos Int, 1993, 3(2): 84-89.
    51. Hopper KD, Wang MP, Kunselman AR. The use of clinical CT for baseline bone density assessment. J Comput Assist Tomogr, 2000, 24(6): 896-899.
    52. Link TM, Koppers BB, Licht T, et al. In vitro and in vivo spiral CT to determine bone mineral density: initial experience in patients at risk for osteoporosis. Radiology, 2004, 231(3): 805-811.
    53. Ito M, Tsurusaki K, Hayashi K. Peripheral QCT for the diagnosis of osteoporosis. Osteoporos Int, 1997, 7(Suppl 3): S120-S127.
    54. Fujita T, Fujii Y, Goto B. Measurement of forearm bone in children by peripheral computed tomography. Calcif Tissue Int, 1999, 64(1): 34-39.
    55. Ebbesen EN, Thomsen JS, Mosekilde L. Nondestructive determination of iliac crest cancellous bone strength by pQCT. Bone, 1997, 21(6): 535-540.
    56. Lang TF, Guglielmi G, van Kuijk C, et al. Measurement of bone mineral density at the spine and proximal femur by volumetric quantitative computed tomography and dual-energy X-ray absorptiometry in elderly women with and without vertebral fractures. Bone, 2002, 30(1): 247-250.
    57. Cummings SR, Marcus R, Palermo L, et al. Does estimating volumetric bone density of the femoral neck improve the prediction of hip fracture? A prospective study. Study of Osteoporotic Fractures Research Group. J Bone Miner Res, 1994, 9(9): 1429-1432.
    58. Jergas M, Breitenseher M, Gluer CC, et al. Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry. J Bone Miner Res, 1995, 10(7): 1101-1110.59. Guglielmi G, Floriani I, Torri V, et al. Effect of spinal degenerative changes on volumetric bone mineral density of the central skeleton as measured by quantitative computed tomography. Acta Radiol, 2005,46(3): 269-275.
    60. Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone, 2003, 33(4): 744-750.
    61. Banse X, Devogelaer JP, Munting E, et al. Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body. Bone, 2001, 28(5): 563-571.
    62. Liebschner MA, Kopperdahl DL, Rosenberg WS, et al. Finite element modeling of the human thoracolumbar spine. Spine, 2003, 28(6): 559-565.
    63. Crawford RP, Keaveny TM. Relationship between axial and bending behaviors of the human thoracolumbar vertebra. Spine, 2004, 29(20): 2248-2255.
    64. Crawford RP, Rosenberg WS, Keaveny TM. Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions. J Biomech Eng, 2003, 125(4): 434-438.
    65. 吴胜勇,张美超,李景学,等。骨质疏松老年妇女有限元模型的建立。中国临床解剖学杂 志,2004,22(6):661-663.
    66. Genant HK, Lang T, Fuerst T, et al. Treatment with raloxifene for 2 years increases vertebral bone mineral density as measured by volumetric quantitative computed tomography. Bone, 2004,35(5): 1164-1168.
    67. Riggs BL, Melton IL, III, Robb RA, et al. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res, 2004, 19(12): 1945-1954.
    68. Lang TF, Keyak JH, Heitz MW, et al. Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone, 1997, 21(1): 101-108.
    69. Ito M, Ohki M, Hayashi K, et al. Trabecular texture analysis of CT images in the relationship with spinal fracture. Radiology, 1995, 194(1): 55-59.
    70. Majumdar S. Current technologies in the evaluation of bone architecture. Curr Osteoporos Rep, 2003, 1(3): 105-109.
    71. Muller R. The Zurich experience: one decade of three-dimensional high-resolution computed tomography. Top Magn Reson Imaging, 2002, 13(5): 307-322.
    72. Barou O, Valentin D, Vico L, et al. High-resolution three-dimensional micro-computed tomography detects bone loss and changes in trabecular architecture early: comparison with??DEXA and bone histomorphometry in a rat model of disuse osteoporosis. Invest Radiol, 2002, 37(1): 40-46.
