用户名: 密码: 验证码:
LF泡沫精炼渣研究及钢包精炼炉数理模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过LF泡沫精炼渣的实验研究以及对具体精炼炉原型主要冶金过程的数学物理模拟,对某冶金企业的钢包精炼炉进行了有针对性的分析讨论,以期对设备的顺行以及潜力的发挥提供理论指导。
     钢包精炼炉的泡沫渣精炼工艺是提高热效率、降低生产成本的有效手段。本研究中对LF精炼渣的泡沫化性能与其成分组成之间的关系以及精炼炉发泡剂的发泡性能等内容进行了实验室研究和分析,并在此基础上对得到的精炼渣的脱硫及脱氧等精炼性能进行了考察。分析表明,CaO-Al2O3-SiO2系精炼渣的脱硫性能和泡沫化性能存在一定的冲突,需要根据实际生产的要求加以综合考虑。实验中得到了适合精炼炉特点的兼顾泡沫化性能和精炼性能的渣成分组成范围,w(CaO) 45~60%,w(Al2O3) 30~40%,w(SiO2) 10~15%,w(MgO) 5~10%,w(CaF2)<5%。
     由于钢包精炼炉内的还原气氛,泡沫渣工艺中发泡剂的使用是必要的,课题研究中对常用的发泡剂进行了实验考察。作为发泡剂,碳酸盐与碳化物相比优点明显,碳酸盐与其它物质组成复合发泡剂后发泡作用有所改善,但过分增加复合发泡剂中碳化物的含量作用不大。实验中对精炼炉发泡剂的机理进行了分析,其发泡作用应该从提供气源以及其反应产物改变熔渣的性质等多方面考虑。
     钢包精炼炉的熔池搅拌混合行为与普通底吹钢包的主要区别是其加热用的交流电弧和相对较厚的精炼渣。课题实施中对具体尺寸的钢包精炼炉进行了物理模拟,重点考察了加热电弧和泡沫渣对熔池搅拌混合行为的影响并分析了原因,电弧的影响作用主要表现在对熔体循环流动的阻碍,中心底吹时电弧现象对均混时间的影响程度比偏心底吹时大的多,并随底吹气量的增大而增大。精炼炉中泡沫化的顶渣比普通钢包要厚得多,搅拌气体造成的卷渣现象也更明显,易于得到较大的渣钢反应面积。在该实验条件下模型的临界卷渣气量大约为0.3m3/h。对于具体钢包的底吹方式,总的来说偏心喷吹的效果好于中心喷吹,这与传统的研究结果是一致的。在偏心双点喷吹时,近壁点采用小气量的方式比平均分配气量要好得多,但在实验中并未发现这种方式比单点偏心喷吹更有效。
     课题研究中针对具体的钢包精炼炉进行了数学模拟,得到其主要生产过程的数学模型(LF温度预报模型、非金属夹杂物去除模型、精炼渣脱硫预报模型)。模型计算结果与生产数据的比较显示,得到的数学模型与实际生产是符合的。
     LF的温度模型计算结果说明,生产过程中提供给该精炼炉的电弧加热时间并不很充裕,要在有限的时间内达到要求的钢水温度,需要使用较高的电弧输入功率,并要采用理想的埋弧精炼工艺才能达到生产的要求。处理过程中温降梯度最大的时段是精炼渣料的加入阶段,如果为了其它目的而过分增大精炼渣的用量,在处理时间内达到要求的精炼终点温度将有一定的困难。
Based on the experimental study on LF foaming slag for steel refining and physical mathematical simulation to the main metallurgy processes of ladle furnace, analysis was accomplished in detail to certain ladle furnace in a domestic steel company.