    73. Barou O, Valentin D, Vico L, et al. High-resolution three-dimensional micro-computed tomography detects bone loss and changes in trabecular architecture early: comparison with DEXA and bone histomorphometry in a rat model of disuse osteoporosis. Invest Radiol, 2002, 37(1): 40-46.
    74. Grampp S, Henk CB, Imhof H. CT and MR assessment of osteoporosis. Semin Ultrasound CT MR, 1999,20(1): 2-9.
    75. Vande Berg BC, Malghem J, Lecouvet FE, et al. Magnetic resonance imaging of normal bone marrow. Eur Radiol, 1998, 8(8): 1327-1334.
    76. Majumdar S, Genant HK. Applications of Magnetic Resonance Imaging in the Study of Osteoporosis. In: Genant HK, Guglielmi G, Jergas M, eds. Bone Densitometry and Osteoporosis. Berlin: Springer, 1998;407-416.
    77. Wehrli FW, Ford JC, Haddad JG Osteoporosis: clinical assessment with quantitative MR imaging in diagnosis. Radiology, 1995, 196(3): 631-641.
    78. Wehrli FW, Ford JC, Attie M, et al. Trabecular structure: preliminary application of MR interferometry. Radiology, 1991, 179(3): 615-621.
    79. Wehrli FW, Hopkins JA, Hwang SN, et al. Cross-sectional study of osteopenia with quantitative MR imaging and bone densitometry. Radiology, 2000, 217(2): 527-538.
    80. Majumdar S, Genant HK. In vivo relationship between marrow T2* and trabecular bone density determined with a chemical shift-selective asymmetric spin-echo sequence. J Magn Reson Imaging, 1992, 2(2): 209-219.
    81. Maris TG, Damilakis J, Sideri L, et al. Assessment of the skeletal status by MR relaxometry techniques of the lumbar spine: comparison with dual X-ray absorptiometry. Eur J Radiol, 2004, 50(3): 245-256.
    82. Brismar TB. MR relaxometry of lumbar spine, hip, and calcaneus in healthy premenopausal women: relationship with dual energy X-ray absorptiometry and quantitative ultrasound. Eur Radiol, 2000, 10(8): 1215-1221.
    83. Brismar TB, Karlsson M, Li T, et al. The correlation between R2' and bone mineral measurements in human vertebrae: an in vitro study. Eur Radiol, 1999, 9(1): 141-144.
    84. Selby K, Majumdar S, Newitt DC, et al. Investigation of MR decay rates in microphantom models of trabecular bone. J Magn Reson Imaging, 1996, 6(3): 549-559.
    85. Majumdar S. Magnetic resonance imaging of trabecular bone structure. Top Magn Reson Imaging, 2002, 13(5): 323-334.86. Stampa B, Kuhn B, Liess C, et al. Characterization of the integrity of three-dimensional trabecular bone microstructure by connectivity and shape analysis using high-resolution magnetic resonance imaging in vivo. Top Magn Reson Imaging, 2002, 13(5): 357-363.
    87. Accardo A, Candido G, Jellus V, et al. Ex vivo assessment of trabecular bone structure from three-dimensional projection reconstruction MR micro-images. IEEE Trans Biomed Eng, 2003, 50(8): 967-977.
    88. Borah B, Gross GJ, Dufresne TE, et al. Three-dimensional microimaging (MRmicrol and microCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis. Anat Rec, 2001, 265(2): 101-110.
    89. Majumdar S, Link TM, Augat P, et al. Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int, 1999, 10(3): 231-239.
    90. Boutry N, Cortet B, Dubois P, et al. Trabecular bone structure of the calcaneus: preliminary in vivo MR imaging assessment in men with osteoporosis. Radiology, 2003, 227(3): 708-717.
    91. Moon RB, Richards JH. Determination of intracellular pH by 31P magnetic resonance. J Biol Chem, 1973, 248(20): 7276-7278.
    92. Henriksen O. MR spectroscopy in clinical research. Acta Radiol, 1994, 35(2): 96-116.
    93.赵喜平.磁共振波谱及其医学应用.见:赵喜平,主编.磁共振成像.第1版.北京:科学出版社.2004.802-865.
    94. Gujar SK, Maheshwari S, Bjorkman-Burtscher I, et al. Magnetic resonance spectroscopy. J Neuroophthalmol, 2005, 25(3): 217-226.