     The technology of foaming slag refining is a effective method to improve heating efficiency and reduce the cost. Because of the characteristic of ladle furnace, its slag foaming technology is different form other metallurgy equipments. Relationship between slag foaming capability with ingredients of slag was researched in experiments, so did the refining capability of foaming slag. According to the results, there is some conflict between slag foaming and desulphurizing capabilities. The composition extension of foaming slag for steel refining was obtained: w(CaO)45~60%, w(Al2O3)30~40%, w(SiO2)10~15%, w(MgO)5~10%, w(CaF2)<5%.
     Foaming agent was necessary in ladle furnace because its reducing condition. As foaming agent, carbonates were superior to carbide. And better result would be acquired if composite agent was used. Additionally, action mechanism of foaming agent should be understood on aspects both supplying of gas and changing to the physical property of molten slag.
     Compared with ordinary bottom stirring ladle, heating arc and much more slag are main differences of ladle furnace. Water model study to the specific dimension LF was completed in research according to similarity principle for physical simulation, emphasis laid on the influence of arc phenomenon and foaming slag. Arc phenomenon is a obstacle to ladle bottom stirring, especially in case of centre blowing. Foaming slag is liable to generate slag drop when bottom stirring, so slag entrapment is much easier to be observed in LF. Under such experimental conditions, the critical gas-blowing rate for slag entrapment is about 0.3m3h-1.As to blowing mode, the manner with less gas rate in wall-nearer nozzle is better when double nozzles blowing, but it was not much effective than off-center blowing with single nozzle.
     The mathematical models of main LF metallurgical processes were obtained (temperature prediction model, removal model of non-metal inclusion, LF desulphurization prediction model). The comparison between calculated results and actual data shows that the obtained models were corresponded with the actuality. So the models were reliable for theoretical analysis of certain LF process.
     Calculated results of temperature prediction model showed, much higher input power and foaming refining technology should be used to achieve the production requirement. In treat process, slot of the most temperature gradient is the time adding refining slag. If excessive slag were added into ladle, there would be some difficulty to achieve end-point temperature. Therefore, utilization of
引文
1. 蒋国昌.纯净钢与二次精炼[M],上海:上海科学技术出版社,1996
    2. 姜永林.连铸生产概论[M],沈阳:东北工学院出版社,1992,59-60
    3. 蔡开科.浇注与凝固[M],北京:冶金工业出版社,1987,88-95
    4. 蔡开科,程士富.连续铸钢原理与工艺[M],北京:冶金工业出版社,1994,121-128
    5. 知水,王平,侯树庭.特殊钢炉外精炼[M],北京:原子能出版社,1996
    6. 张鉴.炉外精炼的理论与实践[M],北京:冶金工业出版社,1993
    7. 刘传汉.我国钢包炉(LF)的发展现状[J],特殊钢,2001,22(2):31-33
    8. Goro Y,Tasamasa Y.Refining practice and application of the ladle furnace (LF) process in Japan[J],Trans. ISIJ,1984,24(3):412-418
    9. Pehlke R D,Fuwa T.Control of sulphur in liquid iron and steel[J],Int. Met. Reviews,1985,30(3):125
    10.姜周华,马哲元,黄宗泽等.直流电弧炉长弧泡沫渣技术[J],宝钢技术,1996(4):26-31
    11.徐增启,丁永昌.电弧炉埋弧冶炼工艺研究[J],武汉钢铁学院学报,1994,17(1):15-24
    12.袁伟霞,郭爱明.超高功率电弧炉泡沫渣发泡性能研究,电弧炉炉外精炼技术,1991:
    41-47
    13.袁伟霞,张鉴.超高功率电炉渣发泡性能的研究[J],化工冶金,1992,2:204-209
    14.任正德,张广庭,唐萍等.40t 钢包炉泡沫渣埋弧作业[J],特殊钢,1995,16(4):41-45
    15.牛四通,张鉴,成国光等.LF 炉埋弧渣技术的开发和应用,1995 年特殊钢学术会议论文集,本溪,1995,8:13-17
    16.王忠英.钢包埋弧泡沫渣的应用[J],炼钢,1997,13(2):8-12
    17.Cooper C F,Kitchener J A.The foaming of molten silicates[J],Journal of the iron and steel institute,1959,193:48-55
    18.Ito K,Fruehan R J.Slag foaming in electric furnace steelmaking[J],Iron and steel Maker,1989,16(8):55-60
    19.迪林,王平,傅杰.LF 埋弧泡沫渣实验研究[J],特殊钢,1999,20(3):24-26.
    20.彭朝晖,肖中立,刘慧.采用发泡剂的电炉泡沫渣炼钢工艺研究[J],钢铁,1996,31(4):
    27-30.
    21.乐可襄.精炼渣发泡性能的实验研究和渣发泡条件理论分析[J],钢铁,1998,33(7):18-21
    22.乐可襄.精炼炉熔渣泡沫化的实验研究[J],钢铁研究学报,2000,12(3):14-17
    23.成国光,牛四通.还原精炼条件下炉渣的泡沫化[J],钢铁研究学报,1996,8(5):12-16
    24.牛四通,杨德华.LF 埋弧渣的研究及应用[J],钢铁,1997,32(3):21-24
    25.颜广庭.LF 炉泡沫渣埋弧作业研究.第 8 届全国炼钢学术会议论文集,攀枝花,1994,413-417
    26.Ito K,Fruchan R J.Study on the foaming of CaO-SiO2-FeO slag[J],Met. Trans. 1989,20B (4):509-514
    27.Shigeta H,Masahisa I.Foaming of molten slag contain iron oxide[J],铁と钢,1983,69(9):1152-1159
    28.Warczok A A,Utigard T A.Low temperature physical modeling of slag foaming[J],Can. Met. Quart,1994,64(10):491
    29.储少军,吴铿.冶金熔体泡沫分类的研究[J],北京科技大学学报,1998,20(1):20-25
    30.王俭译,德国钢铁工程师协会编.渣图集[M],北京,冶金工业出版社,1989
    31.Jiang R,Fruehan R J.Slag foaming in bath smelting[J],Met. Trans.,1991,22B(4):481-487
    32.储少军,牛强,吴铿等.CaCO3 在硼酸盐中的热分解行为及其对熔体泡沫化的影响[J],化工冶金,2000,21(2):158-163
    33.任正德.还原泡沫渣用发泡剂的实验室研究[J],特殊钢,1996,17(6):17-21
    34.林功文.钢包炉精炼用渣的功能和配制[M],特殊钢,2001,22(6):28-29.
    35.吴铿,潜伟.冶金渣发泡性能及添加剂对其影响的研究[J],钢铁,1999,34(9):11-15
    36.乐可襄,董元篪.王世俊.CaO-SiO2-MgO-Al2O3 精炼渣的脱硫性能[J],特殊钢,1998,19(3):15-17
    37.战东平,姜周华,王文忠等.预熔精炼渣钢水深脱硫实验研究[J],材料与冶金学报,2002,1(1): 65-68
    38.周世祥,许诚信,屠宝洪.铝渣灰脱硫剂对提高 LF 炉脱硫效果的影响[J],北京科技大学学报,1997,19(4):338-341
    39.周宏,吴晓春,崔嵬.硫在 CaO-Al2O3 系预熔渣与钢液间的分配率[J],钢铁,1995,30(6): 14-17
    40.王雅娜,朱容,李士琦等.精炼渣的配比对超低硫钢脱硫的影响[J],特殊钢,2002,23(4): 17-19
    41.郑庆,张晓兵,蒋国昌等.钢包精炼渣成分的最优化[J],上海大学学报,1997,3,Suppl:161-164
    42.成国光,宋波,陆钢.钢液深脱硫精炼工艺的研究[J],钢铁,2001,36(3):21-22
    43.王书桓,唐国章,李福民.12CaO7Al2O3 型精炼合成渣物性及脱硫实验[J],河北理工学院学报,2001,23(3):9-13
    44.苏秩,金振坚,刘浏.CaO-Al2O3-SiO2 三元渣对硬线钢的脱氧热力学计算[J],化工冶金,2000,21(1):84-86
    45.万爱珍,唐国章,田薇.钢水发热脱硫剂的实验[J],河北理工学院学报,2000,22,Suppl:78-80
    46.Haddock J T,Hussain I.New MgO-CaO based reagent for ladle treatment of steel[J],Ironmaking and steelmaking,1994,21(6):479
    47. Hassall G J,Jackman D P,Hawkins R J.Phosphorus and sulphur removal from liquid steel in ladle steelmaking process[J],Ironmaking and steelmaking,1991,18(5):359-362
    48.万真雅,郭上型.LF 固体合成渣脱硫工业性试验研究[J],钢铁,1995,30(9):14-18