    95. Mulkern RV, Meng J, Bowers JL, et al. In vivo bone marrow lipid characterization with line scan Carr-Purcell-Meiboom-Gill proton spectroscopic imaging. Magn Reson Imaging, 1997, 15(7): 823-837.
    96. Rico-Sanz J, Thomas EL, Jenkinson G, et al. Diversity in levels of intracellular total creatine and triglycerides in human skeletal muscles observed by (1)H-MRS. J Appl Physiol, 1999, 87(6): 2068-2072.
    97. Mulkern RV, Huang J, Vajapeyam S, et al. Fat fractions and spectral T-2 values in vertebral bone marrow in HIV- and non-HIV-infected men: A H-1 spectroscopic imaging study. Magn Reson Med, 2004, 52(3): 552-558.
    98. Schick F, Bongers H, Jung WI, et al. Volume-selective proton MRS in vertebral bodies. Magn Resort Med, 1992, 26(2): 207-217.
    99. Schick F, Einsele H, Bongers H, et al. Leukemic red bone marrow changes assessed by??magnetic resonance imaging and localized 1H spectroscopy. Ann Hematol, 1993, 66(1): 3-13.
    100. Schick F, Einsele H, Kost R, et al. Localized MR 1H spectroscopy reveals alterations of susceptibility in bone marrow with hemosiderosis. Magn Reson Med, 1994, 32(4): 470-475.
    101. Schick F, Einsele H, Kost R, et al. Hematopoietic reconstitution after bone marrow transplantation: assessment with MR imaging and H-1 localized spectroscopy. J Magn Reson Imaging, 1994, 4(1): 71-78.
    102. Schick F, Einsele H, Weiss B, et al. Assessment of the composition of bone marrow prior to and following autologous BMT and PBSCT by magnetic resonance. Ann Hematol, 1996, 72(6): 361-370.
    103. Pfirrmann CW, Schmid MR, Zanetti M, et al. Assessment of fat content in supraspinatus muscle with proton MR spectroscopy in asymptomatic volunteers and patients with supraspinatus tendon lesions. Radiology, 2004, 232(3): 709-715.
    104. Kugel H, Jung C, Schulte O, et al. Age- and sex-specific differences in the H-1-spectrum of vertebral bone marrow. J Magn Reson Imaging, 2001, 13(2): 263-268.
    105. Schellinger D, Lin CS, Fertikh D, et al. Normal lumbar vertebrae: anatomic, age, and sex variance in subjects at proton MR spectroscopy--initial experience. Radiology, 2000, 215(3): 910-916.
    106. Shih TT, Chang CJ, Hsu CY, et al. Correlation of bone marrow lipid water content with bone mineral density on the lumbar spine. Spine, 2004, 29(24): 2844-2850.
    107. Schellinger D, Lin CS, Lim J, et al. Bone marrow fat and bone mineral density on proton MR spectroscopy and dual-energy X-ray absorptiometry: their ratio as a new indicator of bone weakening. AJR Am J Roentgenol, 2004, 183(6): 1761-1765.
    108. Schellinger D, Lin CS, Hatipoglu HG, et al. Potential value of vertebral proton MR spectroscopy in determining bone weakness. AJNR Am J Neuroradiol, 2001, 22(8): 1620-1627.
    109. Stejskal EO, Tanner JE. Spin Diffusion Measurements - Spin Echoes in Presence of A Time-Dependent Field Gradient. J Chem Phys, 1965, 42(1): 288-292.
    110. 赵喜平。扩散成像及其应用。见:赵喜平,主编。磁共振成像。第1版。北京:科学出版社,2004.674-700.
    111. Chan JH, Peh WC, Tsui EY, et al. Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol, 2002, 75(891): 207-214.
    112. Herneth AM, Philipp MO, Naude J, et al. Vertebral metastases: assessment with apparent diffusion coefficient. Radiology, 2002, 225(3): 889-894.113. Zhou XJ, Leeds NE, McKinnon GC, et al. Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR Am J Neuroradiol, 2002, 23(1): 165-170.