    49.郭上型,万真雅.钢包炉 CaO-SiO2-MgO-Al2O3 渣系的脱硫试验[J],特殊钢,1996,17(3): 46-49
    50.车荫昌.冶金热力学[M],沈阳:东北工学院出版社,1989
    51.陈新民.火法冶金过程物理化学[M],北京:冶金工业出版社,1984
    52.黄希祜.钢铁冶金原理[M],北京:冶金工业出版社,1981
    53.梁英教.物理化学[M],北京:冶金工业出版社,1983
    54.傅崇说.冶金溶液热力学原理与计算[M],北京:冶金工业出版社,1979
    55.张圣弼,李道子.相图原理计算及在冶金中的应用[M],北京:冶金工业出版社,1986
    56.蒋学明,陈肇友.含 Al2O3 和 CaF2 炉外精炼渣在镁白云石耐火材料中的渗透[J],钢铁,1993,28(7):19-21
    57.周宏.硫在 CaO-Al2O3 渣与钢液间的分配率[J],钢铁,1995,30(6):14-17
    58.Wu G S.Sulphur absorption rate of some premelted fluves during heating period[J],Ironmaking and Steelmaking,1987,14(6):291
    59.吴铿,梁志刚.包钢 LF 精炼过程脱硫工业实验研究[J],钢铁,2001,36(8):16-18
    60.汤曙光.LF-VD 精炼渣组成对冶金效果的影响[J],炼钢,2001,17(4):29-54
    61.陈襄武.炼钢过程中的脱氧[M],北京:冶金工业出版社,1989,175-177
    62.薛正良,李正邦,张家雯.LF 钢包精炼过程中的脱氧[J],武汉科技大学学报,2001,24(2):111-131
    63.陈家祥.炼钢常用图表数据手册[M],北京:冶金工业出版社,1988
    64.王常珍.冶金物理化学研究方法[M],北京:冶金工业出版社,1982
    65.李宝宽,赫冀成.炼钢中的计算流体力学[M],北京:冶金工业出版社,1998,263-265
    66.Mazumdar D,Guthrie R I L.The physical and mathematical modeling of gas stirred systems(review)[J],ISIJ Int.,1995,35(1):1-20
    67.Nakanishi K,Fujii T,Szekely J.Possible relationship between energy dissipation and agitation in steel processing operations[J],Ironmaking and steelmaking,1975,2(4):193-197
    68.Murthy G K,Mehrotra S P,Ghosh A.Experimental investigation of mixing phenomena in a gas stirred liquid bath[J],Metall. Trans.,1988,19B:839-850
    69.周俐,戴朝珊.王建军等.LF 钢包精炼炉实验研究[J],炼钢,1996,12(1):35-39
    70.何平.110t ANS-OB 钢包底吹氩混合特性研究[J],炼钢,1995,11(6):38-42
    71.何平.ANS-OB 钢包浸罩内底吹排渣实验研究[J],钢铁研究学报,1997,9(5):6-10
    72.成国光,张鉴,佟福生.钢包底吹氩搅拌卷渣机理的水模型研究[J],钢铁研究,1994,22(2):3-7
    73.何平,谢计卫.钢包底吹液面产生液峰高度的水模型研究[J],钢铁研究,1996,24(4):3-6
    74.Sano M,Mori K.Fluid flow and mixing characteristics in a gas-stirred molten metal bath[J], Trans. ISIJ,1983,23(2):169-175
    75.Asai S,Okamato T,He J C.Mixing time of refining vessels stirred by gas injection[J],Trans. Iron steel Inst. Jpn.,1983,23(2):43-50
    76.郭长庆.带有顶渣的 LF 钢包炉熔池流动的数学物理模拟[J],包头钢铁学院学报,1995,14(3):27-33
    77.朱应波,宋东亮,曾昭生等.直流电弧炉炼钢技术[M],北京:冶金工业出版社,1997
    78.南条敏夫.乔兴武译.直流电弧炉的电弧现象[M],北京:冶金工业出版社,1998.