    114. Yeung DK, Wong SY, Griffith JF, et al. Bone marrow diffusion in osteoporosis: evaluation with quantitative MR diffusion imaging. J Magn Reson Imaging, 2004, 19(2): 222-228.
    115. Link TM, Majumdar S. Osteoporosis imaging. Radiol Clin North Am, 2003, 41 (4): 813-839.
    116. NIH. Osteoporosis prevention, diagnosis, and therapy. JAMA, 2001, 285(6): 785-795.
    117. Recker RR, Barger-Lux MJ. The elusive concept of bone quality. Curt Osteoporos Rep, 2004, 2(3): 97-100.
    118. Hans D, Fuerst T, Guglielmi G, et al. Quantitative Ultrasound for Assessing Bone Properties. In: Genant HK, Guglielmi G, Jergas M, eds. Bone Densitometry and Osteoporosis. Berlin: Springer, 1998; 379-405.
    119. Kaufman JJ, Einhorn TA. Ultrasound assessment of bone. J Bone Miner Res, 1993, 8(5): 517-525.
    120. Hans D, Schott AM, Meunier PJ. Ultrasonic assessment of bone: a review. Eur J Med, 1993, 2(3): 157-163.
    121. Hans D, Schott AM, DuBoeuf F, et al. Does follow-up duration influence the ultrasound and DXA prediction of hip fracture? The EPIDOS prospective study. Bone, 2004, 35(2): 357-363.
    122. Hans D, Dargent-Molina P, Schott AM, et al. Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet, 1996, 348(9026): 511-514.
    123. Bauer DC, Gluer CC, Cauley JA, et al. Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med, 1997, 157(6): 629-634.
    124. Stewart A, Felsenberg D, Kalidis L, et al. Vertebral fractures in men and women: how discriminative are bone mass measurements? Br J Radiol, 1995, 68(810): 614-620.
    125. Gluer CC, Barkmann R. Quantitative ultrasound: use in the detection of fractures and in the assessment of bone composition. Curr Osteoporos Rep, 2003, 1(3): 98-104.
    126. Kanis JA, Melton LJ, Ⅲ, Christiansen C, et al. The diagnosis ofosteoporosis. J Bone Miner Res, 1994, 9(8): 1137-1141.
    127.余卫,秦明伟,徐苓,等.正常人腰椎骨密度变化.中华放射学杂志,1996,30(9):625-629.
    128.余卫,秦明伟,徐苓,等.正常人股骨近端骨密度变化.中华放射学杂志,1998,32(1):23-26.129. Yu W, Qin M, Xu L, et al. Normal changes in spinal bone mineral density in a Chinese population: assessment by quantitative computed tomography and dual-energy X-ray absorptiometry. Osteoporos Int, 1999, 9(2): 179-187.
    130.张智海,沈建雄,刘忠厚.中国人骨质疏松症诊断标准回顾性研究.中国骨质疏松杂志,2004,10(3):255-262.
    131. De Laet CE, Van Hour BA, Burger H, et al. Hip fracture prediction in elderly men and women: validation in the Rotterdam study. J Bone Miner Res, 1998, 13(10): 1587-1593.
    132. Genant HK, Cooper C, Poor G, et al. Interim report and recommendations of the World Health Organization Task-Force for Osteoporosis. Osteoporos Int, 1999, 10(4): 259-264.
    133. ISCD. Diagnosis of osteoporosis in men, premenopausai women, and children. J Clin Densitom, 2004, 7(1): 17-26.
    134. Binkley N, Kiebzak GM, Lewiecki EM, et al. Recalculation of the NHANES database SD improves T-score agreement and reduces osteoporosis prevalence. J Bone Miner Res, 2005, 20(2): 195-201.
    135. Rosvold Berntsen GK, Fonnebo V, Tollan A, et al. The Tromso study: determinants of precision in bone densitometry. J Clin Epidemiol, 2000, 53(11): 1104-1112.
    136. Cordero-Maclntyre ZR, Peters W, Libanati CR, et al. Reproducibility of DXA in obese women. J Clin Densitom, 2002, 5(1): 35-44.