    79.张华书,肖泽强.渣钢混合状态对冶金速率的影响[J],钢铁,1987,22(9):21-25
    80.唐恒国,闫小平,杨书学等.LF 钢包精炼炉实践[J],炼钢,1999,15(4):18-21
    81.Bekele O,Bjorkman B.Prediction of steel temperature in ladle through time/temperature simulation[J],Scand. J. Metallurgy,1993,22(4):219-231
    82.Zoryk A,Reid P M.On-line liquid steel temperature control[J],Iron and steel maker,1993(7):21-27
    83.万真雅.LFV 炉精炼 GCr15 轴承钢的温度制度[J],华东冶金学院学报,1992,9(1):7-12
    84.张先倬.冶金传输原理[M],北京:冶金工业出版社,1988
    85.陶文铨.数值传热学[M],西安:西安交通大学出版社,1988
    86.钱滨江.简明传热手册[M],北京:高等教育出版社,1983,187-191
    87.郑蒂基译.提取冶金速率过程[M],北京:冶金工业出版社,1984
    88.Wang L H,Lee H G.A new approach to molten steel refining using fine gas bubbles[J],ISIJ int.,1996,36(1):17-24.
    89.赵振刚,郑灿舜,纪明等.LF+VD 精炼工艺对齿轮钢氧含量的影响[J],特殊钢,2002,23(1):49-50
    90.李正邦,薛正良,张家雯.合成渣处理对弹簧钢脱氧及夹杂物控制的影响[J],特殊钢,2000,21(3): 10-13
    91.薛正良,李正邦,张家雯.钢的脱氧与夹杂物控制[J],特殊钢,2001,22(6):24-27
    92.薛正良,李正邦,张家雯.弹簧钢超低氧精炼技术[J],特殊钢,1998,19(3):31-35
    93.李代钟.钢中的非金属夹杂物[M],上海科学技术出版社,1983,15-17
    94.格里戈良.电炉炼钢过程理论基础[M], 北京:冶金工业出版社,1985,36-38
    95.董履仁,刘新华.钢中大型非金属夹杂物[M],北京:冶金工业出版社,1991,51-59
    96.奥特斯.钢冶金学[M],北京:冶金工业出版社,1996
    97.吴铿,梁志钢,张二华等.LF 精炼过程中硫分配比和脱硫动力学方程研究[J],金属学报,2001,37(10):1069-1072
    98.易继松,王平,傅杰.VD 过程脱硫速度控制模型及应用[J],钢铁,1999,34,Suppl:12-14
    99.王庆祥,何环宇.渣铁反应脱硫动力学研究[J],包头钢铁学院学报,2001,20(3):207-209
    100.张智星.MATLAB 程序设计与应用[M],北京:清华大学出版社,2002
    101.魏源源.Visual BASIC 5.0 中文版程序设计教程[M],北京:电子工业出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700