    137. Berntsen GK, Tollan A, Magnus JH, et al. The Tromso Study: artifacts in forearm bone densitometry—prevalence and effect. Osteoporos Int, 1999, 10(5): 425-432.
    138.林强,余卫,秦明伟,等.年龄因素对中老年妇女髋部双能X线骨密度仪测量精确性的影响.中国医学科学院学报,2005,27(1):108-110.
    139. Gluer CC. Monitoring skeletal changes by radiological techniques. J Bone Miner Res, 1999, 14(11): 1952-1962.
    140. Bonnick SL, Johnston CC, Jr., Kleerekoper M, et al. Importance of precision in bone density measurements. J Clin Densitom, 2001, 4(2): 105-110.
    141. ISCD. Position statement: executive summary. The Writing Group for the International Society for Clinical Densitometry (ISCD) Position Development Conference. J Clin Densitom, 2004, 7(1): 7-12.
    142. Jergas M, Uffmann M. Basic Considerations and Definitions in Bone Densitometry. In: Genant HK, Guglielmi G, Jergas M, eds. Bone Densitometry and Osteoporosis. Berlin: Springer, 1998; 269-290.
    143. Fuerst T, Lu Y, Hans D, et al. Quality Assurance in Bone Densitometry. In: Genant HK,??Guglielmi G, Jergas M, eds. Bone Densitometry and Osteoporosis. Berlin: Springer, 1998;461-476.
    144. 余卫。骨质疏松诊断及相关问题探讨。中华医学杂志, 2005, 85(11). 725-727.
    145. Ito M, Nishida A, Kono J, et al. Which bone densitometry and which skeletal site are clinically useful for monitoring bone mass? Osteoporos Int, 2003, 14(12): 959-964.
    146. ISCD. Position statement: introduction, methods, and participants. The Writing Group for the International Society for Clinical Densitometry (ISCD) Position Development Conference. J Clin Densitom, 2004, 7(1): 13-16.
    147. ISCD Position Development Conference. Technical standardization for dual-energy x-ray absorptiometry. J Clin Densitom, 2004, 7(1): 27-36.
    148. Wehren LE, Magaziner J. Hip fracture: risk factors and outcomes. Curr Osteoporos Rep, 2003, 1(2): 78-85.
    149. Genant HK, Jergas M. Assessment of prevalent and incident vertebral fractures in osteoporosis research. Osteoporos Int, 2003, 14(Suppl 3): 43-55.
    150. Lindsay R, Silverman SL, Cooper C, et al. Risk of new vertebral fracture in the year following a fracture. JAMA, 2001, 285(3): 320-323.
    151. Klotzbuecher CM, Ross PD, Landsman PB, et al. Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res, 2000, 15(4): 721-739.
    152. Black DM, Arden NK, Palermo L, et al. Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res, 1999, 14(5): 821-828.
    153. Melton LJ, III, Atkinson EJ, Cooper C, et al. Vertebral fractures predict subsequent fractures. Osteoporos Int, 1999, 10(3): 214-221.
    154. Ross PD, Davis JW, Epstein RS, et al. Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med, 1991, 114(11): 919-923.
    155. Jergas M, Felsenberg D. Assessment of Vertebral Fracture . In: Genant HK, Guglielmi G, Jergas M, eds. Bone Densitometry and Osteoporosis. Berlin: Springer, 1998;227-267.
    156. Ferrar L, Jiang G, Adams J, et al. Identification of vertebral fractures: an update. Osteoporos Int, 2005, 16(7): 717-728.
    157. Genant HK, Wu CY, van Kuijk C, et al. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res, 1993, 8(9): 1137-1148.158. Grados F, Roux C, de Vernejoul MC, et al. Comparison of four morphometric definitions and a semiquantitative consensus reading for assessing prevalent vertebral fractures. Osteoporos Int, 2001, 12(9): 716-722.
    159. Black DM, Palermo L, Nevitt MC, et al. Defining incident vertebral deformity: a prospective comparison of several approaches. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res, 1999, 14(1): 90-101.
    160. Genant HK, Jergas M, Palermo L, et al. Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis The Study of Osteoporotic Fractures Research Group. J Bone Miner Res, 1996, 11(7): 984-996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700